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Current reversals and current suppression in an open two-degree-of-freedom system
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We explore the scattering of particles evolving in a two-degree-of-freedom Hamiltonian system, in which both
degrees of freedom are open. Particles, initially having all kinetic energy, are sent into a so-called “interaction
region,” where there will be an exchange of energy with particles that are initially at rest. The open nature of
both components of this system eliminates any restrictions on which particles can escape from the interaction
region. Notably, it is shown that two particles can cooperate in a mutual exchange of energy allowing both
particles to escape and travel large distances. It is also shown that this level of cooperation is highly sensitive to
the coupling strength between both components of the system. Indeed, large fluctuations of the magnitude and
direction of the current are observed for small changes of this coupling parameter. Further, it is seen that current
reversals are a prominent feature of this model. Another interesting observation is that even with the presence of
chaotic scattering, it is possible that the system, for certain parameter regimes, will express a vanishing current,
suggesting that there is a restoration of symmetry which, due to the initial setup, is broken. For an explanation of
the different features of particle motion, we relate the phase-space dynamics to the various regimes of particle
current.
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I. INTRODUCTION

Transport, and particularly escape phenomena in nonlinear
systems, has become a very active research area. Its interest
spans many fields and its implications are far reaching. A vast
array of application areas lend themselves to be modeled in
terms of these systems. Applications include superconductors
[1], nanoengines [2], and particle transport in biological
systems [3]. This short list is an indication of the breadth
of research currently being carried out under the umbrella of
transport phenomena in nonlinear systems. In this paper, we
investigate particle transport processes modeled by systems of
coupled oscillators, evolving in periodic potential landscapes.
Two particles will evolve in a so-called “washboard potential”
and interact locally with each other via a coupling whose
strength strongly influences the dynamics that are seen.

In many systems, the generation of a directed current has
been instigated by an external time-dependent field [4–7]. In
extended chaotic systems, a nonzero current can be obtained
as the time-averaged velocity of an ensemble of trajectories in
the chaotic component of phase space and the chaotic transport
proceeds ballistically and directedly [7,8]. Once this field is
removed or effectively nullified, there is no longer a directed
current. Other research has focused on autonomous systems
with no external field [9–14]. In these systems, a current is
generated through the interaction between various components
of the system, and does not rely on a time-dependent external
field. A further aspect of current generation is current reversal
and this has been examined extensively, particularly in the
domain of ratchet potentials [15–17].

In our system, two coupled particles will evolve in a
symmetric and periodic washboard potential. Initially, one
particle will be sent into the “interaction region,” where this
particle will interact with another that is initially at rest. (These
particles will henceforth be named particle A and particle B,
respectively.) The interaction between these particles will be
dependent on the strength of coupling between them, and their
relative distance from one another. For large distances, the

two particles will effectively decouple and individual regular
motion will ensue. The objective of this study is to explore
the nature of current suppression and reversals of its direction
relative to the coupling parameter.

The paper is organized as follows. In Sec. II, we will
describe the setup of the system. In addition, we shall show
sample trajectories illustrating some of the dynamics present
in this model. Particle current is examined in Sec. III. In
Secs. IV and V, we examine how long the particles spend
in the interaction region, and additionally how energies are
distributed between the particles at the end of simulation time.
In Secs. VI & VII, the implications of the symmetries of
the system for the emergence of a current are considered. In
Sec. VIII, we explore the structure of phase space. In particular,
we investigate the invariant sets in the dynamics connected
with chaotic saddles. Furthermore, we relate the character of
the underlying dynamics, involving almost integrable motion,
transient chaos, and permanent chaos, to the different transport
scenarios. Finally, we summarize and draw conclusions from
our investigation.

II. SYSTEM OF COUPLED PARTICLES

The model used is Hamiltonian and of the form

H =
2∑

n=1

[
p2

n

2
+ U (qn)

]
+ Hint(q1,q2), (1)

where qn and pn (n = 1,2) are the canonically conjugate
positions and momenta of coupled particles of unit mass
evolving in a spatially symmetric and periodic washboard
potential. The potential, of unit period, is given by

U (q) = U (q + 1) = 1 − cos(2πq)

2π
. (2)

The particles are coupled via the interaction term

Hint(q1,q2) = D

[
1 − 1

cosh(q1 − q2)

]
, (3)
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FIG. 1. (Color online) Plot of the effective potential (D =
0.581 69). The main diagonal contains the regions of lowest potential
energy.

which is dependent on the distance d = |q1 − q2|. The strength
of this coupling is regulated by the parameter D. It is
important to note that asymptotically the gradient dHint(x)

dx
goes

to zero, i.e., as the relative distance |q1 − q2| increases, the
related interaction forces, ∂Hint/∂q1 and ∂Hint/∂q2, vanish
asymptotically, allowing transient chaos [18–20]. That is, for
large distance |q1 − q2| � 1, the interaction vanishes with the
result that the two degrees of freedom decouple, rendering the
dynamics regular. The effective potential will be defined as

Ueff(q1,q2) = U (q1) + U (q2) + Hint(q1,q2). (4)

An example of the landscape of the effective potential is shown
in Fig. 1 with −2.5 � q1 � 2.5 and −2.5 � q2 � 2.5. We see
energies in the potential ranging from 1.21 (dark orange) to 0
(dark blue). Crucially, along the diagonal (blue area) we have
the interaction region, which is where the complexity in the
system is manifested.

The equations of motion are given by

q̈1 = − sin(2πq1) − D

[
tanh(q1 − q2)

cosh(q1 − q2)

]
, (5)

q̈2 = − sin(2πq2) + D

[
tanh(q1 − q2)

cosh(q1 − q2)

]
. (6)

The initial conditions, q2 = p2 = 0, for the dynamics are
chosen such that (isolated) particle B is situated at the bottom
of a well of the washboard potential and hence possesses no
energy. Particle A, possessing a sufficient amount of energy
to overcome the washboard energy barriers, will be sent from
the asymptotic-free region into the region containing particle
B and here an energy transfer will take place, the extent of
which depends on the coupling strength.

For D = 0, we have an uncoupled system. Thus the
dynamics of the system will be decided by two integrable
subsystems. In effect, this means that the particles initially
with energy will hold onto this energy for all time. These
particles will pass through the potential landscape unhindered
and consequently remain in regular motion. In contrast, the
particles that are initially at rest will be unable to gain any
energy via an interaction with the other particles and will thus
remain at rest for all time.

For D �= 0, the particles can interact via the interaction
potential and exchange energy. This exchange will excite the
additional (initially resting) particle and, to varying degrees,
influence the motion of the particle that has entered the
“interaction region.” Again, it is important to note that both
components of this system are open and thus it is feasible
that either particle will escape. For large |q1 − q2| � 1,
the interaction between the particles vanishes and again we
see the dynamics represented by regular motion, with the
possibility of both particles escaping independently excluded
(see Sec. VI).

As mentioned earlier, the initial conditions for particle
B will be q2 = p2 = 0. The particle A starts as a virtually
free particle in the asymptotic region, i.e., it approaches the
interaction region from a far distance. The initial amount of
energy E = 0.9 lies above the highest possible energy of the
saddle-center points, but below almost all of the saddle-saddle
points of the effective potential (see further in Sec. VI). The
initial positions of the particles A are contained within the well
whose minimum is located at q � −25 and the corresponding
initial momenta are determined as those points populating,
densely and uniformly, the level curve

E = 1

2
p2

1 + U (q1) + Hint(q1,0), (7)

in the (q1,p1) plane. Asymptotically, the interaction potential
attains a value approaching D. Therefore, as the particles begin
in the asymptotic region and as the initial conditions depend
explicitly on D, no two sets of initial conditions will be the
same. Two examples of these initial conditions are shown in
Fig. 2. The energy will be fixed at E = 0.9, which is almost
three times the barrier height of the washboard potential, Eb

= 1/π ≈ 0.3183. It should be emphasized that for particle B

to escape, it must gain a sufficient amount of energy from its
interaction with particle A. With no interaction, this system
will contain a strong positive current, as particle A can escape
to infinity feeling no effect from particle B.

There are a number of questions that we will address.
First, can particle B gain enough energy to escape from its
starting potential well, or is particle B’s presence of little or no
consequence to the overall dynamics of the system? Second,
in the case that particle B does escape, what subsequently
happens to both particles? Finally, assuming that particle B’s
presence is significant, can it influence the dynamics in such
a way that there is a reversal of the direction of the current,
or even a suppression of the current? These questions will be
answered in the subsequent sections.

To partially answer the first and second questions, we will
illustrate some of the qualitatively different transport scenarios
that are present in this system by varying the strength of
the coupling parameter D. Before this, however, we present
a table of D values that will be frequently used in this
paper along with their respective currents. Particle current
is assessed quantitatively by the mean momentum, which is
defined by taking the averaged momentum of an ensemble of
particles, i.e.,

p = 1

Ts

∫ Ts

0
dt〈p(t)〉, (8)
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FIG. 2. (Color online) Initial conditions (q1,p1) for D = 0.3 and D = 0.581 69, respectively.

where Ts is the simulation time, and the ensemble average is
given by

〈p(t)〉 = 1

N

N∑
n=1

2∑
i=1

pi,n(t), (9)

with N being the number of initial conditions. The current will
be discussed in detail in Sec. III:

D Current
0.3 0.925
0.5613 −0.239
0.5617 0.262
0.5672 0.009
0.58169 −0.0001

Figure 3 contains plots showing the temporal evolution of the
coordinates q1, q2 for five different D values. For comparison,
for each D value, the initial positions of the pair of particles
will be the same, i.e., with q1(0) = −25.5 and q2(0) = 0, and
the initial momentum of particle A follows from the relation
in Eq. (7), while particle B has zero momentum, p2(0) = 0.
Slightly altering these initial conditions can have a large impact
on the path that the particles will take, as for a large range of
the coupling strength the dynamics will be chaotic. In addition,
for the same D values, Fig. 4 illustrates the time evolution of
the partial energies which are defined as

E1 = 1
2p2

1 + U (q1) + 1
2Hint(q1,q2), (10)

E2 = 1
2p2

2 + U (q2) + 1
2Hint(q1,q2), (11)

with E1 and E2 being the partial energies of particles A and
B, respectively, and with the interaction energy being divided
evenly between the particles. From conservation of energy, the
quantity E = E1 + E2 remains constant. It is important to note
that as D increases so does the initial amount of energy held
in the interaction potential, therefore giving less portion of the
total energy to the first two terms of the energy of particle A

in Eq. (10).

With D = 0.3 [Figs. 3(a) and 4(a)], we see that particle A

is able to pass straight through the interaction region almost
unscathed. Particle B does receive some energy from the
interaction, but this energy only allows for small oscillations
about its starting position. This setup favors a strong, positive
current. With regard to particle B leaving its initial potential
well, there appears a blowup at D ≈ 0.562, after which we
can expect both particles to travel multiple potential wells
together. As can be seen in Figs. 3(b) and 3(c), both with
D < 0.562, particle B can largely influence the path of particle
A without actually leaving its starting potential well. Setting
D to 0.5613 [Figs. 3(b) and 4(b)], we see that the dynamics
of the system is quite different. The interaction between the
particles is such that particle A can pass through the interaction
region (to a certain extent) and subsequently be pulled back,
escaping in the negative q direction and thus contributing
to current reversal. Again particle B receives little energy
from the interaction, as can be seen in Fig. 4(b). A similar
phenomenon can be seen for D = 0.5617 [Figs. 3(c) and 4(c)].
This time particle A oscillates around q = 0 a number of times
before escaping in the positive q direction maintaining the
original direction of the current. Some of the most interesting
behavior observed in this system can be seen in the remaining
two figures. Figures 3(d) and 4(d) show a trajectory with
D = 0.5672. There are a number of striking things that can
be noted about this trajectory. First, the duration of time that
the trajectories “stick” together before one escapes. In this
case, particle B escapes in the positive q direction. This is
substantially longer than the escape times presented in the
previous figures. Also, both particles take excursions to
the left and right before the escape of particle B. However,
the most notable thing about this figure is that it is particle B

that escapes, not particle A as for the previous D values. Thus
particle B is able to gain enough energy to escape from its
starting potential well, and subsequently from any force that it
feels from particle A. Particle A has sacrificed its energy and
has become trapped. This situation describes an interchange
of the roles played by particles, with the initially free particle
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FIG. 3. (Color online) Example trajectories using a range of different D values. The red (solid) line shows the temporal evolution of particle
A, while the green (dashed) line shows the time evolution of particle B. The initial conditions for each trajectory are chosen as q1(0) = −25.5
and q2(0) = 0.

becoming trapped and the initially trapped particle becoming
free. The final figures [Figs. 3(e) and 4(e)], with D = 0.561 69,
show similar behavior in that the particles seem to “stick”
together. However, neither particle escapes, but instead are,
in some sense, stuck to each other for the duration of the
simulation. This is a process known as dimerization, where the

particles, each acting as a monomer, form a bound unit. This
process is evident in some of the previous figures; however, in
this case, the process is permanent. Both particles undergo
large excursions along the line q1 = q2. It can be seen in
Fig. 4(e) that, for this particular D value, the particles are in a
continual and, most importantly, substantial energy exchange.
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FIG. 4. (Color online) Partial energies corresponding to the trajectories in Fig. 3. Again, the temporal evolution of particle A is shown by
the red (solid) line and particle B by the green (dashed) line.

This allows the particles to travel together in an erratic fashion
undergoing multiple changes of direction and visiting multiple
potential wells.

A characteristic of each figure is that when particle A

enters the interaction region there is a slight increase in its

momentum. This acceleration is due to the dip in the potential
landscape created by the interaction potential. Particle A

thus usurps some of the energy contained in the interaction
potential. Importantly, the escape of one particle at the expense
of the other, and therefore an increase in the distance between
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FIG. 5. (Color online) Current as a function of D. The inset
displays the current for the full range of D values, namely
0 � D � 0.5817. The main figure displays, in detail, the sensitivity
of the current to changes in D. This corresponds to the bottom right
corner of the inset.

the particles, restores the initial amount of energy contained in
the interaction potential.

III. PARTICLE CURRENT

We now consider the current induced by directed particle
transport. Figure 5 shows the current, as defined in Eq. (8), for
the system as a function of D. Strikingly, one notices that there
are intervals for which the current is very sensitively dependent
on D. Small changes to this parameter result in drastic changes
to both the magnitude and direction of the current. (In fact, if
we choose an even finer step size for D, we find that it is even
more sensitive.)

For small D values, we see a strong positive current.
This is because particles feel little-to-no effect when entering
the interaction region and pass straight through relatively
unscathed. As D increases, there is a gradual decrease in
the current until D ≈ 0.561, where there is a sharp decline
in the current (see inset of Fig. 5). After this D value, the
magnitude and direction of the current oscillates erratically
until D ≈ 0.5756. That is, as the coupling parameter D is
varied, the current, originally in one direction, can drop to
zero and then reverse. In the forthcoming, we associate the
frequent current reversals to the underlying transient chaotic
dynamics. For D � 0.5756, the current plateaus and finally at
D ≈ 0.58 the current makes a sharp rise, becoming positive,
before tending to zero. This sharp rise can be understood if we
look at the interaction potential. As mentioned in Sec. II, for the
initial dynamics, as D increases so does the energy contained
in the interaction potential and consequently particle A has
less energy. More concretely, as D → (0.9–1/π ≈ 0.5817),
then EA → 1/π ≈ 0.3142 (barrier height of the washboard
potential). Therefore, particle A will have sufficient energy to
make it over the potential barriers it passes while traveling to
the interaction region, but once there will not be able to pass
through and must interact with particle B.

Another interesting feature of this plot is the numerous
plateaus that appear for negative values of the current. This
indicates that there are certain ranges of D where the current
does not oscillate erratically, but rather stays almost constant.

IV. PARTICLES SOJOURN IN INTERACTION REGION

A more direct way of examining the effect that the coupling
strength has on the particles is to calculate the amount of time
that particles A and B spend in the interaction region. More
formally, we have calculated the time that the particles satisfy
the condition

|q1(t) − q2(t)| � 10, (12)

outside of which the gradient of the potential will almost be
equal to zero.

Figure 6 (left panel) shows the sojourn times for an en-
semble of initial conditions corresponding to D = 0.5617 and
D = 0.5672 as a function of the angle α = tan−1[p1(0)/q1(0)],
which can be viewed as the incident angle in the (q1,p1) phase
plane of the initially free particle A. We see with the lower
D value that the particles all spend a relatively short time
in the interaction region and that the time corresponding to
each initial condition is almost the same. Associated with
this is a fairly large current, p̄ = 0.262, indicating that the
particles leave the interaction region in a preferred direction.
In contrast, for the second D value, the time for each initial
condition is noticeably longer than in the previous case.
Further, these times are much more varied and there is a
large difference between the smallest and greatest time for
this ensemble (approximately 2700 time units). That is, as
a hallmark of chaotic scattering [21–25]; the sojourn time
depends sensitively on changes of the initial values because
chaotic saddles, formed by the intersecting stable and unstable
manifolds of unstable periodic orbits, govern the dynamics.
In more detail, escaping trajectories follow the unstable
manifolds of saddle points, whereas there are trajectories that
remain in the interaction region or spend at least some time
there before they escape as a consequence of the presence of
chaotic saddles. From the corresponding small value of the
current, p̄ = 0.009, we infer that the exit of the particles from
the interaction region proceeds such that they virtually balance
each others’ contribution to the net current. The window
containing no points is due to the fact that with a lower D

value the range of momenta taken initially by an ensemble
of particles A is smaller than the range for a larger D value.
This is clearly seen in the example initial conditions shown in
Fig. 2.

Finally, in the case that D = 0.581 69 (Fig. 6, right panel),
corresponding to a vanishingly small current, we see all of
the particles spend the entire duration of the simulation in
the interaction region (50 000 time units). This is a possible
mechanism that allows for the reduced current that can be seen.

V. ENERGY REDISTRIBUTION PROCESSES

In order to gain more insight into the dynamics of the
system, a statistical analysis, going beyond the consideration of
individual trajectories (cf. Sec. II), is carried out. Previously,
we have looked at the partial energies for particles A and
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FIG. 6. (Color online) Sojourn time of an ensemble of particles in the interaction region. Left: The green (scattered) points show the time
for the ensemble when D = 0.5617. Similarly, red (lower line) is for the particles when D = 0.5672. Right: Same as left with D = 0.581 69.

B for the duration of a simulation using individual initial
conditions (discussed in Sec. II). Now we will make use of
histograms displaying the distribution of particle energies,
using an ensemble of N = 103 initial conditions, at the end of
the simulation time Ts = 105. For continuity, we will examine
the histograms corresponding to the five D values used in
earlier sections.

In Fig. 7(a) (D = 0.3), we see that at the end of the
simulation it is particle A, for the entire ensemble, that
possesses the majority of the energy in the system. While
particle B does possess some energy, it is not sufficient for it
to escape from its starting potential well. Since the energy of
particle B is below the energy of the confining center-saddle
points, escape of particle B over the barriers is prevented. A
more detailed consideration of the potential landscape will be
presented in the next section.

We see a similar histogram in Fig. 7(b) (D = 0.5613). The
difference this time is that particle A has sacrificed some of
its energy to particle B. This is not unexpected if we consider
the example trajectory shown in Fig. 3(b)—the interaction
with particle B has a significant impact on the trajectory of
particle A.

Again in Fig. 7(c) (with D = 0.5617), we have a similar
histogram as seen in Figs. 7(a) and 7(b) with a further loss
in energy for particle A, and a gain for particle B, and thus
the final particle energies lie closer together. A slightly more
intriguing histogram is presented in Fig. 7(d) (D = 0.5672).
This D value corresponds to that of Fig. 3(d), where it is
particle B not particle A that escapes. Consequently, the
histogram shows that, indeed, there are some particles B

that possess the majority of the energy at the end of the
simulation. However, it is clear that, for the ensemble, the
majority of particles that contain most of the energy are, in fact,
particle A.

Finally, in Fig. 7(e) (D = 0.581 69), we see that there is a
large distribution in the final energies of each particle, with no
obvious bias favoring the partial energy of any particle.

These histograms for the various D values do not give a full
indication of what the current will be for those respective D

values. They do, however, allow us to make assumptions. For
example, Fig. 7(a) shows that particles A contain almost all of
the energy at the end of the simulation. We therefore expect
that particle A, for the entire ensemble, will make a large
contribution to the net current. Further, if we were naively
to include the corresponding example in our assumption, we
might conclude that there will be a large positive net current
for the ensemble.

If we were to look at the next D value and make similar
assumptions, we would conclude that again there is a large
positive net current. This time, however, the current would
not be quite as strong, as the final energies for the ensemble
indicate that particle A has less energy.

Now, if we were to take the final D value, we might conclude
that, because of the spread of energies for both particles, the
current will be quite small.

Importantly though, nothing definite can be said about the
current for an ensemble of particles until a further investigation
of the phase-space structure has been carried out. This we
do now.

VI. MANIFOLDS AND SADDLE POINTS

A more global understanding of the dynamics in phase
space has been obtained by examining the equilibria of
the system and tracing the manifolds of unstable periodic
orbits. The intricate network of intersecting invariant man-
ifolds associated with the numerous unstable equilibria of
the two-dimensional potential landscape, Ueff , contributes to
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FIG. 7. (Color online) Histograms displaying the final partial energies, again using the five D values from the table in Sec. II, of particles
A [blue (dark gray)] and B [yellow (light gray)] for an ensemble of initial conditions.

rather complicated dynamics. By way of example, for an
illustration, the unstable invariant manifolds of a saddle-type
periodic orbit associated with the saddle-center point located
at q1 = −12.5 and q2 = 0 are displayed for two different D

values to highlight or reinforce some of the complex behavior
discussed in previous sections. In particular, we calculate a
point distribution on the relevant stable or unstable manifold
branches of the saddle-type periodic orbit. These are calculated
by numerically integrating from an initially equidistributed

point set. To ensure accuracy is maintained, the value of the
energy is monitored over the integration time frame. Our aim
here is to show, for these D values, some of the various
channels that a particle can take that will result in current
reversals and current suppression.

The left panel in Fig. 8 shows the scattering nature of this
system. We see that, with D = 0.5617, channels along the
unstable manifold exist for both coordinates, q1 and q2, in the
positive and negative directions (inset in left panel). However,
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FIG. 8. (Color online) Manifolds for D = 0.5617 and D = 0.581 69. The inset shows the manifold extended in configuration space.

it is clear that the favored channel takes the particles in the pos-
itive q1 direction where, subsequent to the period of transient
chaos, it becomes asymptotically free by settling on regular
motion. This is in direct agreement with the current value
produced using this D value. The right panel in Fig. 8 illustrates
partially how a vanishingly small current has emerged from
the system when D = 0.581 69. The dynamics shows that,
provided the corresponding trajectory follows the invariant
manifolds of the chaotic saddle, particle A (respectively B)
is locked in paths provided by the unstable manifold that will
see it undergo many crossings of the line q1 = 0 (respectively
q2 = 0), and thus many changes of direction. Subsequently,
the contribution to the net current by particle A and particle B,
while the particles are locked in such a path, will on average be
zero. However, as the example trajectories show, the particles
can wander in much wider regions of configuration space
as the corresponding trajectory is captured in the intricate
network of the chaotic invariant sets consisting of homoclinic
and heteroclinic tangles. Nonetheless, due to the symmetric
extension of the chaotic invariant set, no preferred direction
for the trajectories exists.

As Fig. 5 has shown, the dynamics of the system are
sensitively dependent on the strength of the coupling. For a
low D value, particle A can pass through the interaction region
unscathed. With increasing D, particle A can no longer find
a direct route through the interaction region. Instead, it enters
into an energy exchange with particle B with both particles
trying to find a path out of the interaction region. As, previously
discussed, there are numerous possible scenarios for particles
A and B, once particle A has reached the interaction region. An
explanation for these scenarios comes from the saddle-point
energies corresponding to the various D values.

In Fig. 9, some of the locations of the equilibria of
the system (for D = 0.581 69), in the range −10 � q1 � 10
and −0.7 � q2 � 0.7, are shown in the (q1,q2) plane. Let
(q1i

,q2j
) denote the equilibrium point with q1i

� i/2 and
q2j

� j/2. The distortion in configuration space is clear to

see. Notably, there is a lack of q1 	→ −q1 and q2 	→ −q2

reflection symmetry. It is this distortion that allows particle
B to become excited and potentially leave its starting potential
well. The reason being that, with the path of least resistance
no longer being along the line q2 = 0, particle A deviates from
its hitherto straight line path and thus stimulates particle B.

Figure 10 shows saddle-point energies as a function of D.
The left panel, corresponding to the saddle points (0,2i + 1),
shows that all of these saddle points are energetically accessi-
ble for every D value. In contrast, many of the saddle points
(1,2i + 1) (right panel) become energetically inaccessible
after a relatively small D value (D ≈ 0.3). This suggests that
these inaccessible saddles form the boundaries of channels

FIG. 9. (Color online) Locations of the (i,j )th equilibrium point
in configuration space for −20 � i � 20 and −1 � j � 1, for D

= 0.581 69. Center-center points are indicated by a star, saddle-center
points by a cross, and saddle-saddle points by a plus sign.
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FIG. 10. (Color online) Effective potential as a function of D shown at the saddle points x(0,2i+1) (left panel) and x(1,2i+1) (right panel). The
horizontal line indicates the total simulation energy, i.e., E = 0.9. The two vertical lines located at D = 0.3 and D = 0.581 69 were used in
the simulations. The green line (negative slope) shows the initial energy of particle A as a function of D.

guiding the particles. Crucially, even though the paths may
be blocked at many points, there are still multiple routes for
the particles to wander and thus the possibility of a directed
current being produced is not excluded.

Another interesting observation that can be made from
these figures is that above D ≈ 0.12 the saddle energies create
barriers that, with the simulation energy E = 0.9, only one
particle can pass over. In particular, some of the saddle energies
attain values greater than 4.5, which eliminates the possibility
of both particles undergoing independent escapes. Below
D ≈ 0.12, it is energetically feasible that both particles can
have enough energy to mount independent escapes. However,
the low coupling strength excludes the possibility of particle B

attaining enough energy from the interaction with particle A.
Therefore, if one particle escapes, it will be at the expense of
the other, which must remain trapped for the entire simulation.

The green lines (negative slope) superimposed on both plots
in Fig. 10 going from the points (0.0,0.9) to (0.5817,1/π )
show the initial energy of particle A as a function of D. In the
left plot, we see that for D � 0.28 particle A will initially
possess enough energy to overcome all of these barriers.
Increasing D beyond this value will mean that, for particle A to
escape, it will need additional energy, which has to come from
the interaction potential. When D is sufficiently large, particle
A will have insufficient energy to overcome any of the potential
barriers. This means that a significant interaction will ensue
and that particle B’s role in the dynamics will be fundamental.
A similar situation unfolds in the right-hand plot. However,
many of the saddle points become energetically inaccessible
for increasing D, meaning that the particles will be unable
to obtain enough energy from the interaction potential to
overcome these barriers.

The scenario with a vanishingly small current (i.e., D

= 0.581 69) still requires an explanation. Examining the
saddle-point energies at this D value (shown by a vertical

line in the plots), we see that almost all of the saddle points
(1,2i + 1) are energetically inaccessible. Only those saddle
points (1,1) and (1,3) can be overcome. As already noted, all
of the saddle points (0,2i + 1) are energetically accessible.
However, those saddle points with i > 4 have energies that
tend to 0.9. Thus for a particle to pass over these barriers
requires that the particle holds all energy contained in the
system. The strength of the coupling almost certainly precludes
such a situation and therefore both particles are forced to
wander chaotically in the interaction region. Importantly, as
D increases, so does the size of the energetically inaccessible
regions. With increasing D, these regions join, forming an
impenetrable barrier that the particles cannot pass, and thus
leaving them to wander in the interaction region. This is
depicted in Fig. 11.

VII. SYMMETRIES CONSIDERATIONS

To gain more insight into the occurrence of the different
transport scenarios, it is illustrative to consider the symmetries
present in the system. First, the washboard potentials, U (x),
are each periodic (of period 1) in their respective arguments
and, in addition, they are invariant under reflections in their
arguments:

U (x) = U (−x). (13)

Also, the interaction potential, Hint(q1,q2), is invariant with
respect to changes in the sign of its argument, i.e.,

Hint(q1,q2) = Hint(−q1, − q2). (14)

Notice that with the inclusion of Hint the effective potential
Ueff = U (q1) + U (q2) + Hint(q1,q2) is not periodic. Most im-
portantly, the system exhibits the particle exchange symmetry
(p1,q1) ←→ (p2,q2). Apart from these spatial symmetries,
the Hamiltonian is even in the momenta p1,2 establishing
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FIG. 11. (Color online) Shown for D = 0.581 69 is the effective
potential. The energetically inaccessible regions are shown in black.

time-reversible symmetry of the system. As a consequence,
for a set of uniformly distributed initial conditions populating
the entire energy surface, the current will be zero. However,
the energy surface is unbounded along the coordinates and
thus cannot in practice be populated with a finite set of
initial conditions. In fact, for our scattering problem, when
one of the particles is sent from a certain finite range of
positions −∞ < ql � q1(0) � qr < 0 in the asymptotically
free region toward the other particle with p2(0) = q2(0) = 0,
the corresponding sets of initial coordinates [q1(0),q2(0)] are
finite and spatially localized. Moreover, as the incoming free
particles are sent in from one side only they have momentum of
definite sign, p1(0) > 0, so that a current exists at least as long
as the incoming (traveling) particle has not yet reached the
interaction region. From the above symmetry considerations,
it follows that the Hamiltonian is inversion symmetric with
regard to the momenta and coordinates, i.e., H (p1,p2,q1,q2)
= H (−p1, − p2, − q1, − q2). However, inversion symmetry
is not reflected in our choice of localized initial condi-
tions. Crucially, in the absence of the corresponding coun-
terpropagating particles emanating from initial conditions
[−q1(0),q2(0) = 0] and [−p1(0),p2(0) = 0], the inversion
symmetry is broken. It depends then on the interaction
process between the two particles [the scattering process in
the landscape of the effective potential Ueff(q1,q2)] whether
the current is preserved or reversed or even suppressed. In the
context of current suppression, it is illustrative to recall Curie’s
principle, which states that if a phenomenon is not prohibited
by a specific symmetry, then in general the phenomenon will
occur [26,27], which, in other words, rules out the presence of
accidental symmetries. Nevertheless, in our system, accidental
symmetries [26,27], reflected in a vanishing current, occur as
a result of fine-tuning of the coupling strength parameter (cf.
Fig. 5). It should be stressed that upon arbitrarily slight tuning
of the coupling strength parameter away from the position
of a vanishing current a nonzero current results, that is the
accidental symmetry is destroyed, which is the hallmark of
structural instability.

VIII. PHASE-SPACE DYNAMICS

In Sec. II, we illustrated some qualitatively different
transport scenarios that are present in the system. As a further
illustration of the phase-space dynamics, we present here
a method that illuminates the dynamics of each particle,
using various values of D. Trajectories, evolving in the
four-dimensional phase space on the three-dimensional energy
hypersurface, can be represented by examining the following
surfaces:

�1 = {q1,p1|U (q2) = 0}, (15)

and

�2 = {q2,p2|U (q1) = 0}, (16)

where the surface of section �1 will show the dynamics of
particle A and �2 that of particle B, respectively. Note that,
for both surfaces, the coordinates q1 and q2 are shown mod(1).
It should be noted that the dimension of the phase space is
four and thus Arnold diffusion is possible. However, Arnold
diffusion will only happen on time scales much larger than
those relevant for particle transport [28] and therefore we do
not consider it further.

Figure 12 shows the surfaces of section for D = 0.3, D

= 0.5672, and D = 0.581 69 (from top to bottom with
increasing size of D and �1 on the left and �2 on the
right). We see that for a fairly low value, D = 0.3, exclu-
sively regular motion occurs. Importantly, particle A always
maintains a strong positive momentum characterized by the
densely covered curves associated with rotational motion,
while particle B’s motion is bounded with it undergoing small
oscillations about its starting position. With this D value,
particle B contributes nothing to the net current. However,
with the significant contribution from particles A, with all
trajectories evolving in the range of positive velocities, we
can expect a strong positive current. Increasing the coupling
strength to D = 0.5672, we see much more interesting and
complex behavior in phase space. In particular, many of the
particles initially at rest escape from their starting potential
well. This escape happens after a chaotic transient, which
sees particle B gaining enough energy to escape. On the
surfaces �1 and �2, this motion is characterized by scattered
points (representing the chaotic transient) and densely covered
curves (representing the rotational motion that ensues after a
particle has escaped). Furthermore, as there is only sufficient
energy for one particle to escape, the remaining particle
becomes trapped and oscillates around the bottom of a
potential well. This can be seen on the surfaces as the area
occupying the center of these figures.

There do, however, remain particles that stay trapped in
this potential well. Zooming in on the central region of this
figure reveals that there is indeed regular dynamics present in
the system. In addition, there is also chaotic motion for some
of the particles. This corresponds to the chaotic transient that
the particles experience before one escapes. Furthermore, as
was seen in Sec. II, it is possible for particle B to escape.
This is reinforced by Fig. 3(d). Finally, for a strong coupling
D = 0.581 69, both surfaces are largely covered by scattered
points (bottom panels). This indicates that the motion of the
particles is highly chaotic. There does appear to be some
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FIG. 12. (Color online) Surfaces displaying the phase-space dynamics of particle A (panels on the left) and particle B (panels on the right)
for three different D values. From top to bottom, these are D = 0.3, D = 0.5672, and D = 0.581 69. The coordinates q2 and q2 are presented
mod(1).
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transport in the dynamics, but this has two explanations. First,
the motion is initially regular with particle A being free.
Secondly, as was seen in Fig. 3(e), both particles can travel
large distances in a relatively short time, in interludes of
rotational motion, but afterward become once again trapped in
potential wells for some time. However, the particles do return
to full chaotic motion after this transient of almost regular
motion. Furthermore, with respect to the lines p1 = 0 and
p2 = 0, the surfaces appear to be symmetric. This indicates
that an ensemble of particles contribute nothing to the net
current.

IX. RESULTS AND CONCLUSION

We have studied the Hamiltonian dynamics of particles
evolving in symmetric and periodic washboard potentials. A
free particle A is sent into a region containing particle B,
which is at rest, where they interact. This interaction is local in
that, if the distance between the particles is large, then neither
particle’s motion will be affected by the other. Some of the
numerous qualitatively different transport scenarios present
in this system have been demonstrated, together with the
corresponding energy transfer that takes place between the
two particles. The most interesting of these scenarios is that
in which it is particle B, not particle A, that escapes. The
figure containing the partial energies of the particles clearly
shows the chaotic exchange of energy that results in particle
A sacrificing its energy and allowing particle B to escape.
This scenario is particularly interesting as both particles’
momentum contributes to the net current.

More general observations on the type motion have been
made. Initially, the motion of the system is regular. Once the
particles are sufficiently close, there exists chaotic motion with
the parameter D deciding the nature of this chaos. Either it will
be a transient, with one or the other of the particles escaping, or
it will be permanent, with the particles being locked together

forever. This result is interesting, as it shows that there exist
open channels, where the particles scatter off each other in the
potential landscape, and closed channels, where the particles
form a bond, i.e., a dimer. The duration of the transient of
chaos is also dependent on the coupling strength, for some
values being extremely short and for others being relatively
long.

Particular attention has been given to the particle current,
notably current reversals and current suppression, and how
this is affected by changes in the coupling strength. The
sensitive dependence of a current on this coupling parameter
is extremely pronounced, with small changes in this strength
reversing the direction of the current. In this sense, the coupling
strength acts as a switch that when flipped changes the
direction of the current. Most astonishing is the fact that it
is possible to suppress the current for certain values of this
coupling parameter.

In summary, we have demonstrated that it is possible for
a system with a strong positive current to undergo multiple
current reversals and even current suppression, without the
need for external driving or damping, just by varying the
coupling parameter.

Finally, as forthcoming investigations are concerned, we
point to the corresponding quantum-mechanical scattering
problem. In particular, in the context of molecular physics as
well as cold-atom physics, the influence of quantum effects on
the formation of n-body bound states related with the distinct
scenarios of regular motion, on the one hand, and transient
and permanent chaos in the potential landscape, on the other,
needs to be explored. Furthermore, for the formation of n-mers
out of more than two isolated monomers, the key question is
whether the interaction between the particles, taking place in a
high-dimensional phase space, proceeds such that the energy
distribution among them leads to closed channels, i.e., bond
formation, as in the way described in this paper for the dimer
case.
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