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Order parameter for the transition from strong to weak generalized synchrony
from empirical mode decomposition analysis
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We examine driven nonlinear dynamical systems that are known to be in a state of generalized synchronization
with an external drive. The chaotic time series of the response system are subject to empirical mode decomposition
analysis. The instantaneous intrinsic mode frequencies (and their variance) present in these signals provide suitable
order parameters for detecting the transition between the regimes of strong and weak generalized synchrony.
Application is made to a variety of chaotically driven flows as well as maps.
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I. INTRODUCTION

The most general—and possibly the most ubiquitous—
form of temporal correlation between systems is their general-
ized synchronization (GS) [1]. When one dynamical system is
driven by another, if the response signal is uniquely dependent
on the drive, then the two are said to be in generalized
synchrony.

The simplest case, when the drive and response are both
linear, can be completely analyzed, and a synchronization
viewpoint has little additional insight to offer [2]. However,
when either the drive and/or the response is chaotic, such a
categorization appears to be useful. If the evolution equations
of the drive and response are given by

u̇ = F (u), (1)

ẋ = G(x,u), (2)

respectively, then in GS there is a (possibly implicit) functional
dependence of the response x on the drive u, namely

x = �[u]. (3)

The function � need not be differentiable even if the vector
fields of the drive and response, namely F and G, are
continuous and smooth. This defines the states of strong and
weak generalized synchrony [4]: When � is differentiable, the
GS is strong, and, contrastingly, if it is not differentiable, it
is termed weak GS. As was shown by Abarbanel et al. [3]
either case of GS may be detected by constructing an auxiliary
system, namely an identical copy of the response,

ẋ′ = G(x′,u) (4)

and observing the complete synchronization of x and x′.
In the typical situation, as a coupling parameter is varied,

there is a transition between strong and weak GS. Recent work
[5–7] has shown that this transition can have different char-
acteristics depending on the manner in which the parameter
space is traversed. There are distinct “routes” from strong and
weak GS, and these share similarities with the routes to chaos
in nonlinear dynamical systems without driving, as well as to
the routes to strange nonchaotic motion in quasiperiodically
driven systems [8].

Along these routes, though, the transition from strong to
weak generalized synchrony can be difficult to detect, and
some earlier studies, notably by Pyragas [4] and Hunt, Ott,

and Yorke [9], have addressed the issue of the strong →
weak transition in different ways. The differentiability of the
implicit function � can be quantified through the Hölder
exponent [9,10]. Other methods have also been proposed for
the detection of the nondifferentiability of the implicit function
[11,12], particularly in the analysis of time-series data [13].
Some rigorous results on the continuity of the function � have
been obtained by Afraimovich, Chazottes, and Cordonet [14],
but these can be difficult to apply in the general case.

In the present work we show that the analytical signal
analysis (ASA) [15], together with the empirical mode
decomposition [16], offers an efficient tool for detection of
the strong-to-weak GS transition. Measures based on the
empirical mode frequencies and their variance provide an
unambiguous signature of this transition and can be applied
quite generally. Indeed, a recent study has shown the utility
of the ASA methodology in a study of the transition to phase
synchronization (PS) [17,18] that can be similarly difficult to
detect. In recent years a very large number of applications of
the ASA technique have established that this can be a reliable,
and powerful method for examining complex temporal signals,
with some advantages vis-à-vis traditional spectral tools such
as the Fourier or wavelet transform [16].

The standard empirical mode decomposition and the ASA
method is briefly discussed in the following section. In
Sec. III, application is made to the analysis of continuous
and discrete nonlinear dynamical systems displaying weak
and strong generalized synchronization. The paper concludes
with a discussion and summary in Sec. IV.

II. ANALYTICAL SIGNAL ANALYSIS AND EMPIRICAL
MODE DECOMPOSITION

In order to be able to associate an amplitude and phase to
an arbitrary complex aperiodic signal x(t) it is necessary to
construct an “analytical signal,” ψ(t) [15],

ψ(t) = x(t) + ix̃(t), (5)

where

x̃(t) = 1

π
PV

[∫ ∞

−∞

x(t ′)
t − t ′

dt ′
]

(6)
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is the Hilbert transform of x, with PV denoting the Cauchy
principal value. This then makes it possible to define the
amplitude of the signal as

A(t) =
√

x(t)2 + x̃(t)2 (7)

and the corresponding phase as

φ(t) = arctan[x̃(t)/x(t)]. (8)

Although somewhat arbitrary, this method of assigning the
amplitude and phase reduces to standard definitions for
sinusoidal or periodic signals and if x(t) is not periodic,
then both the amplitude A(t) and the instantaneous frequency
ω(t) = φ̇(t) are not constant and the nature of their variation
is related to the underlying dynamics.

The constructed analytical signal must satisfy two condi-
tions, namely that it should have a well-defined center and
that there should be a preferred direction of rotation for
the instantaneous frequencies to be physically meaningful.
A complex signal that does not possess such a proper
structure of rotation needs to be decomposed into a sum of
proper rotations via the empirical mode decomposition (EMD)
method developed by Huang et al. [16].

This algorithm [16] is based on the assumption that the
signal s(t) has at least two extrema from which a characteristic
time scale can be obtained. The innate oscillations that belong
to different time scales can be individually extracted one
mode at a time by using the envelope of the local maxima
and minima. Identification of the intrinsic modes is done as
follows: the local maximum and minimum of the signal are
found and are connected by a cubic spline to form the upper
envelope csmax(t) and the lower envelope csmin(t), respectively.
Their mean,

m(t) = 1
2 [csmax(t) + csmin(t)], (9)

is subtracted from the original signal s(t) to yield d(t)

d(t) = s(t) − m(t). (10)

If d(t) is a proper rotation, it is an intrinsic mode. Else,
a “sifting” procedure is employed, namely now one uses
d(t) as the signal to analyze. From d(t) −→ d(t) − m(t), the
upper and lower envelopes [csmax(t),csmin(t), respectively] are
formed, and the above procedure is carried out recursively until
d(t) has the structure of a proper rotation. This yields the first
intrinsic mode function (IMF) B1(t) = d(t) that corresponds
to the highest-frequency oscillations contained in the original
signal since the envelopes are constructed using the extrema
of the highest-frequency waves. After subtracting this shortest
time-scale component from the original signal s(t),

s(t) −→ s(t) − B1(t), (11)

this entire process is iterated to yield the second intrinsic mode
B2(t). Subsequent iterations then give a sequence of modes that
capture the different time scales, and each intrinsic mode is,
by construction, a pure rotation in the complex plane with
a meaningful instantaneous frequency. After extracting these
modes, if the residual signal s(t) is such that it has less than
two local extrema, or its amplitude is negligible compared
to the original signal, the process is terminated. This residual
component, ε(t), has vanishingly small amplitude with at most

quadratic dependence on time. Thus the original signal s(t) is
empirically decomposed into a set of modes

s(t) =
M∑
i=1

Bi(t) + ε(t) = Bs(t) + ε(t). (12)

Given a mode uD(t) of the drive, and the corresponding
mode of the response xR(t), a plausible functional relationship
between them extends Eq. (3) as

xR(t) = �[uD(t)]. (13)

If H [·] is the Hilbert transform operator, with

H [uD(t)] = ũD(t), (14)

one can see that the differentiability properties of � are
pertinent in relating the two Hilbert transforms since

x̃R(t) = ũD(t)(�′ + . . .). (15)

Interpretation of the instantaneous modes in terms of physical
properties has not been straightforward [16]. As shown by
Lai and Ye [19] for periodic or quasiperiodic motion, the
fundamental frequencies obtained in the analytical signal
representation correspond approximately to those obtained
in the Fourier transform, but when the motion is chaotic,
the Fourier spectrum is broadband while the instantaneous
frequencies obtained from analytical signal analysis remain
localized. There is thus no simple correspondence between
the two spectra. In a number of model examples, Lee et al.
[20] have shown that the dominant empirical IMFs are the
responses of the “slow–flow” modes of the dynamics. For
complex signals coming from chaotic oscillators, the physical
significance of the modes can be difficult to discern.

At the same time, measures derived from the EMD have
been shown to provide suitable order parameters for detecting
the onset of phase synchrony between two oscillators coupled
unidirectionally [17,18]. Since the transition from strong GS
to weak GS is a consequence of the loss of differentiability
of the implicit functional relationship between response and
drive, one may expect a signature of this change in dynamics
to reflect in quantities that are derived from the EMD analysis.
As we show in the next section, the mode frequencies and their
variance provide suitable order parameters.

III. APPLICATIONS

Generalized synchrony is clearest in unidirectionally cou-
pled systems, namely those with a skew-product structure,
and when the drive and the response are both nonlinear, with
at least one of them having chaotic dynamics [4–6]. In an
earlier study, we have considered a simple harmonic drive
with a quasiperiodic frequency [21]; in that case, the transition
of interest is from quasiperiodic tori to strange nonchaotic
attractors [8].

Our protocol in the present work is as follows. For a given
value of the control parameter, we generate N trajectories
of length T and extract the largest frequency modes [16]
according to the procedure described above. Each of the IMFs
is then subject to the analytical signal analysis via the Hilbert
transform method described, and for each IMF, the phase and
average instantaneous frequencies νk

i can be determined. The
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subscript i labels the individual modes, and the superscript k,
the different trajectories in the ensemble. By averaging over
the ensemble, the mean mode frequency ωi = ∑N

k=1 νk
i /N and

variance, σ 2
i = ω2

i − ∑N
k=1(νk

i )2 at this value of the control
parameter can be obtained.

We study the variation of ω2, namely the frequency of
the second mode in the present analysis. The first intrinsic
mode of the response is dominated by the drive characteristics
and thus a transition in the response dynamics on varying the
coupling can be difficult to detect. The higher modes have
instantaneous frequencies that are distinct from those of the
drive and are well localized. Thus the second and higher modes
appear to capture dynamical features that are present in the
response signal and that are not simply a reflection of the drive.
Numerical errors in the EMD algorithm increase as one goes
to higher order [16] and therefore, although in principle any
of the mode frequencies can be used to detect the transition, it
is preferable to use ω2 and its variance.

We make application to three systems below. For the signals
studied here, the number of modes is typically less than 10.

A. Rössler-Lorenz Flow

The first example we consider has the chaotic Rössler
oscillator [22] as a drive

u̇1 = −α(u2 + u3)

u̇2 = α(u1 + au2) (16)

u̇3 = α[b + u3(u1 − c)]

and the Lorenz attractor [23] as response,

ẋ1 = 10(−x1 + x2)

ẋ2 = 28x1 − x2 − x1x3 + ku2 (17)

ẋ3 = x1x2 − 8x3/3.

The multiplier α is introduced in order to control the charac-
teristic time scale of the drive and is here taken to be 6; the
other parameters in the Rössler system are a = b = 0.2, and
c = 5.7. Earlier work by Pyragas has suggested that there is
a transition from weak to strong generalized synchrony in the
range 20 � k � 50, although GS itself occurs when k > 6 [4].

The dynamics of the Lorenz response Eq. (17) is subjected
to EMD. In particular, we carry out the analysis on s(t) =
x1(t) as shown in Fig. 1(a). The IMF analysis is presented in
Fig. 2 for a fixed value of the coupling k = 15 when the GS
is weak. The signal carries eight intrinsic modes that can be
represented as proper rotations; the sum of these eight IMFs
essentially reconstructs the original signal Fig. 3(a) with a
negligible residue as can be seen in Fig. 3(b).

The functional relationship between the Hilbert transforms
of the response and drive [cf. Eq. (15)] is shown in Fig. 4.
For weak GS (k = 15), the fluctuations are significantly larger
(indicative, we believe, of a nonsmooth �) in comparison
to k = 30 that is strong GS. To locate the transition from
weak to strong GS we examine ω2 and its variance: There is
a significant decrease in the variance at k ≈ 24 [Fig. 5(b)],
suggesting that there is a change in the functional relationship
between the two quantities.
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FIG. 1. (a) The signal s(t) chosen for analysis is the variable x1(t)
from the driven Lorenz oscillator, Eq. (17). (b) A plot of the response
x1(t) as a function of the drive, u1(t), showing the complex functional
dependence.
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FIG. 2. The signal s(t) shown in Fig. 1 yields the eight intrinsic
modes, Bi , that are shown above. The coupling strength k = 15 falls
within the regime of weak generalized synchrony.
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FIG. 3. (a) Bs(t), the sum of the eight IMFs shown in Fig. 2 that
are obtained from the signal s(t). (b) The residual error ε(t).
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FIG. 4. (Color online) The Hilbert transform of the third mode
of the response x̃R(t) as a function of the Hilbert transform of the
corresponding mode of the drive, ũD(t) [using Eq. (15)] in the strong
(k = 30, black) and the weak (k =15, red/gray) GS regimes.

This correlates with the change in the dynamics from weak
to strong GS: We verify this independently by computing the
parameter sensitivity of the dynamics [24,25]. This quantity
assesses the variability in the dynamical attractor when the
system parameters are varied, and as can be seen in Fig. 6, the
parameter sensitivity exponent begins to saturate around k ≈,
24 thus indicating the onset of strong GS. The order parameter
used by Pyragas [4] is the mean thickness σ of the map �

estimated from the Kaplan-Yorke dimension [26]. Evaluation
of this latter quantity does not lead to a clear transition point
in contrast to the present EMD analysis.

B. Baker-Logistic map

The second system we study is the chaotically driven
logistic mapping [5],

xn+1 = α(1 + ε cos 2πun)xn(1 − xn) (18)
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FIG. 5. (Color online) In the Rössler-Lorenz system, (a) the
frequency ω2 and (b) its variance σ 2

2 for the second mode as a function
of k. The transition from weak to strong GS occurs at k ≈ 24 when
the variance decreases significantly.
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FIG. 6. Parameter sensitivity at different coupling strengths; the
saturation of the curve for the coupling k ≈ 24 indicates the onset of
strong GS.

where x ∈ [0, [1], α � 2, and the drive u is provided by the
generalized baker transformation [27],

un+1 =
{

bun vn < a

b + (1 − b)un vn � a
(19)

vn+1 =
{

vn/a vn < a

(vn − a)/(1 − a) vn � a
(20)

with a = b = 0.45.
This dynamical system exhibits a number of scenarios [5]

for the transition from strong to weak generalized synchrony
that include fractalization, doubling collisions, and intermit-
tency at different values of the parameters α and ε, and we
examine each of these routes through the EMD.

Following the procedure outlined above, the time series of
the response map is subject to IMF analysis, and the discrete
modes are extracted. Figures 7(a) and 7(b) show the variation
of the second mode frequency and its variance as a function of
the parameter α for fixed ε = 0.03. Both the frequency and the
variance signal the weak-to-strong GS transition at α ≈ 3.8325
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FIG. 7. (Color online) For the chaotically driven logistic map,
(a) and (b) are the frequency ω2 and variance σ 2

2 for the second mode
as a function of α for ε = 0.03. The same quantities at ε = 0.15 are
shown in (c) and (d). The transition from weak to strong GS occurs
at α ≈ 3.8325 and α ≈ 3.21, respectively, in the two cases.
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2 as a function of the parameter c for mode 2.

that occurs via the intermittency route [5]. A sharp change in
these quantities is also observed when the transition occurs
via a doubling collision at α ≈ 3.21 for ε = 0.15, as shown in
Figs. 7(c) and 7(d). The transition via fractalization, which is
seen at ε = 0.2 [5] remains elusive with the present approach:
Neither the frequency nor the variance show any distinctive
change beyond a possible inflection point at α ≈ 2.6 [5] (these
results are not shown here).

C. The driven Duffing oscillator

The final application here is of a chaotically forced Duffing
oscillator [6] given by the evolution equations

ẋ1 = x2

ẋ2 = −hx2 − x3
1 + [1 + A(cos x3 + aru1)]x1 (21)

ẋ3 = 1.

The total modulation in Eq. (21) is a superposition of two
signals: a sinusoidal drive and u1(t) that we take here to be
the output of the Rössler drive, Eq. (16) with a = b = 0.2,
α = 1.49. Recall that when the drive is also taken to be
sinusoidal with an irrational frequency, then there can be tran-
sitions to strange nonchaotic attractors [28–30]. The coupling
between drive and response is fixed with ar at 0.125, h = 0.2,
A = 0.15, and the Rössler oscillator parameter c is used as a
control.

This system has been studied earlier studied by Singh
et al. [6], who used the largest subsystem Lyapunov exponent
to detect the transition from weak to strong GS. Using the
response variable x1(t) for EMD analysis, we compute the
intrinsic mode frequencies and variances which are shown in
Figs. 8(a) and 8(b). A sharp change is clearly evident at the
critical value c ≈ 5.185, in agreement with earlier results.

We have verified that when the drive is more complex—for
example, a chaotic Lorenz system—the above procedure is
equally effective in detecting the transition from weak to strong
GS (results not shown here).

IV. DISCUSSION AND SUMMARY

A host of recent applications, ranging from climate data
[31,32] to biomedical signals [33,34], have shown that the
empirical mode decomposition technique is a versatile and
informative tool for the analysis of complex signals.

We have applied the EMD here for the detection of a
somewhat subtle transition within the regime of generalized
synchrony based on the observation that the fluctuation
properties of the signals change across the transition. The
substructure of GS can thus be explored by this method: The
frequency and variance corresponding to the different intrinsic
modes serve as good order parameters for detection of the
transition from strong to weak GS. We have studied chaotically
driven flows as well as maps that show this transition; the
present analysis can detect the transition in each case, and the
characteristic signature of the transition appears to depend on
the particular “route” to weak GS [5].

EMD analysis complements earlier studies [4,9] that have
used a variety of measures to detect the weak-to-strong
GS transition. An order parameter that examines the degree
of coherence between the two signals (as measured in the
permutation entropy of each signal) has also been used [13],
but this is sometimes insensitive to the transition to generalized
synchrony itself.

The present method decomposes a given signal on the basis
of local characteristic time scales within the data. This is
suitable even when the data are nonstationary. The method
is adaptive and therefore highly efficient to implement compu-
tationally. It can equally well be applied to time-series and to
high dimensional systems and may thus be of practical use in
examining experimental instances of generalized synchrony.
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