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Deformable self-propelled domain in an excitable reaction-diffusion system in three dimensions
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We derive a set of equations of motion for an isolated domain in an excitable reaction-diffusion system in
three dimensions. In the singular limit where the interface is infinitesimally thin, the motion of the center of
mass coupled with deformation is investigated near the drift bifurcation where a motionless domain becomes
unstable and undergoes migration. This is an extension of our previous theory in two dimensions. We show that
there are three basic motions of a domain, straight motion, rotating motion, and helical motion. The last one is a
characteristic of three dimensions. The phase diagram of these three solutions is given in the parameter space of
the original reaction-diffusion equations.
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I. INTRODUCTION

Self-organized dynamics of domains in reaction-diffusion
systems have recently attracted much attention from the
viewpoint of nonlinear dynamics [1,2]. Intensive studies em-
ploying numerical simulations have revealed fascinating be-
haviors of domains. For example, Krischer and Mikhailov [3]
have shown that a bifurcation from a motionless domain
to a propagating domain occurs by changing the system
parameter in two dimensions, and the shape of a propagating
domain depends on its velocity. Self-replication of domains
has been obtained [4], which is qualitatively in agreement
with experimental observation [5]. A variety of dynamics
of interacting domains has also been discovered [3,6,7].
Theoretically, the domain dynamics has been developed by
a singular perturbation method [1,2,8–12].

In a previous paper, Ohkuma and two of the present authors
(Ohta and Shitara) studied a single domain dynamics in two
dimensions by taking account of shape deformation starting
with excitable reaction-diffusion equations [13]. The set of
equations for the center of mass and two tensor variables (one
is a second-rank tensor and the other is a third-rank tensor)
representing shape deformation was derived near the drift
instability threshold where a motionless circular domain loses
its stability and starts propagating. It was also shown that a
straight motion becomes unstable, and the domain undergoes
a rotating motion along a circular closed trajectory. This
bifurcation was predicted phenomenologically in an earlier
study [14], and later, it was obtained by direct numerical
simulations of reaction-diffusion equations [15]. Furthermore,
the set of equations for the center of mass and the two
tensor variables has been solved numerically to show a
zig-zag motion, a chaotic motion, and so forth [16]. The
interaction among domains has also been investigated [17,18].
Before these studies, there were few theories for deformable
self-propulsion [19,20]

In the present paper, we will extend our previous study [13]
to three dimensions. The set of time-evolution equations for
the velocity of the center of the mass and the second-rank
tensor, which represents the elongation of a domain, is derived
starting with an excitable reaction-diffusion system with a
global coupling. The form of the time-evolution equations
is the same as that introduced phenomenologically in three

dimensions [21] where a helical motion inherent to three
dimensions has been obtained. In the present paper, we
derive the phase diagram for straight motion, rotating motion,
and helical motion in the parameter space of the original
reaction-diffusion equations. Because of complications, the
third-rank tensor is not considered in the present paper.

After Ref. [14] was published, we became aware of the
fact that the set of time-evolution equations for a deformable
self-propelled particle in two dimensions was equivalent with
the dynamical system of nonlinear dissipative waves in one
dimension under the periodic boundary condition studied by
Armbruster et al. [22,23] as discussed, to some extent, in
Ref. [16]. See also Ref. [15]. We emphasize, however, that
such a relationship with the wave dynamics does not exist
in self-propelled dynamics of a deformed domain in three
dimensions.

The present paper is organized as follows. In Sec. II, we
present the reaction-diffusion equations for an activator and
an inhibitor with a global coupling. In order to make the
present paper self-contained, the mechanism of formation of
an isolated domain and its drift instability is briefly reviewed.
In Sec. III, we describe the interface dynamics based on
the singular perturbation. In Sec. IV, the representation of a
deformed domain in three dimensions is given, and the coupled
set of time-evolution equations for the center of mass and the
tensor variable is obtained. In Sec. V, we carry out order
estimation of each term of the equations of motion and derive
the stationary solution. The phase diagram for rectilinear
motion, rotating motion, and helical motion is given in the
parameter space of the original reaction-diffusion system. The
modes relevant to the formation of a rotating motion and a
helical motion are discussed based on the linear stability of
the straight motion and the rotating motion. Summary and
discussion are given in Sec. VI. Some of the details in the
derivation of the deformation tensor and equations are given
in Appendices A–C.

II. EXCITABLE REACTION-DIFFUSION SYSTEM

We start with a coupled set of reaction-diffusion equations
for an activator u and an inhibitor v,

τε
∂u

∂t
= ε2∇2u + f {u,v} − v, (1)
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∂v

∂t
= D∇2v + u − μv, (2)

where the functional f {u,v} is given by

f {u,v} = −u + H (u − p′{u,v}). (3)

and H (x) is the Heaviside step function defined as H (x) = 1
for x > 0 and H (x) = 0 for x < 0. The functional p′{u,v}
represents the following global coupling:

p′ = p + σ

[∫
(u + v)d r − W

]
, (4)

where σ and W are positive constants, 0 < p < 1/2, and the
integral runs over the whole space. The constants τ in Eq. (1)
and μ in Eq. (2) are positive and are chosen such that the
system is excitable and that a localized stable pulse (domain)
solution exists. Inside the domain, the variable u is positive,
whereas, outside the domain, u and v asymptotically vanish
away from the domain. The parameter ε in Eq. (1) is a measure
of the width of the domain boundary. Hereafter, we consider
the limit ε → 0.

The set of Eqs. (1) and (2) with Eqs. (3) and (4) was
studied in two dimensions by Krischer and Mikhailov [3]. They
investigated dynamics of excitable domains in the vicinity of
a drift bifurcation at which a stable stationary domain loses
its stability and begins to propagate. They also investigated
collision of domains by computer simulations and found
that a reflection of a pair of colliding domains occurs near
the bifurcation threshold where the propagating velocity is
sufficiently small.

The global coupling is necessary in the systems (1) and (2)
to prevent a breathing motion in which the radius of a spherical
domain undergoes a periodic oscillation [24,25]. It is known
that a motionless spherical domain is stable for sufficiently
large values of τ and that the drift bifurcation exists for a
smaller value of τ than the breathing bifurcation. Therefore,
when the value of τ is decreased, the breathing bifurcation
generally occurs before the drift bifurcation [3]. If one chooses
a sufficiently large value of σ in the global coupling (4), the
breathing motion is prohibited as shown below. For σ → ∞,
Eq. (4) becomes p′ = p with∫

d r(u + v) = W, (5)

and f {u,v} is no longer a functional but is given by

f (u) = −u + H (u − p). (6)

Furthermore, in the limit ε → 0, Eq. (1) becomes

−u + H (u − p) − v = 0. (7)

The location of the domain boundary (interface) is defined such
that u = p and u>(<)p inside (outside) the domain. From
Eq. (7), it is shown that u + v = 1 inside the domain, whereas,
u + v = 0 outside the domain. Therefore, the constraint Eq. (5)
means that the volume of an excited domain is conserved and
the breathing bifurcation is removed. It is also noted that the
drift bifurcation becomes supercritical in the limit σ → ∞ [3].

Substituting Eq. (7) into Eq. (2) yields

∂v

∂t
= D∇2v + H (u − p) − βv, (8)

where β = 1 + μ. The equilibrium solution of a motionless
spherical domain with radius R0 in three dimensions has been
obtained in Ref. [8]. Noting the relation that H (u − p) =
H (R0 − r), the equilibrium solution v = v̄ from Eq. (8) is
given for 0 < r < R0 by

v̄ = 1

β

[
1 −

(
1 + R0

ξ

)
e−R0/ξ

sinh(r/ξ )

r/ξ

]
, (9)

and for r > R0 by

v̄ = 1

β

[
R0

ξ
cosh

(
R0

ξ

)
− sinh

(
R0

ξ

)]
e−r/ξ

r/ξ
, (10)

where

ξ =
√

D

β
. (11)

The equilibrium solution ū is given by the relation ū =
H (R0 − r) − v̄ in Eq. (7). From Eqs. (9) and (10), we note
that the inhibitor v changes gradually in space with the char-
acteristic length ξ , whereas, the activator u is discontinuous at
r = R0 for ε → 0. It is noted that, when the global coupling
(5) is present, the radius R0 of an excited domain is a parameter
imposed externally provided that W = 4πR3

0/3.
In the following sections, we will show that a motionless

isolated spherical domain becomes unstable by changing the
parameter τ , and we will derive the time-evolution equations.
Before entering the mathematical analysis, we will explain the
previous results [8,10] as intuitively as possible. First of all,
why is an isolated domain stable for sufficiently large values
of τ? Suppose that, initially, the activator is finite and positive
for a certain spherical area, and the inhibitor is zero anywhere.
When τ is large, the activator is slow, and, hence, the inhibitor
is produced quickly by the reaction term +u in Eq. (2). This, in
turn, tends to diminish the activator because of the −v term in
Eq. (1). However, when the diffusion constant of the inhibitor
is much larger than that of the activator, the produced inhibitor
rapidly diffuses away from the region where the activator is
finite. Therefore, if a balance between the production and the
diffusion of the inhibitor occurs, a localized stationary domain
is stable. Another way to understand existence of a stable
localized excited domain for large values of τ is as follows.
When the inhibitor relaxes rapidly, one may set ∂v/∂t = 0.
Therefore, v is given by v = [−D∇2 + μ]−1u. Substituting
this into Eq. (1), one notes that, when D is large enough, there
is a Coulomb-type repulsive interaction for the field u. This
is a general mechanism for the formation of spatially periodic
structures, including the infinite period, i.e., the case of an
isolated domain [26,27].

The second question is why an isolated motionless domain
becomes unstable by decreasing the value of τ . Suppose a
spherical domain with a sharp interface of u and with a diffuse
concentration profile of v, which is a decreasing function of
the distance from the center of mass. If the profile of u is
slightly translated to the right, as shown in Fig. 1, the local
concentration of the inhibitor quickly adjusts by the reaction
term when τ is sufficiently large so that the profile of u

returns to the original one. However, when τ is small, the
time evolution of v becomes slow so that v cannot follow the
local change of the activator. Since the concentration profile
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FIG. 1. An imbalance in the spatial profiles between u and v

causes a further drift of the excited domain. The white circle and the
gray domain indicate the interface of the variable u and the diffuse
profile of v, respectively, in the motionless state. If the interface drifts
to the right as shown by the black circle, the inhibitor is smaller than
the equilibrium value near points A, C, and D, whereas, it is larger
than the equilibrium near point B, and, hence, the excited domain
tends to drift further to the right expanding to the C and D directions
unless the recovering of v is not sufficiently rapid.

of v is a decreasing function of the distance from the center,
a slight translation of u causes an imbalance between u and
v such that the translation is enhanced. This is the mecha-
nism of the drift bifurcation that occurs by decreasing the
parameter τ .

The above consideration implies that the difference in the
diffusion constants and the difference in the characteristic
times between the activator and the inhibitor are essential
for the formation of an isolated excited domain and the
drift bifurcation, which is insensitive to the details of the
time-evolution equations.

III. INTERFACE EQUATION OF MOTION

In order to take account of the spatial variation of u near the
interface at r = R0, one must magnify the space coordinate as
r ′ = r/ε ∼ O(1). In this length scale, the spatial variation of
v is negligible, and the value of v in Eq. (1) can be replaced
by the value at the interface v(r,t) ≡ w. For a given value
of w, from Eq. (1), one can readily obtain the equation of
motion for a smoothly deformed interface as [8]

τV = εK + τc(w) + L, (12)

where V is the normal component of the velocity directed
from the inside to the outside of a domain and K is the mean
curvature defined such that it is positive when the center of the
curvature is outside the excited domain. The second term in
Eq. (12) is the velocity for a flat interface and is related to w

as [28]

cτ

[(cτ )2 + 4]1/2
= 1 − 2p − 2w. (13)

The value of w is determined by solving Eq. (2) or (8) for
a given interface configuration. The last term L in Eq. (12)
is a Lagrange multiplier for the constraint of the domain

volume conservation given by Eq. (5) and is determined by
the condition ∫

dω V (ω) = 0, (14)

where ω specifies the position on the interface and dω is the
infinitesimal area of the interface and the integral runs over the
interface.

We consider an isolated deformed domain. The velocity of
the center of mass ρ(t) is given by

ρ̇ = 1




∫
dω V (θ,φ)R(θ,φ), (15)

where the dot indicates the time derivative, θ is the polar
angle, φ is the azimuthal angle in the spherical coordinate,
and dω = R2dθ dφ sin θ . The constant 
 is the volume of
the domain, and

R(θ,φ) = R(θ,φ)er , (16)

with the radial unit vector er . Deformations of a domain around
a spherical shape are written as

R(θ,φ,t) = R0 + δR(θ,φ,t), (17)

where

δR(θ,φ,t) =
∑
�,m

c�m(t)Ym
� (θ,φ). (18)

The spherical harmonics Ym
� (θ,φ) is defined by

Ym
� (θ,φ) =

√
(2� + 1)(� − |m|)!

4π (� + |m|)! P
|m|
� (cos θ )eimφ, (19)

where P m
� (cos θ ) is the associated Legendre function. Since

the translational motion of a domain has been incorporated in
the variable ρ, the modes c1m(m = ±1) should be removed
from the expansion in Eq. (18).

The normal velocity V and the mean curvature K in Eq. (12)
are represented, respectively, by

V (r,t) = − 1

|∇U |
∂U

∂t

∣∣∣∣
U=0

, (20)

K(r,t) = −∇ ·
( ∇U

|∇U |
)∣∣∣∣

U=0

, (21)

where

U (r,t) = r − R(θ,φ,t). (22)

Up to the first order of the deformation δR, these are calculated
as [29]

V (θ,φ,t) = ρ̇ · n +
∑
�,m

ċ�m(t)Ym
� (θ,φ), (23)

K(θ,φ,t) = − 2

R0
− 1

R2
0

∑
�,m

(� + 2)(� − 1)c�m(t)Ym
� (θ,φ).

(24)

In order to express a biaxial deformation of domain, we
introduce the following second-rank tensor:

Sij =
3∑

m=1

qmn
(m)
i n

(m)
j , (25)

where the moduli q1, q2, and q3 satisfy q1 + q2 + q3 = 0 [30].
The unit vectors n(1), n(2), and n(3) are orthogonal to each other
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and specify the direction of a rigid body. The tensor defined
by Eq. (25) is symmetric and traceless. In two dimensions,
there are two orthogonal unit vectors n(1) and n(2) with q1 +
q2 = 0, and Sij , given by Eq. (25), is equivalent with Sij =
2q1[ninj − (1/2)δij ]. The representation of deformations (25)
should be compared with the expansionlike Eq. (18), which is
in terms of the spherical harmonics in three dimensions but in
terms of Fourier modes in two dimensions, and, therefore, the
expansion strongly depends on the dimensionality of space.
Therefore, the representation of a deformed domain, in terms
of Sij , is more general and convenient rather than in terms
of the coefficients c�m in Eq. (18). Hence, we will derive the
equation for Sij . In order to achieve this, one needs the relation
between the coefficients c�m and the tensor Sij . The details of
the derivation are described in Appendix A. The final results
are given by

S11 = (3/2)1/2(c22 + c2−2) − c20,

S12 = S21 = i(3/2)1/2(c22 − c2−2),

S13 = S31 = (3/2)1/2(c21 + c2−1),
(26)

S22 = −(3/2)1/2(c22 + c2−2) − c20,

S23 = S32 = i(3/2)1/2(c21 − c2−1),

S33 = −(S11 + S22).

These relations enable us to draw the shape of a domain by
solving the time-evolution equation for the tensor Sij .

IV. EQUATION OF MOTION FOR ρ(t) AND Si j

In this section, we derive the time-evolution equation of the
center of mass of a domain ρ and the tensor Sij . When the
motion of the interface is slow compared with the relaxation
rate of the inhibitor, one may deal with the term ∂v/∂t in
Eq. (8) as a perturbation so that its asymptotic solution can be
written as

v(r,t) = GH − G2 ∂H

∂t
+ G3 ∂2H

∂t2
− G4 ∂3H

∂t3
+ · · · , (27)

where G is defined through the relation

(−D∇2 + β)G(r − r ′) = δ(r − r ′), (28)

and the abbreviation such that GA = ∫
d r ′G(r − r ′)A(r ′) has

been used. For an isolated domain, the Fourier transform of
H (u − p) = H (R − |r − ρ|) is given by

Hq =
∫

|r−ρ|<R

d r exp(−iq · r). (29)

Here, the Fourier transformation is defined by

A(r,t) =
∫

q̃

Aq(t)eiq·r , (30)

Aq(t) =
∫

d r A(r,t)e−iq·r , (31)

where
∫
q̃

= ∫
dq/(2π )d , with d as the dimensionality of space.

From Eqs. (12), (13), and (27), the following time-evolution
equation for the center of mass ρ is derived:

mρ̈i + 1
2 (τ − τc)ρ̇i + gρ̇i |ρ̇|2 = −aρ̇jSji, (32)

-0.1

 0

-5 -4 -3 -2 -1  0  1  2

log10 R0
ˆ

â

FIG. 2. The coefficient â ≡ aD2/R2
0 as a function of R̂0 = R0/ξ .

Note, from Eqs. (36), (B31), and (B40), that â is a function only of R̂0,
independent of any other parameters in the original reaction-diffusion
equations (1) and (2) with Eqs. (3) and (4).

where the repeated indices imply summation and

m = 4R2
0

π

∫ ∞

0
dq q2G3

qj1(qR0)2, (33)

τc = 8R2
0

π

∫ ∞

0
dq q2G2

qj1(qR0)2, (34)

g = 12R2
0

5π

∫ ∞

0
dq q4G4

qj1(qR0)2 − 3τ 3

80
, (35)

a = 2(a1 + a2), (36)

and a1 and a2 are given by Eqs. (B31) and (B40), respectively,
in Appendix B where the details of the derivation of Eq. (32)
are given. Gq is the Fourier transform of G and is given by

Gq = 1

D(q2 + 1/ξ 2)
. (37)

The function j1(x) is the spherical Bessel function defined
by Eq. (B8). The coefficient m is positive, and g is shown
to be positive for τ ∼ τc. Therefore, Eq. (32) indicates a
drift bifurcation at τ = τc below which a stable stationary
spherical domain becomes unstable and begins propagating
at the velocity |ρ̇|2 = (τc − τ )/(2g). The coefficient a is
evaluated numerically and is found to be negative as shown
in Fig. 2. When R̂0 → 0, one obtains an analytical expression
â = −2/(5

√
5π ). The fact that a < 0 has a deep meaning will

be described at the end of this section.
As mentioned above, Eq. (32) admits a supercritical drift

bifurcation. However, we remark that a bifurcation from a
motionless domain to a propagating domain is not restricted
to excitable systems. For instance, a droplet in a binary fluid
undergoes self-propulsion due to a Marangoni effect. That is,
if there is a third component that affects the surface tension of
the droplet, the inhomogeneity of the surface tension causes a
translational motion of the droplet when the Marangoni effect
exceeds the drag force. In fact, an equation similar to the sec-
ond and the third terms on the left hand side of Eq. (32) has been
derived starting with the hydrodynamic equation with a suit-
able boundary condition at the droplet surface [31]. This im-
plies that the left hand side is a generic structure of the drift bi-
furcation independent of the details of the systems concerned.
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log10 R0
ˆ

K̂

-0.1

-0.2

0.1

0.2

 0

 0-1  1  2

FIG. 3. The coefficient K̂ ≡ Kξ as a function of R̂0 = R0/ξ for
ε = 1.25 × 10−2, μ = 1.0, and D = 1.0.

The time-evolution equation of the tensor Sij is also derived
from Eqs. (12), (13), and (27) as

�
d

dt
Sij = −KSij + b

(
ρ̇i ρ̇j − 1

3
δij |ρ̇|2

)
, (38)

where

� = τ − 8B2

π
, (39)

K = 4ε

R2
0

+ 8A2

π
, (40)

b = −32D1√
5π

. (41)

The details of the derivation are given in Appendix C. The
coefficients A�, B�, and D� are given by Eqs. (C9), (C10),
and (C11), respectively. In the vicinity of the bifurcation
τ ∼ τc with τc given by Eq. (34), the coefficient � is positive.
The coefficient K becomes negative for large values of R0

as shown in Fig. 3 indicating an instability of a motionless
spherical domain [8]. As described at the end of Sec. II,
there is a Coulomb-type repulsive interaction for the activator.
Hence, this shape instability, by increasing the radius, is
equivalent mathematically with the Rayleigh instability of
a charged droplet. Here, we restrict ourselves to the case
of K > 0.

The coefficient b is negative for 0 < R̂0 < ∞ as shown
in Fig. 4, in particular, b̂ = −(16/35)

√
π/5 for R̂0 → 0. In

two dimensions, the domain undergoing a straight motion is
elongated perpendicularly to the migration velocity [14]. In
the next section, we will show that the situation is the same in

-0.4

-0.3

-0.2

-0.1

 0

-5 -4 -3 -2 -1  0  1  2

log10 R0
ˆ

b̂

FIG. 4. The coefficient b̂ ≡ bD3/R4
0 as a function of R̂0 = R0/ξ .

Note that b̂ is a function only of R̂0, independent of any other
parameters of Eqs. (1) and (2).

three dimensions. The reason for the perpendicular elongation
is that the value of the inhibitor in the region indicated by C
and D in Fig. 1 is smaller than the equilibrium value so that
the excited domain tends to expand in these areas.

As mentioned above, the coefficient b should be negative in
the excitable reaction-diffusion systems (1) and (2). We show
that the fact that the other coefficient a is also negative is
related to the fact that the excitable system is nonvariational.
It is noted that, if ab < 0, i.e., if a > 0 and b < 0, Eqs. (32)
and (38) have a Lyapunov function given by

HLy = −γ ′′

2
|ρ̇|2 + g′′

4
|ρ̇|4 + a′′

2
Sij ρ̇i ρ̇j + K ′

2
SijSij , (42)

where g′′, a′′, and K ′ must be positive. From this, one obtains

mρ̈i = −L1
∂HLy

∂ρ̇i

, (43)

�
d

dt
Sij = −L2

∂HLy

∂Sij

+ T , (44)

where L1 and L2 are positive and T is the Lagrange multiplier
to ensure that Sij is traceless. If one sets (τc − τ )/2 =
L1γ

′′, g = g′′L1, a = a′′L1/2 > 0, K = L2K
′, and b =

−a′′L2/2 < 0, Eqs. (43) and (44) are equivalent with Eqs. (32)
and (38). This property generally contradicts the fact that the
original reaction-diffusion systems (1) and (2) are nonvaria-
tional.

Finally, we comment about why the absolute value of
coefficients a and b is a decreasing function of the domain
radius R0. The coupling between the migration velocity and the
deformation originates from the nonlocal interaction between
two points on the interface, which is mediated by the diffusion
of the inhibitor. Since any pair of points on the interface
becomes distant, on average, when R0 is increased, keeping
other length unchanged, the effect of the interaction decreases
so that the magnitude of coefficients a and b becomes low.

V. ORDER ESTIMATION AND STATIONARY SOLUTIONS

In this section, we discuss justification of the approxi-
mations employed in the derivations of the time-evolution
equations (32) and (38). After that, we derive the stationary
solutions of a domain. We are considering the situation in the
vicinity of the supercritical drift bifurcation τ = τc so that
δ = τ − τc can be regarded as a small parameter. It is found
that all the terms of Eq. (32) are on the order of δ3/2 since
ρ̇ ∼ O(δ1/2) and time is scaled as t̂ = tδ and S ∼ O(δ) as
can be seen from the first and second terms in Eq. (38). For
consistency with these estimations, we have ignored several
terms in Eq. (32) that are higher in order of δ, such as
d2ρ̇/dt2 ∼ O(δ5/2) and SSρ̇ ∼ O(δ5/2). On the other hand,
the terms on the right hand side of Eq. (38) are on the order of
O(δ), whereas, dS/dt ∼ O(δ2) and all other terms, which are
ignored, are higher order. Therefore, up to the leading order, the
time derivative of S should be ignored. This is not surprising
since, for δ → 0, the center of mass is a slow variable, but
the deformations around a spherical shape are not generally
slow and might be eliminated adiabatically. This fact does
not cause any difficulties in the study of the stationary shape
of the domain. However, if the deformation tensor is also a
slow variable such that the coefficient � ∼ O(δ−1), we have
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(a) (b)

y

z

x
y

z

x

FIG. 5. (Color online) Stationary shape of a domain moving along
the z axis. (a) The domain is elongated to the direction perpendicular
to the velocity when b′ < 0, and (b) the domain is elongated to the
direction parallel to the velocity when b′ > 0.

to retain the term � × dS/dt . As a result, not only a straight
motion, but also other types of motions appear as will be shown
below.

In order to investigate the stationary solutions of a propa-
gating domain, we represent the velocity of the center of mass
as ρ̇ = |ρ̇|u. It is convenient to introduce the inner product of
the principal axes of the deformed domain and the normal unit
vector u as

Pi ≡ n(i) · u (i = 1,2,3). (45)

Note that the following condition should be satisfied:

P 2
1 + P 2

2 + P 2
3 = 1. (46)

The center-of-mass velocity can be represented as ρ̇ =
ρ̇P1n(1) + ρ̇P2n(2) + ρ̇P3n(3). We may assume, without loss of
generality, that P1 � P2 � P3. In order to represent a biaxial
deformation, we define

η ≡ q2 − q3. (47)

Equations (32) and (38) are written in terms of these variables
as [21]

ρ̈ = γ ρ̇ − ρ̇3 − a′ρ̇
(
q1P

2
1 − Q−P 2

2 − Q+P 2
3

)
, (48)

dq1

dt
= −κq1 + b′ρ̇2

(
P 2

1 − 1

3

)
, (49)

dη

dt
= −κη + b′ρ̇2

(
P 2

2 − P 2
3

)
, (50)

dP1

dt
= 2b′ρ̇2

3q1 − η
P1P

2
2 + 2b′ρ̇2

3q1 + η
P1P

2
3

+ a′P1
[
q1

(
P 2

1 − 1
) − Q−P 2

2 − Q+P 2
3

]
, (51)

dP2

dt
= − 2b′ρ̇2

3q1 − η
P2P

2
1 + b′ρ̇2

η
P2P

2
3

+ a′P2
[
q1P

2
1 − Q−(

P 2
2 − 1

) − Q+P 2
3

]
, (52)

dP3

dt
= − 2b′ρ̇2

3q1 + η
P3P

2
1 − b′ρ̇2

η
P3P

2
2

+ a′P3
[
q1P

2
1 − Q−P 2

2 − Q+(
P 2

3 − 1
)]

, (53)

where Q± = q1/2 ± η/2, γ = (τc − τ )g/(2m2), a′ = (ag)/
m2, κ = (Kg)/(�m), and b′ = (bm)/(g�). Here, we have
rescaled the time as t = (g/m)t ′, and we have dropped the
prime in t ′ in Eqs. (48)–(53). From Eqs. (48)–(53), one obtains
the stationary solution of a straight motion as

ρ̇2
s = 3κγ

3κ + 2a′b′ , (54)

q1,s = 2b′

3κ
ρ̇2

s , (55)

P 2
1,s = 1, (56)

and ηs = P2,s = P3,s = 0. From Eq. (55), one notes that the
sign of the constant b′ determines the sign of q1,s . As shown
in Fig. 4, the constant b′ is negative. Therefore, the domain
undergoing a straight motion is elongated perpendicularly to
the propagating velocity as shown in Fig. 5(a).

The straight motion becomes unstable at the threshold given
by [21]

γ = κ2

a′b′ + 2

3
κ, (57)

This bifurcation is indicated by the broken line in Fig. 6.
Beyond the threshold, a rotating motion appears, whose
solution is obtained as

ρ̇2
r = 3κ(2γ − κ)

6κ + a′b′ , (58)

P 2
± = 1

2
± κ

2

√
6κ + a′b′

a′b′(6κγ − 3κ2)
, (59)

q1,r = b′ρ̇2
r (P 2

+ − 1/3)

κ
, (60)

ηr = b′ρ̇2
r P

2
−

κ
, (61)

where P± are the stationary solutions of Eqs. (51) and (52).
One may set P1 = P+, P2 = P−, and P3 = 0 because of the
conditions P1 � P2 � P3 and because the motion is confined
to a plane. By decreasing the value of κ further, the rotating
motion loses its stability, and the helical motion becomes
stable. The threshold is given by [21]

γ = 3κ2

a′b′ + κ, (62)

which is shown by the dotted line in Fig. 6. The analytical
expression of the helical motion has not been obtained. A
rotating motion and a helical motion obtained numerically
from Eqs. (48)–(53) are shown in Fig. 7.

helical

motionless

rotating

straight

2

0

1

-1

0 10.80.60.40.2

γ

κ
FIG. 6. Phase diagram on the γ -κ plane for a′ = −1.0 and

b′ = −0.5. The solid line indicates the supercritical bifurcation such
that a motionless spherical domain becomes unstable. The broken
line and dotted line are given by Eqs. (57) and (62), respectively.
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FIG. 7. (Color online) (a) Rotating motion for γ = 0.5 and
κ = 0.3, and (b) helical motion for γ = 0.5 and κ = 0.2.

The parameters γ and κ in Eqs. (48)–(50) are most
important for the dynamics of a domain. When the relaxation
rate of deformation or the rigidity of a domain κ is much larger
than γ , the deformation quickly follows the center-of-mass
velocity, and, hence, no instability of the rectilinear motion
occurs. However, if the normal direction of the pancakelike
domain deviates from the migration direction, it cannot be
restored immediately for smaller values of the relaxation rate κ .
This results in an instability of the straight motion. The linear
stability analysis of the straight motion in Eqs. (48)–(53)
indicates that, in this case, the unstable modes are P2 and
P3, which are 2 degrees of freedom perpendicular to the
migration velocity [21]. Actually, these two variables behave
as P2 ∼ P3 ∝ exp(λt) where

λ = −κ2 − 2a′b′κ/3 + a′b′γ
κ + 2a′b′/3

. (63)

The bifurcation threshold (57) has been obtained from this.
In the case of a rotating motion, two variables P1 and P2 are
nonzero specifying the plane of the rotation. The linear stability
tells us that the third component P3, which is the coordinate
perpendicular to the plane, becomes unstable at the threshold
given by Eq. (62).

The bifurcation thresholds given by Eqs. (57) and (62)
depend on a′, b′, and κ . These are the coefficients of Eqs. (32)
and (38) that are given in terms of the parameters in the original
reaction-diffusion equations (1) and (2) with Eqs. (3) and (4).
The most relevant parameters in Eqs. (1) and (2) with ε → 0
are the radius of domain R0, the diffusion length of the inhibitor
ξ , and the characteristic time τ of the activator. Since R0 is
a parameter controlled externally, and the coefficient τ is the
drift-bifurcation parameter, it is convenient to choose R̂0 and

0.02 0.025 0.03
0.58

0.62

0.66

0.7

R
0

ˆ

τ

straight rotating helical

motionless

0.74

FIG. 8. Phase diagram on the R̂0-τ plane for ε = 1.25 × 10−2,
μ = 1.0, and D = 1.0. In the region indicated by the tilted lines, the
coefficient K is negative.

τ as fundamental parameters. The phase diagram in Fig. 6
can be transformed on the plane of R̂0 and τ as displayed in
Fig. 8, where the parameter regions for the motionless state,
the straight motion, the rotating motion, and the helical motion
are explicitly given. As can be seen from Fig. 3, the value of
K decreases rapidly near K = 0. This is the reason why the
region of the rotating and helical motions is rather narrow in
Fig. 8.

VI. SUMMARY AND DISCUSSION

We have studied the coupling of translational motion and
shape deformation of a domain in an excitable reaction-
diffusion system in three dimensions. The set of time-evolution
equations (32) and (38) has been derived by the singular
perturbation method. Coefficients a and b are found to be
negative. This implies that the deformed shape of a steady
propagating domain in Eqs. (1) and (2) takes the form shown
in Fig. 5(a). We have also shown that straight motion, rotating
motion, and helical motion, predicted in Ref. [21], should
occur in this reaction-diffusion system.

Since the form of Eqs. (32) and (38) is quite general, one
may expect that helical motion as well as rotating motion
should be observed in three dimensions in excitable reaction-
diffusion systems. The fundamental properties employed in the
derivation of Eqs. (32) and (38) are as follows; (1) An excited
domain has a sharp interface, (2) the diffusion of the inhibitor
is much larger than the activator, and (3) the characteristic time
of the interface motion of an excited domain is small compared
with that of the inhibitor. We expect that, if these conditions
are satisfied, the dynamics predicted here are observed. As
mentioned in Sec. I, a rotating motion has been obtained by
numerical simulations of another reaction-diffusion system in
two dimensions [15]. Therefore, extension of this numerical
study to three dimensions is quite interesting to explore more
varieties of dynamics.

Many experiments of excitable systems, such as gas
discharge [2] and chemical reactions [4,5,32] are in two
dimensions or quasi-two dimensional where a typical domain
size is much larger than the thickness of the system. Therefore,
it is unlikely to realize a helical motion experimentally in
these systems. The bifurcation neither of the rectilinear-to-
rotating motion nor of the rotating-to-helical motion has
been observed experimentally. Probably, experiments of the
self-propulsion of chemically reacting oily droplets with
micrometer size [33,34] are more suitable since those are
carried out in three dimensions. The oily droplets obey the
hydrodynamic equations with Marangoni effects. Although
the time-evolution equations (32) and (38) have not been
derived in such a case, we believe that the equations with
the same structure hold with the coefficients depending on the
viscosities of the oil droplets and the surrounding fluid and the
concentration-dependent interfacial tension.

Finally, we comment on the relation between the present
results and the helical motions observed in many micro-
organisms. For example, Listeria is propelled along a helical
trajectory by forming a comet tail of actin filament [35].
Sperm cells swim with a helical motion by generating a
bending wave along a flagellum [36]. In the theoretical
analysis of helical motions in these biological systems, not
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only a propulsive force for translation, but also a torque for
spinning are considered [37,38]. On the other hand, our system,
governed by Eqs. (32) and (38), does not possess any intrinsic
spinning degrees of freedom. Therefore, it is not appropriate
to compare the helical motion obtained in the present paper
with those of the micro-organisms. This provides us with an
interesting problem for generalizing Eqs. (32) and (38) coupled
to an angular variable (tensor) to represent spinning motions.
This is not trivial even in two dimensions since an interplay
between rotating motion (orbital revolution) and spinning
motion causes complex dynamics [39]. We will publish these
studies elsewhere in the near future.
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APPENDIX A

Here, we derive the relation between the coefficients c�m

in Eq. (18) and the tensor Sij . Let us consider the following
elliptic-pancake-type deformation:

δR(θ,φ) = ζY 0
2 (θ,φ) + η

Y 2
2 (θ,φ) + Y−2

2 (θ,φ)

2
, (A1)

where ζ = c20 and η = 2c22 = 2c2−2. This definition of η

should not be confused with the one given by Eq. (47). The
unit vectors n(1) = (0,0,1), n(2) = (0,1,0), and n(3) = (1,0,0)
represent the direction of the above shape. We rotate the system
successively, first, ψ ′ about the z axis, and then, dθ ′ about the
y axis, and, finally, dφ′ about the z axis where dθ ′ and dφ′ are
infinitesimal and the higher orders O[(dθ ′)2] and O[(dφ′)2]
are ignored. By the successive rotations, the unit vectors are
transformed as

n(1) = (dθ,dθ dφ,1), (A2)

n(2) = (− sin ψ ′ − cos ψ ′dφ, cos ψ ′ − sin ψ ′dφ, sin ψ ′dθ ),

(A3)

n(3) = (cos ψ ′ − sin ψ ′dφ, sin ψ ′ + cos ψ ′dφ,− cos ψ ′dθ ).

(A4)

Here, the order dθ dφ is retained in Eq. (A2) to make the
noncommutability around the y and z axes explicit. From
Eq. (25), together with Eqs. (A2)–(A4), one obtains

S11 = q2 sin2 ψ ′ + q3 cos2 ψ ′ + 2(q2 − q3) sin ψ ′ cos ψ ′dφ,

(A5)

S12 = −(q2 − q3) sin ψ ′ cos ψ ′

+ (q2 − q3)(sin2 ψ ′ − cos2 ψ ′)dφ, (A6)

S13 = (q1 − q2 sin2 ψ ′ − q3 cos2 ψ ′)dθ

− (q2 − q3) cos ψ ′ sin ψ ′dθ dφ, (A7)

S22 = q2 cos2 ψ ′ + q3 sin2 ψ ′

− 2(q2 − q3) sin ψ ′ cos ψ ′dφ, (A8)

S23 = (q2 − q3) sin ψ ′ cos ψ ′dθ

+ (q1 − q2 sin2 ψ ′ − q3 cos2 ψ ′)dθ dφ. (A9)

Next, we consider the operator L̂ = (1 − dφ Lz)(1 − dθ Ly)
exp(−ψ ′Lz) where

Ly = cos φ
∂

∂θ
− cos θ

sin θ
sin φ

∂

∂φ
, (A10)

Lz = ∂

∂φ
. (A11)

We operate L̂ at both sides of Eq. (A1) to obtain

c22 = η

2
cos 2ψ ′ + η

2i
sin 2ψ ′ + η

i
cos 2ψ ′dφη sin 2ψ ′dφ,

(A12)

c21 = 3ζ

√
1

6
dθ − η

2
cos 2ψ ′dθ − η

2i
sin 2ψ ′dθ

+ 3
ζ

i

√
1

6
dθ dφ − η

2i
cos 2ψ ′dθ dφ

+ η

2
sin 2ψ ′dθ dφ, (A13)

c20 = ζ, (A14)

c2−1 = 3ζ

√
1

6
dθ − η

2
cos 2ψ ′dθ

+ η

2i
sin 2ψ ′dθ − 3

ζ

i

√
1

6
dθ dφ

+ η

2i
cos 2ψ ′dθ dφ + η

2
sin 2ψ ′dθ dφ, (A15)

c2−2 = η

2
cos 2ψ ′ − η

2i
sin 2ψ ′ − η

i
cos 2ψ ′dφ

− η sin 2ψ ′dφ. (A16)

where c�m have been defined as the coefficients in Eq. (18). In
these derivations, we have used the formulas

d

dθ
P m

� (cos θ ) = m
cos θ

sin θ
P m

� (cos θ ) − P m+1
� (cos θ )

= (� + m)(� − m + 1)P m−1
� (cos θ )

−m
cos θ

sin θ
P m

� (cos θ ), (A17)

P m+2
� (cos θ ) = 2(m + 1)

cos θ

sin θ
P m+1

� (cos θ )

− (� − m)(� + m + 1)P m
� (cos θ ), (A18)

Comparing Eqs. (A5)–(A9) and (A12)–(A16) and rescaling
as (q2 + q3)/(2ζ ) = −1 and (q2 − q3)/(2η) = −√

3/2, one
obtains Eq. (26).

APPENDIX B

In this appendix, we describe the details of the derivation
of the time-evolution equation of the center of mass ρ. From

066208-8



DEFORMABLE SELF-PROPELLED DOMAIN IN AN . . . PHYSICAL REVIEW E 83, 066208 (2011)

Eq. (27), the value w of the inhibitor v at the interface of the
domain is given by

w = w(0) + w(1) + w(2) + w(3), (B1)

where

w(0) =
∫

q̃

GqHq(t)eiq·R(θ,φ), (B2)

w(1) = w(11) + w(12) = i

∫
q̃

(q · ρ̇)G2
qHq(t)eiq·R(θ,φ)

−
∫

q̃

G2
q

∂Hq(t)

∂t
eiq·R(θ,φ), (B3)

w(2) = w(21) + w(22) + w(23) = −i

∫
q̃

(q · ρ̈)G3
qHq(t)eiq·R(θ,φ)

−
∫

q̃

(q · ρ̇)2G3
qHq(t)eiq·R(θ,φ)

+
∫

q̃

G3
q

∂2Hq(t)

∂t2
eiq·R(θ,φ), (B4)

w(3) = −i

∫
q̃

(q · ρ̇)3G4
qHq(t)eiq·R(θ,φ). (B5)

We have dropped terms having a factor ρ̇Ḣ in Eq. (B4) and
ρ̇ρ̇Ḣ and the term with ρ̈ in Eq. (B5). Substituting Eq. (17)
into Eq. (29), one obtains, up to the first order of δR,

Hq(t) = H (0)
q + H (1)

q , (B6)

where

H (0)
q = 4πR2

0

q
j1(qR0),

(B7)
H (1)

q = 4πR2
0

∑
�,m

(−i)�c�m(t) j�(qR0)Ym
� (θq,φq).

The spherical Bessel function j�(x) is defined by

j�(x) = x�

(
− d

x dx

)� sin x

x
. (B8)

The following formulas have been used:

eiq·r = 4π
∑
�,m

i�j�(qr)Ym∗
� (θq,φq)Ym

� (θ,φ), (B9)

∫ π

0
dθ sin θ

∫ 2π

0
dφ Ym′∗

�′ (θ,φ)Ym
� (θ,φ) = δ�′�δm′m, (B10)

2� + 1

x
j�(x) = j�−1(x) + j�+1(x), (B11)

j ′
�(x) = �

x
j�(x) − j�+1(x). (B12)

When the interface velocity is low, one can expand the left
hand side of Eq. (13) in the power of τc. Substituting Eq. (12)
into Eq. (13), one obtains, up to the third order terms,

1
2 (τV − εK − L) − 1

16 (τV − εK − L)3 = 1 − 2p − 2w.

(B13)

In order to derive the time-evolution equation for ρ, we
operate 1/


∫
dω R(ω) for both sides of Eq. (B13). Since

the Lagrange multiplier L is independent of angles θ and φ for

a spherical domain, one has
∫

dω R(ω)L = ∫
dω R(ω)L3 =∫

dω R(ω)V 2L = 0. Furthermore, since it will be shown that
L ∼ O(ρ̇2), from Eq. (C8) in Appendix C, one may ignore∫

dω R(ω)V L2 up to the third order of ρ̇. It is also noted
that

∫
dω R(ω)K(ω) = 0 up to the first order of δR since the

modes c1m are excluded in Eq. (18). The term εV K and the
higher order terms with respect to ε are ignored. As a result,
we drop εK + L in the third term on the left hand side of
Eq. (B13).

The zeroth order terms in Eq. (B13) that represent a
motionless spherical domain are written as

− ε

R0
+ 1 − 2p − 2

∫
q̃

GqH
(0)
q (t)eiq·R0(θ,φ) = 0, (B14)

with R0 = R0er . The Lagrange multiplier L has been absorbed
into the constant p. Equation (B14) gives us the static radius
R0 of the spherical domain as a function of the parameter p [8].
By adding operation 1/


∫
dω R(ω) to Eq. (B13), one obtains

the following equation up to the leading order:

τ

2
ρ̇ − 3τ 3

80
ρ̇|ρ̇|2 = −2w, (B15)

where

w = w(11) + w(21) + w(3), (B16)

with

w(11) = i




∫
dω R(ω)

∫
q̃

(q · ρ̇)G2
qHq(t)eiq·R(ω), (B17)

w(21) = − i




∫
dω R(ω)

∫
q̃

(q · ρ̈)G3
qHq(t)eiq·R(ω), (B18)

w(3) = − i




∫
dω R(ω)

∫
q̃

(q · ρ̇)3G4
qHq(t)eiq·R(ω). (B19)

The integral over ω in Eqs. (B17)–(B19) can be carried out up
to the first order with respect to δR as

i




∫
dω R(ω)eiq·R(ω) = A(0)

q + A(1)
q

= − 3

q
j1(qR0)q + 3

R2
0

∑
�,m

i�c�m

×Ym
� (θq,φq)

∂

∂q
[qR0j�−1(qR0)

− (� − 1)j�(qR0)]. (B20)

Substituting Eqs. (B6) and (B20) into Eqs. (B17)–(B19), one
obtains

w(11) = w
(0)
(11) + δw(11)

= −2R2
0

π
ρ̇

∫ ∞

0
dq q2G2

qj1(qR0)2 + δw11, (B21)

w(21) = 2R2
0

π
ρ̈

∫ ∞

0
dq q2G3

qj1(qR0)2, (B22)

w(3) = 6R2
0

5π
ρ̇|ρ̇|2

∫ ∞

0
dq q4G4

qj1(qR0)2. (B23)
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From Eqs. (B17) and (B20), δw(11) is given up to the order of
O(ρ̇c�m) by

δw(11) ≡ δw
(1)
(11) + δw

(2)
(11) =

∫
q̃

(q · ρ̇)G2
qH

(1)
q A(0)

q

+
∫

q̃

(q · ρ̇)G2
qH

(0)
q A(1)

q .

(B24)

The first term δw
(1)
(11,i) (i = x,y,z) is written as

δw
(1)
(11,i) = ρ̇jM

(1)
ji , (B25)

where

M
(1)
11 = −12πR2

0

∑
�,m

i−�c�m

×
∫

q̃

q2
x

q
G2

qY
m
� (θq,φq)j1(qR0)j�(qR0)

= a1

[√
3

2
(c22 + c2−2) − c20

]
, (B26)

M
(1)
12 = −12πR2

0

∑
�,m

i−�c�m

×
∫

q̃

qxqy

q
G2

qY
m
� (θq,φq)j1(qR0)j�(qR0)

= a1

√
3

2
i(c22 − c2−2), (B27)

M
(1)
13 = −12πR2

0

∑
�,m

i−�c�m

×
∫

q̃

qxqz

q
G2

qY
m
� (θq,φq)j1(qR0)j�(qR0)

= a1

√
3

2
(c21 + c2−1), (B28)

M
(1)
22 = −12πR2

0

∑
�,m

i−�c�m

×
∫

q̃

q2
y

q
G2

qY
m
� (θq,φq)j1(qR0)j�(qR0)

= a1

[
−

√
3

2
(c22 + c2−2) − c20

]
, (B29)

M
(1)
23 = −12πR2

0

∑
�,m

i−�c�m

×
∫

q̃

qyqz

q
G2

qY
m
� (θq,φq)j1(qR0)j�(qR0)

= a1

√
3

2
i(c21 − c2−1), (B30)

with the symmetry relation M
(1)
ij = M

(1)
ji . The constant a1 is

given by

a1 = R2
0√

5π3

∫ ∞

0
dq q3G2

qj1(qR0)j2(qR0). (B31)

Here, we have used the relations,

∫ π

0
dθ sin θP m

n (cos θ )P m
� (cos θ ) = 2(n + m)!

(n − m)!(2n + 1)!
δ�n.

(B32)

It should be noted that, because of the factors qiqj in
Eqs. (B26)–(B30), only modes c2m contribute to M

(1)
ij .

The second term in Eq. (B24) can be written by using
Eq. (B20) as

δw
(2)
(11,i) = ρ̇jM

(2)
ji , (B33)

where

M
(2)
ij = 3

R2
0

∑
�,m

i�c�m

∫
q̃

qiG
2
qH

(0)
q

∂

∂qj

{Ym
� (θq,φq)

× [qR0j�−1(qR0) − (� − 1)j�(qR0)]}
= − 3

R2
0

∑
�,m

ilc�m

∫
q̃

Y m
� (θq,φq)[qR0j�−1(qR0)

− (� − 1)j�(qR0)]
qiqj

q

∂

∂q

(
G2

qH
(0)
q

)
. (B34)

In the derivation of the second equality, we have used the
fact c00 = 0, which comes from the domain area conservation.
Each of the components is readily written as

M
(2)
11 = a2

[√
3

2
(c22 + c2−2) − c20

]
, (B35)

M
(2)
12 = a2

√
3

2
i(c22 − c2−2), (B36)

M
(2)
13 = a2

√
3

2
(c21 + c2−1), (B37)

M
(2)
22 = a2

[
−

√
3

2
(c22 + c2−2) − c20

]
, (B38)

M
(2)
23 = a2

√
3

2
i(c21 − c2−1), (B39)

where M
(2)
ij = M

(2)
ji . The constant a2 is given by

a2 = 1√
5π3

∫ ∞

0
dq q3[qR0j1(qR0) − j2(qR0)]

× ∂

∂q

[
1

q
G2

qj1(qR0)

]
. (B40)

Equation (32) has been obtained from these results.

APPENDIX C

In this appendix, we derive the time-evolution equation
for Sij . Expanding Eq. (12) up to the first order of δR and

066208-10
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substituting Eqs. (23) and (24) into Eq. (12), one obtains

τ
∑
�,m

ċ�mYm
� (θ,φ) = − ε

R2
0

∑
�,m

(� + 2)(� − 1)c�mYm
� (θ,φ)

− 4δw + L, (C1)

where δw = w − w0 with w0, the value of w for a spherical
domain. We have used the fact that τ dc(w0)/dw0 = −4 as
obtained from Eq. (13).

Since the tensor Sij consists of c2m as shown by Eq. (26),
we derive the time-evolution equations of c2m. Only the
three terms in Eqs. (B2)–(B4) contribute to the � = 2
modes,

δw = δw(0) + δw(1) + δw(2), (C2)

where

δw(0) =
∫

q̃

GqHq(t)eiq·R(ω) −
∫

q̃

GqH
(0)
q (t)eiq·R0(ω), (C3)

δw(1) = −
∫

q̃

G2
q

dHq(t)

dt
eiq·R(ω), (C4)

δw(2) = −
∫

q̃

(q · ρ̇)2G3
qHq(t)eiq·R(ω). (C5)

We have ignored the term with ∂2Hq/∂t2, which produces
c̈�m and is of higher order in Eq. (38). From Eqs. (29) and
(C3)–(C5), one obtains

δw(0) = 2

π

∑
�,m

A�c�mYm
� (θ,φ), (C6)

δw(1) = − 2

π

∑
�,m

B�ċ�mYm
� (θ,φ), (C7)

δw(2) = − 2

3π
D0|ρ̇|2 + 4

5

√
5

π
D1

[√
1

6
(ρ̇x − iρ̇y)2Y 2

2 (θ,φ)

+
√

1

6
(ρ̇x + iρ̇y)2Y−2

2 (θ,φ) +
√

2

3
(ρ̇x − iρ̇y)ρ̇zY

1
2 (θ,φ)

+
√

2

3
(ρ̇x + iρ̇y)ρ̇zY

−1
2 (θ,φ)

− 1

3
(ρ̇2

x + ρ̇2
y − 2ρ̇2

z )Y 0
2 (θ,φ)

]
, (C8)

where

A� = R2
0

∫ ∞

0
dq q2Gq[j�(qR0)2 − j1(qR0)2], (C9)

B� = R2
0

∫ ∞

0
dq q2G2

qj�(qR0)2, (C10)

D� = R2
0

∫ ∞

0
dq q3G3

qj�(qR0)j�+1(qR0). (C11)

It is noted that the first term in δw(2) contains an � = 0 mode
proportional to ρ̇2, which should be absorbed into the Lagrange
multiplier L in Eq. (C1).

Adding operation
∫

dθ dφ sin θYm∗
2 (θ,φ) to both sides of

Eq. (C1) yields, for m = 0, ± 1, and ±2,

τ ċ2m = − 4ε

R2
0

c2m − 4 δw2m, (C12)

where δw2m is given by

δw2m =
∫ π

0
dθ sin θ

∫ 2π

0
dφ Ym∗

2 (θ,φ)δw(θ,φ). (C13)

Since the tensor Sij is given by Eq. (26), Eq. (38) is derived
from Eqs. (C12) and (C13).
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