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Investigation of observability properties of nonlinear dynamical systems aims at giving a hint on how much
dynamical information can be retrieved from a system using a certain measuring function. Such an investigation
usually requires knowledge of the system equations. This paper addresses the challenging problem of investigating
observability properties of a system only from recorded data. From previous studies it is known that phase
spaces reconstructed from poor observables are characterized by local sharp pleatings, local strong squeezing
of trajectories, and global inhomogeneity. A statistic is then proposed to quantify such properties of poor
observability. Such a statistic was computed for a number of bench models for which observability studies had
been previously performed. It was found that the statistic proposed in this paper, estimated exclusively from data,
correlates generally well with observability results obtained using the system equations. It is possible to arrive
at the same order of observability among the state variables using the proposed statistic even in the presence of
noise with a standard deviation as high as 10% of the data. The paper includes the application of the proposed
statistic to sunspot time series.
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I. INTRODUCTION

Consider a system ẋ = f(x) from which only a scalar
variable s(t) is recorded according to a measurement function
h: s(t) = h(x). A key problem in nonlinear dynamics is to
reconstruct a phase space from s(t) that will convey dynamical
information from the unknown original phase space. Suppose
x ∈ Rm, roughly speaking, the observability problem in control
engineering is to determine if it is possible to recover (observe)
x from s(t) and a model of the dynamics (the observer).
A different but somewhat related problem in the embedding
of nonlinear dynamics is to establish a d-dimensional set of
coordinates from s(t) in such a way that the reconstructed
space can be used as a working space where geometrical
and dynamical features of the system can be assessed. In a
typical embedding problem there is no need to recover the
state vector x and, unlike the observability problem in the
context of control engineering, the embedding dimension is
usually different from the original phase space dimension, that
is, d �= m.

One of the similarities of the aforementioned approaches
to observability is the need of system equations [1,2]. The
aim of the present paper is to investigate the observability
problem, in the context of nonlinear dynamics, only from
data. Since the definition of observability is based on the
system equations [3], in order to address the problem from
data, we use previous knowledge on some of the main features
of phase spaces reconstructed from poor and good observables.
Having established such features, the paper proceeds to define
a statistic which is able to quantify such features from data.
The results are compared to observability results known from
the theory to see how the new statistic correlates with such
knowledge. Smirnov and colleagues have investigated an
observability-related problem in the context of modeling [4].

In particular, it is assumed that a good embedding will
be approximately linear in any small neighborhood in phase
space. Poor embeddings, as, for instance, those obtained

using variables that provide poor observability of the original
dynamics, are characterized by strong pleatings and trajectory
squeezing in the reconstructed space. In this paper a “pleat”
will be distinguished from a “fold.” A fold is associated with
a topological structure that molds the dynamics and which
cannot be removed, no matter in which space the phase
portrait is reconstructed. Contrary to this, a pleat is a spurious
structure without any dynamical role and which does not
exist in the original phase space. The existence of a pleat
depends on the measurement function and, consequently, the
reconstructed space in which the dynamics is investigated.
These “nonlinear features” are not related to the dynamics but
rather to projection side effects of the measurement function
h. Typically, provided the neighborhood is sufficiently small,
foldings still correspond to a locally linear structure, since the
dynamics results from a set of smooth differential equations.
Most of the spurious features are detected by noticing that,
locally in the reconstructed space, there will be some departure
from linearity, and such a departure can be quantified by a
decrease in relative importance of the main linear components.
A key tool is the application of a singular value decomposition
to a matrix composed of trajectory segments contained in a
“small” neighborhood.

A pioneering work in the use of the singular value de-
composition (SVD) in the field of nonlinear signal processing
is Ref. [5]. In that paper the SVD was proposed as a way of
providing a set of coordinates that are alternatives to the differ-
ential and delay coordinates [6,7] and to determine an adequate
value for the embedding dimension. More recent studies on
the SVD and embedding techniques include Refs. [8] and [9].
SVD only takes into account linear structures [10]. Although
a nonlinear extension of the SVD seems to be possible [11], in
this paper, however, the SVD is only applied locally. The aim is
simply to assess the local deviation from linearity by applying
the SVD to rather small neighborhoods in the reconstruction
space. In this case typical difficulties due to nonlinearity are
avoided [12].
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The important problem of the noise floor is of little
relevance for the method proposed in this paper because
what is assessed is the local simplicity of the embedding.
In order to do so, we use a statistic [see Eq. (6)], where
no decision on the statistical significance of singular values
is required. The rationale behind our investigation is that
good embeddings will, in practice, be “locally simple” and
globally homogeneous. Poor embeddings, on the other hand,
reveal locally a more complex structure due to pleating and
squeezing. In other words, good embeddings deviate less
from a locally linear manifold than do poor embeddings. The
statistic defined in this paper [see Eq. (6) below] quantifies
the relative importance of one (linear) direction explaining
the reconstructed data. If the embedding is poor, for whatever
reason, the relative importance of the best—in a SVD sense—
(linear) direction will decrease.

A somewhat related reasoning was used in Ref. [13] where
a measure of the average local deformation was defined based
on the growth rate of the error vector between a reference
point and the center of mass of the neighborhood. In that
paper the authors’ main assumption was that “in a bad
reconstruction adjacent trajectories may have very different
directions” [13], p. 7079]. Such local applications of the
SVD date back to Ref. [14] and have been applied even

to nonlinear dynamics (topological dimension estimation) in
Ref. [12].

The paper is organized as follows. Background material is
provided in Sec. II. The main result of the paper is given in
Sec. III, and numerical examples are provided in Sec. IV. The
main conclusions of the paper are discussed in Sec. V.

II. BACKGROUND

Consider a nonlinear system

ẋ = f(x),

s(t) = h(x),
(1)

with f : Rm → Rm and h : Rm → R. A vector in a differential
embedding space of dimension d is

sT (t) = [s(t) ṡ(t) s̈(t) · · · s(d−1)(t)], (2)

where s(d−1)(t) indicates d (d−1)s(t)/dt (d−1), and a vector in a
delay embedding space of dimension d is

sT
k = [s(k) s(k + τ ) s(k + 2τ ) · · · s(k + (d − 1)τ )], (3)

where s(k) is the kth recording of s(t) sampled with sampling
interval Ts, and τ is a delay time. A trajectory matrix can be
defined as

X =

⎡
⎢⎢⎢⎢⎢⎣

sT
k

sT
k+τ

...

sT
k+(N−1)τ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

s(k) s(k + τ ) · · · s(k + (d − 1)τ)

s(k + τ ) s(k + 2τ ) · · · s(k + dτ )

...
...

...
...

s(k + (N − 1)τ ) s(k + Nτ ) · · · s(k + (N + d − 2)τ)

⎤
⎥⎥⎥⎥⎦

. (4)

The trajectory matrix X ∈ RN×d ,N > d can be decom-
posed using the SVD as [5]

X = S�CT , (5)

where S and C are orthogonal matrices and � is a diagonal
matrix of singular values of X, that is, � = diag[σ1, . . . ,σd ],
where it is assumed that σ1 > σ2 > · · · > σd . Let us further
assume that the data in the original phase space x are on
a manifold of dimension n < m. For a generic measuring
function h there will be a diffeomorphism between the original
and embedding spaces if d � 2n + 1 [7]. The vectors that
compose matrix C can be used as the coordinates of yet another
embedding space. Moreover, if only d ′ < d singular values are
greater than zero—or greater than the noise floor in the case
of noisy data—the first d ′ vectors in C can be used as a set
of coordinates for an embedding space of reduced dimension
d ′ [5].

III. LOCAL MEASURES OF SIMPLICITY AND
OBSERVABILITY

One of the main features of a good reconstruction space
is that the dynamics should be adequately unpleated in it. For
instance, it is well known that if the delay time is too small, the

data are squeezed along the main diagonal of the reconstructed
space using delay coordinates.

We shall return to delay coordinates later, but for now let
us consider differential embeddings. It is also known that,
depending on the measuring function h, the reconstructed
space [s ṡ s̈ · · · s(d−1)] might not be an embedding [15]. Careful
investigation of this problem reveals that when the recorded
variable is a poor observable, it is usually possible to find
in the reconstructed space regions, where the trajectories are
either squeezed or they are strongly pleated. In such regions
there is no (local) diffeomorphism relating the original and
reconstructed spaces, therefore, it is not possible to know
the original dynamics from the reconstructed space in that
particular region. Such a scenario is the result of a choice
of observable that renders poor observability of the system.
On the other hand, in a favorable scenario, the dynamics are
comfortably unpleated throughout the reconstructed space.

The main idea in this paper is to be able to quantify the local
“unpleatedness” of the dynamics. If the dynamics are well
unpleated in a neighborhood U , the geometry in U is simple,
and this is indicated by a relatively large first singular value of a
trajectory matrix build with data taken from the neighborhood
U . Conversely, when the data are pleated in the reconstruction
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space, the local structure becomes more complicated and the
subsequent, i.e., second, third, etc., singular values become
relatively more important. Therefore, a simple indication of
the geometrical simplicity of the dynamics within U is given
by

σ1%(U) = σ1

Tr[�]
100, (6)

where Tr[�] indicates the trace of matrix �, that is, the
summation of all the singular values σi,i = 1, . . . ,d and
σ1%(U) is a relative measure of the largest singular value of a
matrix with data taken from the neighborhood U . Therefore,
large values of σ1% indicate the lack of sharp pleatings,
which is expected if the dynamics is comfortably unpleated.
Conversely, as the system visits regions in reconstructed space
where the dynamics is more strongly pleated, σ1% decreases.
From a reconstruction point of view, the larger σ1%, the better.
Hence, if the reconstructed space presents pleating, e.g., due to
a bad observable, it will depart from local linearity and this will
be detected by a reduction in the relative importance of the first
singular value. It is important to see that the neighborhoods
need not (and should not) be too small, in order to help detect
the departure from linearity.

Therefore, a good embedding is obtained whenever the
dynamics is unpleated in the reconstruction space in an
homogeneous way. Conversely, whenever the dynamics is
unpleated in a nonhomogeneous way, the resulting embedding
is poor, that is, there are regions of the reconstructed space
that have a very simple geometry, and there are other regions
that display a more complicated structure. Since we propose
to use σ1% as a local measure of the geometrical simplicity
of the reconstructed space, then the overall features of the
reconstructed space can be quantified by some measure of the
variability of σ1% throughout the space.

In a sense this method is similar to the one proposed
in Ref. [16], where a measure of homogeneity of the flow
was calculated. However, in that paper the authors developed
a quantitative measure of the violation of causality that
consists of following the evolution of the distance between
two neighboring points.

In this paper we propose to follow a simple yet effective
procedure. First, we take a time series of the observable s and
embed it in the reconstruction space using some coordinate
system. A certain number of neighborhoods that are located
all over the reconstructed space is chosen and for each such
neighborhoods σ1% is calculated. Finally, we simply compute
the statistic

Ss = mean[σ1%(U)]

100 std[σ1%(U)]
, (7)

where “mean” stands for the sample mean and “std” is the
sample standard deviation of σ1% over the population of
neighborhoods U . The idea behind (7) is that a reconstructed
space for which σ1% is larger on average will indicate better
unpleating of the dynamics. Also, smaller variability, that is
smaller std(σ1%), will indicate a more homogeneous recon-
structed space, which is also the signature of a reconstruction
based on a good observable.

The details as to how to compute (6) are give below. Let
s1,s2 ∈ Rd be two vectors in the reconstructed spaceRd . These

vectors are neighbors within a tolerance ε if |s1 − s2| < ε,
where | · | indicates some norm. In this paper the L1 norm
was used. A neighborhood U can be defined by taking some
reference vector sr ∈ Rd and searching for all the vectors in
the data that satisfy |sr − si | < ε,∀i. Suppose that for a given
reference sr the vectors si ,i = j1,j2, . . . ,jN were found to
be neighbors with neighborhood size defined by ε. Let us
denote such a neighborhood by U . The (local) data matrix for
neighborhood U is formed thus,

XU (sr,ε) =

⎡
⎢⎢⎢⎢⎢⎣

sT
j1

sT
j2

...

sT
jN

⎤
⎥⎥⎥⎥⎥⎦

. (8)

In what follows, the arguments of XU (sr,ε) will be omitted for
the sake of simplicity. The singular value decomposition of the
local data matrix is given as before [see Eq. (5)],

XU = S�CT , (9)

and the elements of � are used directly in (6).
The use of Eq. (7), as will be seen, is particularly relevant in

observability problems where poor observables usually result
in local blind spots in the reconstructed space. Such blind
spots are usually characterized by sharp pleatings and/or strong
squeezing of trajectories and therefore they locally deviate
from linear manifolds. Such a deviation is captured by the
singular value decomposition observability (SVDO) statistic,
Ss . In Secs. III A and IV the statistic in (7) will be computed for
a number of cases for which the observability features of the
variables are known. Thus the practical use of (7) in assessing
observability features directly from data can be established.

A. A benchmark example

To illustrate, consider the Rössler system [17],

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),
(10)

with (a,b,c) = (0.398,2.0,4.0). This has become a benchmark
example in what concerns observability, because, in a sense,
it provides two extremes: On the one hand, the phase space
reconstructed with (y,ẏ,ÿ) is globally diffeomorphic to the
original phase space. On the other hand, the z variable is known
to be a particularly poor observable for this system [18,19].
Various ways of computing the degree of observability yield
the same ranking among the variables, y � x � z, which can be
considered the correct one for this simple system, where y � x

means that y is a better observable than x, and so on.
System (10) was simulated from random initial conditions,

with an integration step equal to 0.01 for a final time of t =
300. The first part of the simulated trajectory was discarded
to avoid any spurious effects due to transients. In order to
establish the main features of the proposed procedure free of
any numerical artifacts, the first and second time derivatives
of the state variables were analytically computed from (10),
which means to say that the embedding coordinates are of the
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form (2). For numerical aspects of derivative estimation from
data we refer the reader to Ref. [20].

Although the sampling time does not play any critical role
in the following numerical analysis, in order to guarantee a
certain uniformity of treatment in the various examples, the
sampling time was chosen based on a linear plus nonlinear
correlation approach originally suggested in Ref. [21] in such
a way as to have the first minimum of the (either linear
or nonlinear) correlation function at τ ≈ 20. In the present
example, that results in decimating the data (x, y and z) with
a factor of 7. The decimated data is the working data. Other
nonlinear functions which could prove helpful in this type of
analysis have been recently put forward in Ref. [22].

The next step is to embed the trajectory in the space
(y,ẏ,ÿ), that is the y variable was chosen as the observable,
i.e., s(t) = y(t). Reference vectors—working points on the
trajectory in the reconstructed space—were chosen by taking
10% of the data of the reconstructed trajectory. Such points
were taken uniformly in time. After defining (more on this
later) neighborhood size ε, a neighbor matrix XU [see Eq. (8)]
was built for each reference vector. Each of the matrices XU
was then decomposed using SVD [see Eq. (9)] using the svd.m
function of Matlab. Taking the largest singular value of XU ,
which is the first element of � that is σ1 = �(1,1), the statistic
in (6) was computed for each of the matrices XU . It should
be clear that each σ1% is a local measure of the geometrical
structure of the reconstructed space around the corresponding
reference vector.

Figure 1 shows σ1% computed for 150 sequential neigh-
borhoods on a trajectory on the Rössler attractor as described.
The larger values indicate a more simple local geometry. As
the neighborhoods were taken at fixed time intervals along
a trajectory on the attractor, the recurrent property is clearly
indicated by the regular fluctuations of σ1% along the reference
vectors which are uniformly spaced in time (Fig. 1). Moreover,
the sharp peaks which reach out to lower values indicate that
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σ 1%

reference vector number

FIG. 1. (Color online) σ1% for 150 sequential neighborhoods on a
trajectory on the Rössler attractor reconstructed from the y variable.
The ninth reference vector is indicated with a (red) circle and the
75th reference vector is indicated with a (blue) square. For the
interpretation of σ1% see text and the caption to Fig. 2.

the system visits regions in the reconstructed space where the
local geometry of the attractor is more complicated.

In order to help interpret σ1% further, we choose two
extreme values. The one corresponding to the 75th reference
vector (a high value) and that corresponding to the ninth
neighborhood (a lower value). Each reference vector defines
a neighborhood, which is composed of all vectors in the
data which are at maximum distance ε from the respec-
tive reference vector. A few neighbor vectors to each of
the 75th and ninth reference vectors are indicated in Fig. 2
(see the caption) and represent simpler and more complex
local geometry, respectively. In fact, it can be seen that the
vectors in the neighborhood of reference vector 9 are in a
region where pleating is more significant. Nonetheless, on the
whole, the Rössler attractor represented in the reconstruction
space (y,ẏ,ÿ) is still quite well unpleated, as indicated by the
quite large value of σ1% for all neighborhoods.

A parameter that must be chosen by the user is the tolerance
ε which defines the neighborhood size. This was varied,
for each observable, within the range 1%�s � εs � 15%�s ,
�s = max(s) − min(s), as shown in Fig. 3(a).

From the results reported in Fig. 3(a) it is seen that for
almost all neighborhoods the observables are ordered as y �
x � z, indicating that y provides a better quality reconstruction
space, according to (7). For neighborhoods that are too small,
it becomes difficult to see the difference between x and y.
Further simulation studies have shown that the order y � x � z

in the case of the Rössler system is maintained over a very
wide range of neighborhood sizes [Fig. 3(a)] and of sampling
times [Fig. 3(b)].

In this and all the remaining examples, the SVDO measures
will be numerically reported for εs = 10%. Therefore, the
values used for the Rössler system were εx = 0.854, εy =
0.770, and εz = 0.572. The values of (7) obtained in this
example were Sx = 0.24, Sy = 0.29, and Sz = 0.07. These
values are reported in Table I with the order of observability

−6−4−2024−5
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dy/dt

d
2 y/

dt
2

y

Neighborhood of
75th reference vector 

Neighborhood of
9th reference vector 

FIG. 2. (Color online) Rössler attractor reconstructed in a differ-
ential embedding using the y variable. The (blue) squares are in a
neighborhood, of the 75th reference vector, with a high value of σ1%

(see Fig. 1), indicating a simple local structure. On the other hand,
the (red) circles, where pleating is greater, are in a neighborhood of
the ninth reference vector. Such a neighborhood has a low value of
σ1% (see Fig. 1), indicating more complex local structure.
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FIG. 3. (Color online) (a) Indices SVDO for the Rössler system
for the range 1%�s � εs � 15%�s , in this example �x = 8.54,
�y = 7.70, and �z = 5.72. (— blue) x, (-·- black) y, and (- - - red)
z. The sampling time is fixed (7 × 0.01 = 0.07). (b) Same as (a) but
with the neighborhood size fixed (ε = 10%) and varying sampling
time.

determined using the symbolic computation as defined in
Ref. [2]. The results of this example suggest that (7) can
be used as an indication of the observability, especially in
the case of differential embeddings. For delay coordinates,
other parameters such as the delay time and the embedding
dimension (and for real data the noise) will play important

TABLE I. The column “observability order” was determined
using the symbolic observability coefficients defined in Ref. [2].
The SVDO statistic Ss was computed using Eq. (7) with differential
coordinates over 100 Monte Carlo runs and noise-free data. In
each run the initial conditions of the simulated systems were taken
randomly. The observability order for the first three systems was
reported in Ref. [25]. The remaining results are reported here.

System Observability order s Ss

Rössler y 0.29 ± 0.02
y � x � z log10 z 0.25 ± 0.03

x 0.24 ± 0.01
z 0.07 ± 0.002

Lorenz z 2.23 ± 0.13
z � x � y x 0.96 ± 0.38

y 0.43 ± 0.09

Double scroll x 0.75 ± 0.22
x � z � y z 0.37 ± 0.08

y 0.54 ± 0.14

Lorenz’84 x 0.44 ± 0.03
x � y ≈ z y 0.25 ± 0.02

z 0.18 ± 0.02

Cord attractor x 0.20 ± 0.04
x � y ≈ z y 0.05 ± 0.003

z 0.13 ± 0.01

roles besides the choice of observables. In what follows, we
still use differential embeddings so to be able to directly relate
(7) with observability properties.

To conclude this example an interesting case will be
investigated. It is known that for the Rössler system, if the
embedding space is reconstructed with log10 z instead of z,
the quality of the resulting space is increased [23]. In other
words, log10 z is a better observable than z. If the Rössler
system is embedded in the space (s,ṡ,s̈), where s = log10 z

(�log z = 1.33), computation of (7) yields Ss = 0.25 (Table I),
indicating a clear increase in the quality of the embedding, as
compared to the space (z,ż,z̈).

B. A modified model

In order to further illustrate the property of statistic (7) we
use the system

ẋ = −y − z − ax + aF,

ẏ = xy − bxz − y + G,

ż = bxy + xz − z,

(11)

with (a,b,F,G) = (0.25,4.0,8.0,1.0), which is a modification
of the Lorenz’84 system [24], to be considered in Sec. IV. For
these parameter values the system settles to an attractor that
has very different features, depending on the region in phase
space, as can be seen in Fig. 4. At the center of the figure,
the trajectory is squeezed into a very compact region which
resembles a cord. On the other hand, apart from the “cord”
the attractor displays quite simple local dynamics, especially
at the center behind the “cord.”

Looking at Fig. 1, for the Rössler system, it is seen that
the smallest values of σ1% are ∼80%. The (red) triangles in
Fig. 5, for system (11), correspond to σ1% ≈ 80% and are the
reference vectors 46 and 70. The reference vectors between the

−6 −4 −2 0 2 4 6
−20

−10

0

10

20

30

x

y

FIG. 4. (Color online) Bidimensional projection of the attractor
of system (11), with (a,b,F,G) = (0.25,4.0,8.0,1.0). In the center
of the figure the trajectories are squeezed into a very thin region in
state space. The (blue) squares at the back of the attractor are some
neighbors of reference vector 36 for which σ1% is large. The (red)
circles in the center of the cord are neighbors of reference vector 51
for which σ1% reaches one of the smallest values in Fig. 5.
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FIG. 5. (Color online) σ1% for 150 sequential neighborhoods
on a trajectory on the attractor of (11), with (a,b,F,G) =
(0.25,4.0,8.0,1.0).

46th and the 70th are all on the cord and, in fact, correspond
to the lowest values of σ1% shown in Fig. 5. The neighbors of
the reference vectors 46 and 70 are shown in Fig. 4 as (red)
triangles and as the figure clearly shows such neighbors are
located at the extremities of the cord. The 51st reference vector,
shown as a (red) circle, defines a neighborhood for which σ1%

is among the smallest values in Fig. 5, just below 50%. As seen
in Fig. 4, such a reference vector is located at a point on the
cord where the trajectory is very strongly squeezed. Finally,
the reference vector number 36, shown as a (blue) square in
Fig. 5, has a high value indicating a very simple local structure
in phase space, as is the case behind the cord, where some
neighbor vectors of the 36th reference vector are indicated in
Fig. 4. Therefore, σ1% serves as a local measure of complexity
in phase space.

IV. NUMERICAL RESULTS

Since (7) is, to some extent, a measure of the quality of a
reconstructed space, and remembering that the quality of such
a space is clearly influenced by the observable (among other
important factors), an interesting point to investigate is to see
how the observable influences the SVDO statistic. Further, we
would like to know to what extent does such a statistic correlate
with the observability order for some standard systems.

A. Differential embeddings

Table I shows the results obtained for five different systems.
The observability order—obtained from the observability
coefficient provided in Ref. [25] and the cited references—is
reported with values of Ss .

The other systems investigated and the parameters used are
the Lorenz system [26],

ẋ = σy − σx,

ẏ = ρx − y − xz,

ż = −βz + xy,

(12)

with (σ,ρ,β) = (10.0,28.0,8/3). This is an important system
to investigate because of the rotation symmetry. As a con-
sequence, two different points, one on each of the attractor
wings, cannot be distinguished by looking at z. Unfortunately,
this is not revealed by any local measure on the attractor, as
discussed in Ref. [27]. Therefore, it comes as no surprise that
the values estimated for Ss from each observable taken at a time
is consistent with the observability order z � x � y obtained in
Ref. [25].

The double-scroll attractor is produced by the system [28]

ẋ = α(y − x − f (x)),

ẏ = x − y + z

ż = −βy − γ z,

(13)

with f (x) = bx + 0.5(a − b)(|x + 1| − |x − 1|) with a =
−8/7, b = −5/7, and (α,β,γ ) = (9,100/7,0). The set of
equations (13) was integrated with step δt = 0.05 from the
initial condition (x0,y0,z0) = (0.1,0.1,0.1). This system is
locally linear almost everywhere, and we would expect to
have a “global” diffeomorphism almost everywhere, too. The
poorer observability properties of the observable y have been
felt in the context of data sampling [21], modeling [29],
and topological analysis, and the reason is that, because of
symmetry, the system’s three fixed points are not distin-
guishable [30]. The difficulty of assessing the observability
features of symmetrical systems using local information has
been discussed in Ref. [27]. Although the best observable x is
found using SVDO, there is an inversion among the other two
variables. This scenario is corrected when delay coordinates
are used (see Sec. IV B).

A more challenging case is provided by the Lorenz’84
system [24],

ẋ = −y2 − z2 − ax + aF,

ẏ = xy − bxz − y + G,

ż = bxy + xz − z,

(14)

with (a,b,F,G) = (0.25,4.0,8.0,1.0). This system settles to a
chaotic attractor that results from a torus breakdown, which
is less homogeneous than the previous ones considered so far.
The observability order arrived at using the definitions based
on Lie derivatives [1] and the symbolic coefficients defined
in Ref. [2] was x � y ≈ z. The SVDO statistic for this system
clearly indicates x as the variable that provides the best local
average unpleating of the dynamics and places y slightly ahead
of z, as indicated in Table I.

To close this section we return to the modified model (11).
Figure 6(a) shows a three-dimensional view of the attractor.
It is interesting to notice that the cord is basically parallel
to the direction of the x coordinate, as confirmed by a two-
dimensional (2D) projection on the y-z plane, Fig. 6(b). That
means that x is necessarily an important observable because if
it is not used, the cord is practically not seen at all, as can be
gathered from Fig. 6(b).

In fact, this property, which can be pictorially appreciated
in Fig. 6, can also be quantified. Using the observability
coefficients δs defined in Ref. [1], we find δx = 0.0104, δy =
0.0005, and δz = 0.0005, which indicate the observability
order x � y ≈ z. Computing the SVDO statistic proposed
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FIG. 6. (a) A 3D view of the “cord attractor” of system (11), and
(b) y × z plane projection. If the x variable is not recorded, the cord
part of the attractor cannot be seen.

in this paper the following results are found (see Table I):
Sx = 0.20, Sy = 0.05, and Sz = 0.13. These numbers confirm
that a better reconstruction was obtained from the x variable,
which is due mainly to the fact that x is a better observable.
The SVDO indices also suggest that in the differential space
reconstructed from the z variable, there is less variability in
the complexity of the local geometry—better unpleating of
the dynamics—than from the y variable, although, from a
theoretical point of view, y and z are basically equivalent.

In general, SVDO does correlate generally well with
observability results, although such a statistic will also take
other aspects (not only observability) into account. However,
this feature is offset by the significant advantage that no
equations are required to compute SVDO. Up to here, to
avoid possible numerical artifacts due to the estimation of
derivatives, the known vector field was used to obtain ṡ and s̈.

In the following section, the quality of the delay embeddings
is assessed only from data.

B. Delay embeddings

The results in this section were obtained starting from data
embedded in delay coordinates. As the main concern is not to
define embedding parameters, the results have been obtained
with such parameters taken from the literature, whenever
available. The standard Rössler system was simulated for
other values of the embedding dimension (above the minimum
dimension), and for the time delay and the results remain
qualitatively the same. Therefore, the results to be presented
do not depend critically on either d or τ , as long as d is greater
or equal to the minimal value needed for an embedding. The
study includes the investigation of additive noise. In each
case, after simulation of the system and recording of the
variable s, the working data were obtained by adding to s

white Gaussian noise e. Four noise levels were simulated:
noise-free, 1%, 5%, and 10%. The noise percentage is defined
as std(e)/std(s) × 100. The simulations were carried out in a
Monte Carlo fashion, over 100 runs, where initial conditions
and noise realizations were randomly taken for each run. The
results obtained are shown in Table II.

The embedding parameters used for the Rössler system
were obtained in Ref. [31], namely, d = 4 and τ = 1.54. The
delay time was chosen in that reference equal to 1/4 of the
pseudoperiod. This will be maintained in all examples. The
embedding parameters for the Lorenz attractor were d = 4 and
τ = 0.13 [16]. The double scroll was embedded with d = 4
and τ = 0.5, according to Ref. [32]. Embedding parameters of
the Lorenz’84 model were d = 5 and τ = 0.86, as indicated
in Ref. [33]. For this last system with 10% noise the size of the
neighborhood was increased to ε = 15% in order to guarantee
N > d [see just above Eq. (5)].

In analyzing the results shown in Table II, it should be noted
that even the noise-free results can only be compared to those
in Table I in relative terms. In other words, the SVDO statistic
helps to compare observables in the same set of coordinates.
What must be compared is how close the ordering of recorded
variables obtained using SVDO comes to the observability
order obtained from the analytical observability coefficients.
This is, in fact, the main purpose of such coefficients: to assist
in the choice of the best observable for investigating a given
system. Also, it is important to notice that in none of the
simulated examples, the noise altered such ordering.

As for the effects of the noise, the general gradual decrease
of the SVDO statistic with noise (with only a few exceptions)
is somewhat expected because the noise, locally, blurs the local
structure of the reconstructed space. The significant robustness
of the results for the different noise levels and the fact that the
order of recorded variables indicated by the SVDO statistic
did not change with the noise is a welcome feature.

C. Sunspot data

We analyze a standard benchmark set of data, the sunspot
data. One of the reasons for choosing these data is that for
the underlying dynamics there are two sets of available data,
namely, the original and a transformed set. Also, previous
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TABLE II. SVDO statistic computed using Eq. (7) and delay coordinates over 100 Monte Carlo runs. In each run a different realization
of additive noise was used and the initial conditions of the simulated systems were taken randomly. The noise level is given in percentage of
the standard deviation with respect to the standard deviation of the noise-free signal. (*) The results for the Lorenz’84 system with 10% noise
are reported for ε = 15%, and in all other cases ε = 10% was used. The column “observability order” was determined using the symbolic
observability coefficients defined in Ref. [2].

Ss with percentage noise = std(e)
std(s) × 100

System Observability order s 0% 1% 5% 10%

Rössler x 0.64 ± 0.04 0.64 ± 0.03 0.53 ± 0.04 0.45 ± 0.05
y � x � z y 0.64 ± 0.04 0.63 ± 0.04 0.53 ± 0.04 0.46 ± 0.04

log10 z 0.53 ± 0.04 0.52 ± 0.03 0.52 ± 0.03 0.49 ± 0.04
z 0.21 ± 0.01 0.21 ± 0.01 0.20 ± 0.01 0.19 ± 0.01

Lorenz z 1.40 ± 0.11 1.41 ± 0.11 1.28 ± 0.15 1.06 ± 0.10
z � x � y x 0.20 ± 0.04 0.19 ± 0.04 0.15 ± 0.03 0.13 ± 0.02

y 0.13 ± 0.02 0.13 ± 0.02 0.11 ± 0.02 0.09 ± 0.01

Double scroll x 0.76 ± 0.16 0.76 ± 0.15 0.74 ± 0.13 0.71 ± 0.08
x � z � y z 0.47 ± 0.09 0.48 ± 0.09 0.45 ± 0.01 0.52 ± 0.07

y 0.40 ± 0.04 0.38 ± 0.05 0.34 ± 0.04 0.31 ± 0.04

Lorenz’84 x 0.73 ± 0.06 0.75 ± 0.06 0.79 ± 0.06 0.51 ± 0.03∗
x � y ≈ z y 0.53 ± 0.13 0.52 ± 0.11 0.57 ± 0.17 0.29 ± 0.04∗

z 0.53 ± 0.14 0.55 ± 0.20 0.65 ± 0.29 0.33 ± 0.04∗
Cord attractor x 0.35 ± 0.029 0.34 ± 0.025 0.33 ± 0.028 0.31 ± 0.028

x � y ≈ z y 0.04 ± 0.002 0.04 ± 0.002 0.04 ± 0.002 0.04 ± 0.002
z 0.04 ± 0.002 0.04 ± 0.002 0.04 ± 0.002 0.03 ± 0.001

studies have revealed that the transformed data unpleat the
dynamics in a better way, thus providing better observability
properties. The brief description of the data sets in Ref. [25]
will be helpful.

“The time series composed of sunspot number was built
as annual means from 1700 up to 1749, when monthly means
started to be used and this went until 1818. It was only from
1818 that daily indices were used to compose the time series.
Thus, no more than 23 cycles are available at the moment. The
sunspot numbers before 1850 were reconstructed by Wolf [34]
and are somewhat unreliable since some characteristics of the
underlying dynamics are significantly different for the data
recorded before and after 1850 [35], and the data are not
of uniform quality [36], thus some authors do not use the
first part of the time series [37]. Even after 1850, the dynamics
appears to be nonstationary, that is, there is still some change
in the dynamics which cannot be explained in terms of a
low-dimensional deterministic system [35]. Other authors have
preferred using a slightly transformed version of Wolf’s data
[38] or even to define a new time series based on the daily
group sunspot number [39].

“The reversals of the Sun’s magnetic field have been
introduced using the so-called Bracewell statistic [40]. Such a
procedure presents the disadvantage of forcing the trajectory to
pass near the origin of the reconstructed space when switching
from one cycle to the next [41]. Moreover, in that domain, the
noise contamination becomes relatively more significant to the
point that successful global modeling becomes very hard. Also,
there are topological reasons why the Bracewell index should
be avoided [41]. Reversing every other cycle corresponds to
locating the rotation axis at the origin of the phase space.

Thus the cover of the phase portrait is made of two separate
attractors—each attractor is associated with one specified
polarity—and it is not possible to have an inversion of the
magnetic polarity at each cycle without breaking the causality
chain: this explain why no satisfactory global modeling can
be obtained from this index. Moreover, as discussed in the
last reference, it is possible (and advantageous) to take into
account the symmetry that can be expected in a scenario
such as the solar dynamo. In a recent work, methods of
computational topology were used to analyze the dynamics
of large scale solar magnetic field [42], although earlier
attempts to use topological concepts in the understanding
and modeling of solar dynamics have been reported [43].
From the modeling point of view, the aforementioned trans-
formation is important because it unpleats the dynamics and
therefore it improves modeling [. . .]. The details of such a
transformation have been described in [41] [. . .].” [44] The
time series in the original and transformed spaces are shown
in Fig. 7.

In order to compute the SVDO statistic in Eq. (7), the
time series had to be embedded. Following Ref. [41] we used
d = 3 with time delays in the range 10 � τ � 20. Because
the time series is not too long (∼3000 data points) in order
to perform Monte Carlo simulation, the reference vectors
were taken randomly on the attractor, rather than uniformly
distributed in time, as before. As in the previous examples,
ε = 10%� and 10% of the embedded vectors were randomly
chosen to be reference vectors. This was performed 500 times
for each time series shown in Fig. 7. The mean values of the
SVDO statistic and the ±σ bands, computed over the 500
Monte Carlo runs, are shown in Fig. 8.
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FIG. 7. Sunspot data in (a) the original space, (b) the transformed
space. For details on smoothing of the original data and transforma-
tion, see Ref. [41].

Two features are immediately clear from Fig. 8. First, the
mean value of SVDO is smaller for the time series in the
original space than for the counterpart in the transformed
space, with the exception of the value computed for τ = 19.
Second, the sample standard deviation of SVDO increases
with τ . The reason for this is that as the time delay increases,
there are less embedded vectors available, that is, some of
the local matrices XU have relatively few vectors. Therefore,
numerically, the problem becomes less well behaved for larger
values of τ . The same effect would be noticed for larger values
of the embedding dimension d.

A good working value for the delay time was considered to
be τ = 16 months [41]. For the delay embedding determined
by d = 3 and τ = 16, the estimated values using Eq. (7) were
Soriginal = 0.12 ± 0.06 and Stransformed = 0.17 ± 0.04. The re-
sults in Fig. 8 confirms that, in fact, the transformed time series
provides a significantly better observability (p < 0.01) of the
solar dynamics.

V. CONCLUSION

This paper has put forward a statistic (SVDO) that uses the
SVD decomposition of matrices build with local data. It has
been argued that such a statistic serves as a measure of how
homogeneous is the geometry of an attractor throughout space.
When the dynamics of the original system are unpleated rather
homogeneously in the reconstructed space (from a geometrical
point of view), the computed statistic is larger than for spaces
where the aforementioned unpleating is not so homogeneous.
For instance, if in the reconstructed space there are regions with
sharp pleatings or regions where the trajectories are squeezed,
the statistic assumes lower values.

The statistic put forward in this paper correlates generally
well with the observability order of a given system. This is
of great practical importance because it permits to indirectly
quantify observability from a time series. The use of the

proposed statistic as an indication of the degree of observability
is an inference which is based on the assumption that a good
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FIG. 8. Statistic SVDO (7) for embedding dimension d = 3 and
various time delays for sunspot data in (a) the original space, (b) the
transformed space. The thick line is the average value of the SVDO
statistic over 500 Monte Carlo runs (see text for details) and the
confidence bands are ±one standard deviation.

observable will unpleat the dynamics more homogeneously
than a bad observable in a space of sufficiently high dimension.
The statistic evaluates the local geometrical complexity by
means of a SVD decomposition, and then the global ho-
mogeneity of the reconstructed space is quantified using the
sample average and sample standard deviation of the local
measures.

The SVDO statistic was computed for various standard
systems and, as mentioned formerly, it correlates nicely
with the observability order. The numerical investigation
considered differential and delay embeddings and in the latter
case four different noise levels were used. Very few (slight)
discrepancies were noticed when compared to results obtained
using observability theory (that uses the known equations).
Such discrepancies are a fair price to pay for not having to use
equations.

The paper also includes an example using the sunspot
time series for which there are no theoretical equations for
the underlying dynamics. Relying on previous works, the
SVDO was computed for the sunspot data in the original
space and also for transformed data which are known (from
topological and numerical modeling experience) to provide
better observability of the sun dynamics. The obtained results
were consistent with such knowledge.
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[10] M. Paluš and I. Dvořák, Physica D 55, 221 (1992).
[11] P. G. Vaidya, P. S. Anand, and N. Nagaraj, Acta Appl. Math.

112, 205 (2010).
[12] D. S. Broomhead, R. Jones, and G. P. King, J. Phys. A 20, L563

(1987).
[13] Th. Buzug and G. Pfister, Phys. Rev. A 45, 7073 (1992).
[14] K. Fukunaga and D. R. Olsen, IEEE Trans. Comput. 20, 176

(1971).
[15] C. Letellier, L. A. Aguirre, and J. Maquet, Commun. Nonlinear

Sci. Numer. Simul. 11, 555 (2005).
[16] Th. Buzug and G. Pfister, Physica D 58, 127 (1992).
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