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We study the dynamics of the voter and Moran processes running on top of complex network substrates where
each edge has a weight depending on the degree of the nodes it connects. For each elementary dynamical step
the first node is chosen at random and the second is selected with probability proportional to the weight of
the connecting edge. We present a heterogeneous mean-field approach allowing to identify conservation laws
and to calculate exit probabilities along with consensus times. In the specific case when the weight is given
by the product of nodes’ degree raised to a power θ , we derive a rich phase diagram, with the consensus time
exhibiting various scaling laws depending on θ and on the exponent of the degree distribution γ . Numerical
simulations give very good agreement for small values of |θ |. An additional analytical treatment (heterogeneous
pair approximation) improves the agreement with numerics, but the theoretical understanding of the behavior in
the limit of large |θ | remains an open challenge.
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I. INTRODUCTION

Many technological, biological, and social networks are
intrinsically weighted. Each link has associated an additional
variable, called weight, which gauges the intensity or traffic
of that connection, and that can exhibit widely varying
fluctuations [1–3]. The presence of weights is extremely
relevant in some scenarios (e.g., in the case of transport in a
network in which weights measure bandwidth or capacity), and
it must therefore be taken into account explicitly. Some results
have already been produced in this direction, dealing, among
other problems, with diffusive processes [4,5], epidemic
spreading [6,7], general equilibrium and nonequilibrium phase
transitions [8,9], or glassy dynamics [10]. Here we present a
detailed investigation of the ordering dynamics of voterlike
models on weighted networks [11].

The voter model [12,13] and the Moran process [14]
are simple examples of ordering dynamics, which allow to
understand how natural systems with an initial disordered
configuration are able to achieve order via local pairwise
interactions. Both models are described in terms of a collection
of individuals, each endowed with a binary variable si , taking
the values ±1. The elementary step consists in randomly
choosing a first individual and then (again randomly) one of
her nearest neighbors. In the voter model the first individual
will copy the state of her neighbor. In the Moran process, on the
other hand, she will transmit her own state to the neighboring
node, which will adopt it. In both cases, starting from a
disordered initial state, the iteration of the elementary step
leads to the growth of correlated domains and, in finite systems,
to an absorbing uniform state in which all individuals share
the same state (the so-called consensus). In a social science
context, the voter model represents thus the simplest model
of opinion formation in a population, in which individuals
can change their opinion as a function of the state of their
nearest neighbors [11]. In the same way, in a biological
context, the Moran process represents the elementary example
of two species competing (through reproduction and neutral
selection) for the same environment [15].

The voter and Moran processes are equivalent on regular
lattices and on the complete graph, but if the pattern of
connections is given by a complex (unweighted) topology
they behave differently, since the order in which interacting
individuals are selected becomes relevant [16,17]. Moreover,
the time to reach consensus scales with the system size
in different ways depending on the degree distribution of
the network [18–20]. Considering a weighted topological
substrate adds, as we will see, a richer and more complex
phenomenology. Additionally, the case of weighted networks
allows to model very natural settings. In the context of social
sciences, for example, weights can reflect the obvious fact that
the opinion of a given individual can be more easily influenced
by a close friend rather than by a casual acquaintance. On the
other hand, in an evolutionary scenario, weights allow to gauge
the effects of heterogeneous replacement rates in different
species.

On weighted networks, at each time step a vertex i is
selected randomly with uniform probability; then one nearest
neighbor of i, namely, j , is chosen with a probability
proportional to the weight wij � 0 of the edge joining i and j .
That is, the probability of choosing the neighbor j is

Pij = wij∑
r wir

. (1)

Vertices i and j are then updated according to the rules of the
respective models. With this definition, the models considered
represent the natural extension for ordering dynamics on
weighted networks (and in particular of the voter model)
of the generalized Moran process proposed in Refs. [21]
and [22], in which dynamics was defined as a function of
a set of arbitrary interaction probabilities Pij . In our case,
however, the fact that these interaction probabilities arise from
the normalized weights arriving at a vertex imposes some
restrictions to the possible values of Pij and yields therefore
different outcomes and interpretations. Also, it is worth noting
three recent publications [23–25], dealing with related, but not
identical, models.
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Adopting the heterogeneous mean-field (HMF) approx-
imation [26,27] we will assume that the weight between
vertices i and j depends only on the degrees at the edges
endpoints, namely, ki and kj , and therefore we can write wij ≡
g(ki,kj )aij , where aij is the adjacency matrix and g(k,k′) is a
positive definite, symmetric function. The application of HMF
theory and the backward Fokker-Planck formalism [18–20]
allows us to derive analytical expressions in degree uncorre-
lated networks for the main relevant quantities (namely, exit
probability and consensus time [11]) in a more transparent
way than in Refs. [21] and [22]. In order to allow for closed
mathematical solutions of the models, we will further specify
the function g to be given by the product of two independent
functions g(k,k′) = gs(k)gs(k′), an assumption motivated by
empirical observations in real weighted networks [1]. Special-
izing both models to the case of networks with power-law
distributed degrees and edge weights given by multiplicative
powers the endpoint degrees, gs(k) = kθ , a very rich phase
diagram is obtained, with several different scaling regions of
the consensus time with the network size N . A numerical check
of the analytical predictions reveals a good agreement in some
regions of the parameters space and noticeable discrepancies
in others. In order to gain insights into the observed numerical
disagreement, we apply an improved mean-field approach, the
heterogeneous pair approximation [28], which turns out to
provide better agreement with numerics for small θ but is still
not able to solve the problems for large θ . The qualitatively
different nature of the dynamics for large θ is briefly discussed
and its understanding identified as an intriguing challenge for
future work.

II. HETEROGENEOUS MEAN-FIELD THEORY

In this section, we perform a theoretical analysis of the voter
and Moran processes on weighted networks within a HMF
approximation [26], extending the Fokker-Planck formalism
developed for the unweighted case in Refs. [18–20]. Let us
consider the models defined by the interaction probability
Eq. (1), where the network weights take the form

wij = g(ki,kj )aij . (2)

The simplest way to extend the Fokker-Planck approach to
weighted networks is to follow the annealed weighted network
approximation introduced in Ref. [5]. The key point consists in
considering the degree coarse-grained interaction probability
Pw(k → k′), defined as the probability that a vertex of degree k

interacts with a nearest-neighbor vertex of degree k′. In
unweighted networks, this probability simply takes the form
of the conditional probability P (k′|k) that a vertex of degree k

is connected to a vertex of degree k′ [29]. In networks with
weights given by Eq. (2), the interaction probability of the
voter and Moran dynamics, Eq. (1), can be coarse grained by
performing an appropriate degree average, to yield [5]

Pw(k → k′) = g(k,k′)P (k′|k)∑
q g(k,q)P (q|k)

. (3)

The relevant function defining voter and Moran processes
is the probability �(k; s) that a spin s at a vertex of degree k

flips its value to −s in a microscopic time step [18–20].
This function can be expressed, within the annealed weighted

network approximation, in terms of the density xk of +1 spins
in vertices of degree k, taking the form

�V (k; +1) = P (k)xk

∑
k′

Pw(k → k′)(1 − xk′), (4)

�V (k; −1) = P (k)(1 − xk)
∑
k′

Pw(k → k′)xk′ , (5)

for the voter model. The origin of these probabilities is easy to
understand [18–20]. For example, Eq. (4) gives the probability
of flipping a vertex of degree k in the state +1 as the product
of the probability P (k) of choosing a vertex of degree k, times
the probability xk that the vertex is in the state +1, times the
probability k chooses to interact with a neighbor vertex k′,
which is in state −1 with probability 1 − xk′ , averaged over
all possible neighbor degrees k′. Analogously, the flipping
probabilities for the Moran process can be expressed as

�M (k; +1) =
∑
k′

P (k′)(1 − xk′)Pw(k′ → k)xk, (6)

�M (k; −1) =
∑
k′

P (k′)xk′Pw(k′ → k)(1 − xk). (7)

Let us now present separately the mean-field analysis for
the two models under consideration.

A. Voter model

1. Rate equation, conservation laws, and exit probability

Let us consider the time evolution of the density xk ,
which is determined in terms of a rate equation. Following
Refs. [5,17–20], this rate equation is shown to take the form

ẋk(t) =
∑
k′

Pw(k → k′)xk′(t) − xk(t)

=
∑
k′

g(k,k′)P (k′|k)∑
q g(k,q)P (q|k)

xk′(t) − xk(t), (8)

where in the last expression we have used Eq. (3). The
complete expression Eq. (8), valid for any correlation and
weight patterns, is quite difficult to deal with. In order to
obtain closed analytical expressions, we assume that the
underlying network is degree uncorrelated, namely, P (k′|k) =
k′P (k′)/〈k〉 [30], and moreover, that the weights are simple
multiplicative functions of the edges’ end points, that is,
g(k,k′) = gs(k)gs(k′). In this way, Eq. (8) becomes

ẋk(t) = ωV (t) − xk(t), (9)

where we have defined

ωV (t) =
∑
k′

k′gs(k′)P (k′)
〈kgs(k)〉 xk′(t), (10)

and 〈f (k)〉 ≡ ∑
k P (k)f (k).

It is easy to see that the total density of +1 spins, x =∑
k P (k)xk , is not a conserved quantity, ẋ = −x + ωV . The

quantity ωV , however, is conserved, ω̇V (t) = 0, as we can see
by inserting Eq. (9) into the time derivative of ωV (t). Finally,
the steady-state condition of Eq. (9), ẋk = 0, implies xk = ωV .

As for the usual voter model [18,20] the conservation
law allows the immediate determination of the exit (or
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“fixation”) probability E, i.e., the probability that the final
state corresponds to all spins in the state +1. In the final state
with all +1 spins we have ωV = 1, while ωV = 0 is the other
possible final state (all −1 spins). Conservation of ωV implies
then ωV = E · 1 + [1 − E] · 0, hence

E = ωV . (11)

Starting from an homogeneous initial condition, with a density
x of randomly chosen vertices in the state +1, we obtain,
since ωV = x, Eh(x) = x as in the standard voter model [11].
On the other hand, with initial conditions consistent of a
single +1 spin in a vertex of degree k, we have E1(k) =
kgs(k)/[N〈kgs(k)〉].

2. Consensus time

The backward Fokker-Planck formalism [31] can be applied
to obtain expressions for the consensus time TN (x), as a
function of the initial density x of +1 spins and the system size
N . However, following Refs. [17–20], it is simpler to apply a
one-step calculation and use the recursion relation [18–20]

TN ({xk}) =
∑

s

∑
k

�V (k; s)[TN (xk − s�k) + �t]

+Q({xk})[TN ({xk}) + �t], (12)

where Q = 1 − ∑
s

∑
k �V (k; s) is the probability than no

spin flip takes place, �t = 1/N , and �k = 1/[NP (k)] is
the change in xk when a spin flips in a vertex of degree k.
Rearranging the terms in Eq. (12), and expanding to second
order in �k , we obtain

1

2N

∑
k

xk + ωV − 2xkωV

P (k)

∂2TN

∂x2
k

+
∑

k

(xk − ωV )
∂TN

∂xk

=−1.

(13)

Equation (13) is simplified by observing that the ordering
dynamics of the voter model is separated in two well distinct
temporal regimes [18,32]. Over a short time the different
densities xk all converge from their initial value to the common
value at the steady state xk = ωV . For infinite-size systems,
this state survives forever. For finite size N , the system enters
instead a different regime, where the dynamics of densities
xk is enslaved by the fluctuations of ωV , which performs a
slow diffusion until it hits the absorbing values 0 or 1. The
consensus time is dominated by this second regime. This
allows to apply the steady-state condition which cancels the
drift term in Eq. (13). Taking as relevant quantity the conserved
weighted magnetization ωV , we obtain [18,20]

1

N
ωV (1 − ωV )

〈k2gs(k)2〉
〈kgs(k)〉2

∂2TN

∂ω2
V

= −1. (14)

The integration of this equation leads to

TN (ωV ) = −N
〈kgs(k)〉2

〈k2gs(k)2〉 [ωV ln ωV + (1 − ωV ) ln(1 − ωV )].

Thus, the ordering time starting from homogeneous initial
conditions xk = ωV = 1/2 is

TN (x = 1/2) = N (ln 2)
〈kgs(k)〉2

〈k2gs(k)2〉 . (15)

B. Moran process

1. Rate equation, conservation laws, and exit probability

The derivation of the rate equation for the density xk in the
Moran process follows the same steps as in the voter model,
taking the form

ẋk(t) = 1

P (k)

∑
k′

P (k′)Pw(k′ → k)[xk(t) − xk′(t)]

= k
∑
k′

P (k′|k)

k′
g(k′k)∑

q g(k′,q)P (q|k′)
[xk(t) − xk′(t)],

where in the last step we used the degree detailed balance con-
dition kP (k)P (k′|k) = k′P (k′)P (k|k′) [33]. Assuming again a
degree uncorrelated network, and multiplicative weights, we
are led to

ẋk(t) = kgs(k)

〈kgs(k)〉 [xk(t) − x(t)]. (16)

Again, the total density of +1 spins, x = ∑
k P (k)xk is not

conserved, while instead the quantity

ωM = 1

〈[kgs(k)]−1〉
∑

k

P (k)

kgs(k)
xk (17)

is conserved, ω̇M = 0. Finally, from the steady-state condition
ẋk = 0, we obtain xk = x. From the conservation of ωM the
exit probability is immediately derived as

E = ωM. (18)

Homogeneous initial conditions lead again to Eh(x) = x,
while a single +1 spin in a vertex of degree k leads to

E1(k) = 1

kgs(k)

1

N〈[kgs(k)]−1〉 . (19)

It is interesting to note that in the conserved quantity of the
voter model ωV , each density xk is weighted with the product
kgs(k) [Eq. (10)], while in the correspondent ωM for the Moran
process the weight is precisely the inverse, namely, [kgs(k)]−1

[Eq. (17)]. As noted in the case of unweighted networks [20],
intuitively this can be ascribed to the fact that in the voter model
it is the first selected node that may change its state, while in
the Moran process it is the second one. Thus in the voter
model small-degree nodes change their state more often than
high-degree nodes, and weighting them with the probability
of being chosen [kgs(k)] compensates this disparity, leading
to the conserved quantity ωV . Vice versa in the Moran process
low-degree nodes change their state less often than high-degree
nodes, and the inverse weighting balances this difference [20].

2. Consensus time

Following the same steps presented for the voter model,
and performing the appropriate expansion to second order in
�k , we obtain the equation

∑
k

kgs(k)

〈kgs(k)〉 (xk − x)
∂TN

∂xk

+ 1

2N

∑
k

kgs(k)

〈kgs(k)〉
xk + x − 2xkx

P (k)

∂2TN

∂x2
k

= −1.
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FIG. 1. (Color online) Phase diagram of the voter model (left-hand side) and Moran process (right-hand side) on weighted scale-free
networks.

The steady-state condition xk = x leads to the cancellation of
the drift term. The diffusion term is simplified by changing
variables with the conserved quantity ωM , leading to the
equation

1

N

1

〈[kgs(k)]−1〉
ωM (1 − ωM )

〈kgs(k)〉
∂2TN

∂ω2
M

= −1, (20)

where we have used the fact that, in the steady state, x = ωM .
The solution of equation for the consensus time leads now to

TN (ωM ) = −N〈kgs(k)〉〈[kgs(k)]−1〉
× [ωM ln(ωM ) + (1 − ωM ) ln(1 − ωM )] . (21)

Thus, starting from homogeneous initial conditions xk = x =
ωM = 1/2, we have

TN (x = 1/2) = N (ln 2)〈kgs(k)〉〈[kgs(k)]−1〉. (22)

III. NETWORKS WITH POWER-LAW DEGREE
DISTRIBUTION AND WEIGHT STRENGTHS

The actual behavior of the exit probability and the consen-
sus time depends, in view of the previous calculations, on the
topological properties of the network under consideration, as
well as on the strength of the weights, as given by the function
gs(k). In this section we consider explicitly these dependencies
for the particular case of networks with a power-law degree
distribution form P (k) ∼ k−γ , and a weight strength scaling
also as a power of the degree gs(k) = kθ . This last selection is
reasonable in view of the weight patterns empirically observed
in real networks [1]. Let us focus on the consensus time with
homogeneous (x = 0.5) initial conditions for the two models
considered.

In the case of the voter model, the ordering time with
homogeneous initial conditions and weights scaling as a power
of k takes the form

TN (1/2) = N ln(2)
〈k1+θ 〉2

〈k2+2θ 〉 . (23)

From this expression, we can obtain different scalings with the
network size N , depending on the characteristic exponents γ

and θ ; we consider only γ > 2. Using the fact that 〈ka〉 ∼ const
for a < γ − 1 and 〈ka〉 ∼ k

a+1−γ
c for a > γ − 1, where kc is

the upper network cutoff, and, in view of the comparison with
numerical results for the uncorrelated configuration model
(UCM) [34], considering the scaling kc ∼ N1/2 for γ < 3 and
kc ∼ N1/(γ−1) for γ > 3 [35], we obtain the following scaling
for consensus the time:

TN (1/2)

∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N (3−γ )/2, θ > γ − 2, γ < 3,

const, θ > γ − 2, γ > 3,

N (γ−2θ−1)/2, γ − 2 > θ > (γ − 3)/2, γ < 3,

N2(γ−θ−2)/(γ−1), γ − 2 > θ > (γ − 3)/2, γ > 3,

N, θ < (γ − 3)/2.

(24)

In Fig. 1 (left-hand side) we represent graphically the
different scalings of the consensus time TN in the (θ,γ ) space.

For the Moran process, the ordering time scales with the
network size through the expression

TN (1/2) = N ln(2)〈k1+θ 〉〈k−1−θ 〉. (25)

For γ > 2, the different possible scalings are as follows:

TN (1/2) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N (4+θ−γ )/2, θ > γ − 2, γ < 3,

N (1+θ)/(γ−1), θ > γ − 2, γ > 3,

N, −γ < θ < γ − 2,

N−(1+θ)/(γ−1), θ < −γ, γ > 3,

N (2−θ−γ )/2, θ < −γ, γ < 3.

(26)

Figure 1 (right-hand side) depicts the different regimes
associated to the behavior of TN in the (θ,γ ) space.

Some comments are now in order. First we notice that all
relevant quantities are in fact functions of the combination
kθ+1. This implies that for θ = −1 both voter and Moran
dynamics are predicted to give the same results at the mean-
field level, independently of the degree distribution. In fact,
θ = −1 implies that both interacting vertices are extracted
completely at random (independently of their degree) so that
the asymmetry distinguishing the voter model from the Moran
process vanishes. For other values of θ , on the other hand,
the effect of weights appears to be completely different for
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the two dynamics. For the voter model, positive values of
θ tend to reduce the consensus time, while θ < 0 leads to
increased TN , i.e., the dynamics becomes slower. In any case
the consensus time is at most proportional to the system size
N : The dynamics is always relatively fast. Interestingly, the
HMF analysis predicts the presence of a region (θ > γ − 2
and γ > 3) for which the consensus time is constant, i.e.,
the dynamics undergoes an instantaneous ordering process, in
contrast with what happens in other regions, in which ordered
regions of opposite states can coexist for very long times,
reaching consensus only in finite systems and through a large
stochastic fluctuation [36]. As it will be shown below, this
is true only on annealed networks in which the quenched
disorder imposed by the actual connections in the network is
not considered. Numerical simulations performed on quenched
graphs give different results.

For the Moran process, on the other hand, T ∼ N represents
a lower bound for the scaling of the consensus time: The
dynamics is always rather slow, with an exponent larger than
1 for all (γ,θ ). Remarkably, the scaling of TN turns out to
depend symmetrically on |θ + 1|: A large positive or a large
negative value of θ + 1 are equally effective in slowing down
the ordering process.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

A. Algorithms

In order to check the analytical predictions for the voter
model and Moran process, we have performed numerical sim-
ulations of both models on uncorrelated networks generated
using the UCM [34]. The networks have a degree exponent
γ , a minimum degree km = 4, and a maximum degree smaller
than or equal to

√
N , preventing the generation of correlations

for γ < 3 [35]. A weight strength gs(k) = kθ is imposed by
selecting a nearest neighbor j of a vertex i with probability

Pij = kθ
j∑

v∈V(i) k
θ
v

, (27)

where V(i) is the set of nearest neighbors of i.
Moreover, since HMF equations describe in an exact way

dynamics taking place on annealed networks [5], we have
simulated the voter model and the Moran process also on such
structures, in order to provide a benchmark of our analytical
results. In annealed networks, in fact, all links are rewired at
each microscopic time step, so that no dynamical correlation
can build up, and the absence of correlations assumed by
mean-field approaches is actually implemented. In weighted
networks, the probability that a vertex of degree k interacts
with a vertex of degree k′ is given by

Pw(k → k′) = k′gs(k′)P (k′)
〈kgs(k)〉 = k′1+θP (k′)

〈k1+θ 〉 , (28)

where in the last equality we have assumed again that gs(k) =
kθ . An annealed weighted network is thus implemented by
choosing as neighbor of any given vertex another vertex of
degree k, randomly chosen in the network with probability
proportional to k1+θ [5]. In a quenched network, on the other
hand, the neighbors of the first node are of course fixed and
the choice is restricted to them.

B. Exit probability

While for homogeneous initial conditions both the voter
model and Moran process lead to an exit probability equal
to the standard voter model, i.e., E(x) = x, invasion initial
conditions starting from a single +1 spin in a vertex of degree
k lead to exit probabilities that depend explicitly on the initial
degree considered. In particular, we find

Evoter
1 (k) ∼ k1+θ , EMoran

1 (k) ∼ k−(1+θ). (29)

While for the voter model a single +1 vertex has better chances
to invade the system if it starts from a high degree vertex, for
the Moran process the situation is precisely the opposite, a
single +1 spin being favored when initially located in the
vertices of smallest degree. This kind of behavior is actually
to be expected from the very definition of the models, and
has been already reported in unweighted networks [20]. In
fact, a high degree is beneficial in the voter model since
it corresponds to a larger probability of being chosen as a
partner by a neighbor in search for an opinion to copy, while
in the Moran process having many neighbors implies a larger
probability to be invaded by the opinion at one of them. In
Fig. 2 we plot the values of the exit probability E1(k) computed
from numerical simulations. The results fit quite nicely the
mean-field predictions in Eq. (29): The larger the weight
intensity, the stronger the impact of high- and low-degree
vertices in the voter and Moran processes, respectively.

C. Consensus time

In Fig. 3 we check the validity of the scaling behaviors
predicted by the HMF treatment and sketched in Fig. 1. In
this figure, we plot the scaling of the consensus time TN as a
function of N , for different points in the six regions in which
the respective phase diagrams are divided, compared with the
corresponding theoretical mean-field predictions.

Figure 3 shows that, overall, the agreement between the
scaling predicted by theory and numerical data in annealed
networks is, as expected, very good. With respect to the results
for quenched networks, the agreement between HMF theory
and simulations is in general restricted to small absolute values
of θ , as reported for other dynamical processes [5]. In order

10 100
k

10
-4

10
-3

10
-2

E
1(k

)

FIG. 2. (Color online) Exit probability E1(k) starting from a
single +1 spin in a vertex of degree k, for the voter model (filled
symbols) and the Moran process (open symbols). Dashed lines
represent the expected theoretical scaling with k, circles refer to
the case θ = 0 and squares to θ = 1. Data from quenched networks
of size N = 103 with γ = 2.5 (voter model) and γ = 2.2 (Moran
process).

066117-5



BARONCHELLI, CASTELLANO, AND PASTOR-SATORRAS PHYSICAL REVIEW E 83, 066117 (2011)

10
0

10
2

10
4

10
610

1

10
2

10
3

10
0

10
2

10
4

10
610

0

10
2

10
4

10
0

10
2

10
4

10
610

0

10
2

10
4

T
N

(1
/2

)

10
0

10
2

10
4

10
610

0

10
2

10
4

10
0

10
2

10
4

10
6

N

10
0

10
2

10
4

10
0

10
2

10
4

10
6

N

10
0

10
2

10
4

γ = 2.5
θ = 2.0

γ = 2.5
θ = -4.0

γ = 4.0
θ = -1.0

γ = 4.0
θ = 4.0

γ = 3.5
θ = 1.0

γ = 2.75
θ = 0.5

10
0

10
2

10
4

10
610

0

10
2

10
4

10
0

10
2

10
4

10
610

0

10
2

10
4

10
6

10
0

10
2

10
4

10
610

0

10
2

10
4

T
N

(1
/2

)

10
0

10
2

10
4

10
610

0

10
2

10
4

10
0

10
2

10
4

10
6

N

10
0

10
2

10
4

10
0

10
2

10
4

10
6

N

10
0

10
2

10
4

γ = 2.5
θ = 2.0

γ = 3.5
θ = 4.0

γ = 3.25
θ = -4.0

γ = 3.5
θ = 0.5

γ = 2.5
θ = -1.0

γ = 2.5
θ = -4.0

FIG. 3. (Color online) Scaling with N for the voter model (left-hand side) and Moran process (right-hand side) on scale-free weighted
networks in different regions of the corresponding phase diagrams, Fig. 1. Squares represent data from simulations run on annealed networks,
while circles concern quenched graphs. Dashed lines represent the theoretical scaling predicted by HMF theory.

to set better limits to the validity of the HMF approximation,
in Fig. 4 we report the numerical values of the consensus
time obtained from simulations in quenched networks of fixed
size N = 3 × 103 in slices of the phase diagrams in Fig. 1
performed at two constant values of γ , one larger and
one smaller than 3, and varying θ . These numerical values
are compared with numerical evaluations of the theoretical
predictions in Eqs. (23) and (25). From Fig. 4 we observe
that the HMF approximation yields reasonably correct results
except for large values of θ (for γ > 3) or large values of
−θ (for γ < 3). When these errors occur, consensus time
is underestimated by HMF for the voter model, while it is
overestimated for the Moran process. At the present stage we
are not able to predict a priori when the theoretical results
fail to describe the behavior of the dynamics taking place on
quenched networks, but the numerical evidence suggests that
the theory works well for values of |θ | of the order of those
observed in real networks [1].
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FIG. 4. (Color online) Consensus time for the voter model (left-
hand side) and Moran process (right-hand side) in slices of the phase
diagrams at two fixed values of γ and varying θ , compared with the
corresponding HMF predictions, Eqs. (23) and (25), respectively (full
lines). Results from simulations performed on quenched networks of
size N = 3 × 103.

V. HETEROGENEOUS PAIR APPROXIMATION

There are several possible assumptions in the HMF treat-
ment which could fail when the approach breaks down. One is
the assumption that the time to reach consensus is dominated
by the diffusive wandering of the quasisteady state, which is
much larger than the time to reach such a state. More important
is, however, the possibility that the very first hypothesis at
the core of mean-field theory, namely, that the dynamics of
the system can be fully described in terms of the densities
xk , breaks down [28,32]. This assumption can be violated
at several different levels. A mild violation occurs when the
probability of a node to be in a +1 state is correlated with
the state of its nearest neighbors. In order to ascertain this
possibility, it is useful to consider the quantity ρk , defined as
the probability that an edge connected to a node of degree k

and selected for the dynamics is active, i.e., it connects nodes
in a different state. Focusing on the case of the voter model,
HMF theory, which explicitly assumes the lack of dynamical
correlations between the vertices at the ends of any edge,
predicts that this quantity should be equal to

ρk =
∑
k′

Pw(k → k′) [xk(1 − xk′) + (1 − xk)xk′]

= xk(1 − ωV ) + (1 − xk)ωV (30)

and hence, for initial homogeneous conditions xk = x = ωV =
1/2, we should have in the stationary state ρS

k = 2x(1 − x) =
1/2.

Figure 5 shows that, for a case where the mean field is not
accurate, this assumption is not correct in two respects: First,
the value of ρk is lower than 1/2 (dashed line), indicating that,
in fact, correlations build up in the system. Second, ρk depends
on k, implying that those correlations depend, moreover, on
the degree of the nodes.

In order to take into account these degree-dependent
dynamical correlations, one needs to consider, as a relevant dy-
namical variable, the probability ρk,k′ that an edge connecting
a node of degree k with another node of degree k′ is active, i.e.,
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degree k and selected for the dynamics is active as a function of
k, in the quasisteady state for x = 1/2. The solid line is the result
of the heterogeneous pair approximation, while symbols are results
of numerical simulations. Binning has deliberately been avoided to
show the large variability of numerical results for larger degrees. Data
from voter dynamics on quenched networks of size N = 105, with
γ = 3.25 and θ = 1.5.

the two nodes are in a different state. This approach, termed the
heterogeneous pair approximation (HPA), has been introduced
and applied to voter models on unweighted networks in
Ref. [28]. To determine the equation of motion of the quantity
ρk,k′ in the voter model, we observe that this quantity is
modified if the flipping node has degree k and one of its
neighbors has degree k′ (or vice versa). Let us assume that
the flipping (first selected) node has degree k and call k′′ the
degree of the copied (second selected) node. It is useful to
consider separately the two cases where k′′ 
= k′ or k′′ = k′.

In the first case the variation �ρk,k′ for a single dynamical
step (occurring over a time �t = 1/N ) is determined as
follows: The probability that a node in state s and degree
k flips is given by the probability P (k) that the first node
selected has degree k times the probability σ (s) that it is in
state s, times the probability Pw(k → k′′) that the second
has degree k′′ multiplied by the probability ρk,k′′/[2σ (s)]
that the link connecting the two is active. One has then to
multiply this quantity by the associated variation of the fraction
of active links between k and k′. Among the k − 1 other
links of the flipping node, the number of those connecting
to a node of degree k′ will be j distributed according to
a binomial R(j,k − 1) with probability of the single event
equal to P (k′|k). In their turn, only n out of these j links will
be active, with n binomially distributed [B(n,j )] with single
event probability ρk,k′/[2σ (s)]. Finally one has to multiply by
the variation of ρk,k′ when n out of j links go from active
to inactive as a consequence of the flipping of the node in k.
This is given by the variation of the number of active links
[(j − n) − n] divided the total number of links between nodes
of degree k and k′, namely, NkP (k)P (k′|k). One has then to
sum over k′′ 
= k′, s, j and n, obtaining

�ρk,k′ = P (k)
∑

s

σ (s)
∑
k′′ 
=k′

Pw(k → k′′)
ρk,k′′

2σ (s)

×
k−1∑
j=0

R(j,k − 1)
j∑

n=0

B(n,j )
j − 2n

NkP (k)P (k′|k)
.

(31)

By performing explicitly the summations [and using∑
s 1/σ (s) = 4/(1 − m2), where m = 2x − 1 is the magne-

tization] the formula becomes

�ρk,k′

�t
=

∑
k′′ 
=k′

Pw(k → k′′)ρk,k′′
(k − 1)

k

(
1 − 2

1 − m2
ρk,k′

)
.

(32)

When k′′ = k′, the value of �ρk,k′ is similar to Eq. (31) with
(obviously) Pw(k → k′) instead of Pw(k → k′′), no sum over
k′′, and in the numerator of the last factor j + 1 − (n + 1)
− (n + 1) = j − 2n − 1, because there are j + 1 links to
nodes of degree k, n + 1 of which are active in the initial state
and inactive in the final. Summing up the two contributions
and adding the symmetric terms with k and k′ swapped, we
get

dρk,k′

dt
= ρk

k − 1

k
+ ρk′

k′ − 1

k′

+ − ρk,k′

[
Pw(k → k′)

P (k′|k)

1

k
+ Pw(k′ → k)

P (k|k′)
1

k′

+ 2ρk

1 − m2

k − 1

k
+ 2ρk′

1 − m2

k′ − 1

k′

]
. (33)

When uncorrelated networks are considered, so that

Pw(k → k′)
P (k′|k)

= 〈k〉
〈k1+θ 〉k

′θ , (34)

we are led to the final equation

dρk,k′

dt
= ρk

k − 1

k
+ ρk′

k′ − 1

k′ − ρk,k′

[ 〈k〉
〈k1+θ 〉

(
k′θ

k
+ kθ

k′

)

+ 2ρk

1 − m2

k − 1

k
+ 2ρk′

1 − m2

k′ − 1

k′

]
. (35)

where m is the magnetization and, at odds with the case of
unweighted networks, the definition of ρk is now

ρk =
∑
k′

Pw(k → k′)ρk,k′ . (36)

Solving numerically this equation in the stationary state,
it is possible to determine ρS

k , which turns out to be in good
agreement with numerical simulations (see Fig. 5). Moreover,
it is possible to compute the consensus time TN , which for the
voter model turns out to be

TN = N〈k1+θ 〉2

2
∑

k P (k)k2(1+θ)ρS
k (x = 1/2)

. (37)

A remarkable agreement between this expression (evaluated
numerically) and simulations is found even for some cases
where HMF theory fails. Notice that no parameter is fitted.
Thus, as we can see in Fig. 6, for small values of θ (θ = 0.5)
and small γ , both HMF theory and the HPA provide accurate
results for the consensus time. Larger values of the weight
exponent (θ = 1.5) are well represented by HPA, while HMF
fails.

For larger values of θ , however, even the HPA approxi-
mation is not sufficient to capture the correct behavior of the
model. In this regime, a much harsher breakdown of the HMF
assumptions occurs [5,23]: The state of a node of degree k (or
of an edge joining vertices of degree k and k′) depends not
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FIG. 6. (Color online) Comparison of the consensus time TN as a
function of N obtained in numerical simulations for voter dynamics
on quenched networks (open circles) and the results of the numerical
evaluation of the HMF, Eq. (23) (filled circles), and HPA, Eq.
(37) (open squares) predictions. Data correspond to networks with
γ = 2.75, θ = 0.5 (top), γ = 3.25, θ = 1.5 (center), and γ = 4, θ =
4 (bottom).

only on the degrees but on the detailed quenched structure
of the network, much beyond single-node or single-pair
features. For example, as θ → ∞ [5], each node interacts
deterministically with its most connected neighbor. According
to HMF equations, which describe an annealed scenario, this
means that every node will select the most connected node(s)
in the network. However, in a quenched structure each node
can choose its partner only among its neighbors, with the result
that different portions of the network will effectively become
independent from the point of view of the dynamics. Different
regions of the network may therefore order in different states,
and in this case the final global consensus will never be reached
(see also Ref. [5]).

VI. CONCLUSIONS

We have presented a detailed investigation of the behavior
of voter model and Moran processes on weighted complex net-
works. From the analytical point of view we have put forward
a theoretical framework that allows to deal with generic edge
weights. For a specific form of the weights we have derived in
detail all relevant properties of the dynamical processes, such
as the exit probability and the scaling of the consensus time as
a function of the network size. It turns out that the presence
of weights has the effect of slowing down the Moran process
with respect to the unweighted case, while it generally speeds
up ordering with voter dynamics. Numerical simulations are
in good agreement with the theory for small absolute values
of θ , while for large |θ | substantial discrepancies show up. An
improved mean-field-like theoretical approach (heterogeneous
pair approximation) taking into account two-body correlations
gives better agreement with numerics. Still in the limit of large
positive (negative) θ , when the state of a node tends to be
deterministically enslaved to the state of its neighbor with
largest (smallest) degree, the theoretical approaches fail to
describe in a satisfactory manner the behavior of the system.

The positive news is that the mean-field equations describe
quite well the dynamics observed in real (quenched) networks
for weight intensities of the order of the ones observed
in real-world networks [1]. However, the generality of this
finding, as well as the intrinsic limits of the theory, are in need
of a better understanding (see also Ref. [5]). A theoretical
approach able to take into account the detailed quenched
structure of weighted networks is in order to successfully
tackle this problem.
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