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Taylor’s power law and fluctuation scaling explained by a central-limit-like convergence
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A power function relationship observed between the variance and the mean of many types of biological
and physical systems has generated much debate as to its origins. This Taylor’s law (or fluctuation scaling)
has been recently hypothesized to result from the second law of thermodynamics and the behavior of the
density of states. This hypothesis is predicated on physical quantities like free energy and an external field; the
correspondence of these quantities with biological systems, though, remains unproven. Questions can be posed
as to the applicability of this hypothesis to the diversity of observed phenomena as well as the range of spatial
and temporal scales observed with Taylor’s law. We note that the cumulant generating functions derived from this
thermodynamic model correspond to those derived over a quarter century earlier for a class of probabilistic models
known as the Tweedie exponential dispersion models. These latter models are characterized by variance-to-mean
power functions; their phenomenological basis rests with a central-limit-theorem-like property that causes many
statistical systems to converge mathematically toward a Tweedie form. We review evaluations of the Tweedie
Poisson-gamma model for Taylor’s law and provide three further cases to test: the clustering of single nucleotide
polymorphisms (SNPs) within the horse chromosome 1, the clustering of genes within human chromosome 8, and
the Mertens function. This latter case is a number theoretic function for which a thermodynamic model cannot
explain Taylor’s law, but where Tweedie convergence remains applicable. The Tweedie models are applicable
to diverse biological, physical, and mathematical phenomena that express power variance functions over a wide
range of measurement scales; they provide a probabilistic description for Taylor’s law that allows mechanistic
insight into complex systems without the assumption of a thermodynamic mechanism.
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I. INTRODUCTION

Taylor’s power law was originally described as an empirical
power function relationship between the variance and mean of
the number of individuals of a species per unit area 〈N〉 as
they are distributed over their habitat

〈N2〉 − 〈N〉2 = a〈N〉p (1)

(a and p are constants) [1]. Since Taylor’s description
in 1961 [1], this scaling relationship has been repeatedly
demonstrated within ecological systems and other biological
processes ranging from chromosomal structure to population
genetics to regional organ blood flow to cancer metastasis and
epidemiology [2–8]. More recently, the physics community
has shown interest in this relationship, in the context of the
statistical mechanics of fluctuation scaling [9,10]. Taylor’s law
has its appeal to field ecologists, and other biologists, as a
simple means to assess clustering: p = 1 indicates a random,
or Poisson-distributed, pattern of individuals whereas p > 1
indicates clustering.

Fronczak and Fronczak have recently proposed that
Taylor’s law can be explained on the basis of the second
law of thermodynamics through a maximum entropy principle
[10]. By this means, they concluded, it is not necessary “to
invoke any stochastic models to explain phenomena such as
aggregation effects in different populations.” Taylor’s law is
remarkable in that it is evident over the scale of a single
chromosome [7,8] to the lungs of mice [2], a farmer’s field [11],
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and upward to the breadth of the British Isles [12]. How
the macroscopic fluctuations that characterize many of these
observations might arise as a consequence of thermodynamic
mechanisms is an intriguing question. On the basis of the
fluctuation theorem [13] (assuming this theorem is applicable)
one would expect a phase-space trajectory of duration t and
with entropy production

∑
t = Ã to be related to a trajectory

of opposite magnitude and entropy loss such that

Prob
(∑

t = Ã
)

Prob
(∑

t = −Ã
) = exp(Ã). (2)

The probability of observing a transient or localized fluctu-
ation associated with an entropy loss decreases exponentially
as the time period, or size of the system, under observation
increases. Thus in order for the larger fluctuations, evident
with Taylor’s law, to be explained by the second law of
thermodynamics some additional mechanism(s) would seem
necessary.

In this regard Fronczak and Fronczak have proposed to
relate the macroscopic states to a microscopic system using a
density of states function g(N ). They postulated a statistical
distribution expressed in terms of the free energy of the
system F (μ̃), defined for an external field μ̃ coupled to
the ensemble of objects under study, and they related the
variance in the mean density of objects 〈N2〉 − 〈N〉2 to F (μ̃)
using a fluctuation dissipation relation. They then derived
the probability generating function that corresponds to the
frequency distribution of the objects yielding Taylor’s law.

Over the past half-century since Taylor’s initial description
there have been many attempts to explain his law, yet
none of these have found general acceptance [3,9,14–25].
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Here we examine the Fronczak hypothesis with regard to
its applicability in biological and numerical systems. We
will show that this model is mathematically equivalent to
one predicated on a mathematical, central-limit-theorem-like
effect that does not require the assumption of a thermodynamic
mechanism.

II. DIFFICULTIES WITH THE THERMODYNAMIC
MODEL

Schrödinger, in his book What is life? [26], was one of
the first physicists to apply thermodynamic theory to living
systems. Since his seminal description there has been only
slow progress with such applications, given the difficulties
with the nonequilibrium nature of biological systems and their
complexity. The validity of physical descriptions of this nature
requires that the physical quantities being proposed have a
direct and verifiable correspondence to the system(s) being
described. For the systems known to exhibit Taylor’s law, we
found it difficult (if not impossible) to establish a biological
correspondence with the postulated free energy and external
physical field. To the best of our knowledge, within ecological
systems, there has been no demonstration of an external field
that relates to the aggregation of animals and plants.

With regard to the clustering of gene structures and single
nucleotide polymorphisms (SNPs) that manifest Taylor’s law,
there exists an experimental and theoretical basis to explain the
segregation of polymorphisms at the level of the cistron [27],
and there exists evidence for evolutionary rearrangements,
duplications, and deletions of protochromosomal segments
that presumably now comprise present day chromosomes
[28]. However, it is not clear how the statistical mechanical
mechanism proposed by Fronczak and Fronczak would apply
to the clustering of SNPs and gene structures that have evolved
over many eons within different organisms.

For the heterogeneity of regional organ blood flow, which
also obeys Taylor’s law, there exists data to support gamma-
distributed blood flow at the level of capillaries [29], and data
to show how such flow at the microscopic level could relate to
macroscopic heterogeneities [6]. However, it is not clear how
the postulated thermodynamic parameters could correspond to
measurable biological variables.

Similarly, the placement of houses over the Tonami Plain
in Japan has been shown to obey Taylor’s law [3]. It is
not clear here, either, what the postulated external field μ̃

would correspond to or how the free energy F (μ̃) would be
assessed. Fronczak and Fronczak, in the Appendix of their
paper, acknowledged a lack of understanding of the meaning
of their external field parameter μ̃, yet they went on to
speculate that 1/μ̃ be considered analogous to temperature
in thermodynamics [10]. The question we have then is: What
would be the physical nature of this temperature analogue
that could act over large geographic regions to affect the
clustering of plants and animals, that could act across species
barriers and over millions of years of evolution to affect the
clustering of chromosomal structures, that could act upon
different germlines separated by expanses of geography and
over hundreds of thousands of years to affect SNP maps,
that could act within organs to affect regional blood flow

heterogeneity, and that could act over an entire coastal plain
to affect where homes are built?

In addition, we found the constraints on the exponent p
implied by the Fronczak formulas for 〈N〉 [their Eq. (11)]
and the related free energy F (μ̃) [their Eq. (12)] of interest.
Do these constraints imply that values of the exponent p < 1
do not occur and that values of p > 2 could be expected in
ecological systems? A comprehensive review of ecological
data has shown that, within the limits of measurement error, the
exponent p ranged within 1 < p < 2 [25]. In addition, several
other biological processes have appeared similarly constrained
[2–8]. Fronczak and Fronczak’s paper did not appear to provide
any explanation for such empirical constraints, although we
will provide one below.

III. TWEEDIE EXPONENTIAL DISPERSION MODELS

To further investigate this issue we used Fronczak and
Fronczak’s equations (11),(12), and (B9) [10] to derive the
cumulant generating function (CGF) K(s) corresponding to
each of three different cases defined by the exponent p

K(s) =

⎧⎪⎨
⎪⎩

(Xe−aμ̃/a)(eas − 1) for p = 1,

[(p−1)aμ̃+X]α

a(2−p)

{(
1 − s(p−1)a

(p−1)aμ̃+X

)α − 1
}

for p �= 1,2,

−1
a

log
(
1 − as

aμ̃+X

)
for p = 2.

(3)

Here s is the generating function variable, μ̃ describes the
external field, X is a constant, and α = (p − 2)/(p − 1). The
first case from Eq. (1) (p = 1) describes a Poisson distribution,
the second (with1 < p < 2) a compound Poisson-gamma
distribution, and the third (p = 2) a gamma distribution. We
will discuss these CGFs in more detail below, but first it
would be useful to review another application of the maximum
entropy principle.

Consider the derivation of the Maxwell-Boltzmann distri-
bution: In the context of physical laws one can maximize
Boltzmann’s H function, or entropy, with the constraint that the
system’s kinetic energy should be proportional to the absolute
temperature, to provide the required result [30]. Alternatively,
one might consider an ideal gas as a statistical system, in which
a particle’s velocity is derived from the momentum transfer
from n collisions with other particles. A velocity distribution
thus results from the convolution of n momentum exchange
distributions. Provided that the momentum distributions are
statistically independent and they have finite means and vari-
ances, the central limit theorem (CLT) would imply a Gaussian
distribution for large n, yielding the Maxwell-Boltzmann
distribution [30]. This is an equivalent derivation, grounded in
the abstraction of mathematics rather than physical principle.
In the context of the Maxwell-Boltzmann distribution both
derivations are equally valid, yet the CLT has an applicability
that goes beyond the ad hoc physical model.

Wigner recognized “the sovereign role of mathemat-
ics” in physical theory and the richness of insight that
could be so derived [31]. We propose an alternative
explanation for Taylor’s law, based on the mathemati-
cal theory of errors and exponential dispersion models.
These models were developed to analyze error distributions
arising from generalized linear models [32]. Consider the class
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of exponential dispersion models that are invariant under scale
transformation. Consequent to this requirement, this class is
characterized by Taylor’s law 〈N2〉 − 〈N〉2 = a〈N〉p [32].
These particular models have come to be known as the Tweedie
exponential dispersion models, being named after the man who
first described them in 1984 [33].

There are several different Tweedie models, each de-
termined by the values expressed by the exponent p: For
p < 0 we have the extreme stable distributions; for p = 0,
the Gaussian distribution; p = 1, the Poisson distribution;
1 < p < 2, the compound Poisson-gamma (PG) distribution;
p = 2, the gamma distribution; 2 < p < 3, the positive stable
distributions; p = 3, the inverse Gaussian distribution; p > 3,
the positive stable distributions; and p = ∞, the extreme stable
distributions. For the range 0 < p < 1 no Tweedie model
exists.

For comparison to Eq. (3) we provide here the CGFs for
the additive forms of the Tweedie models [32]

K∗
p(s; θ,λ) =

⎧⎪⎨
⎪⎩

λeθ (es − 1) for p = 1,

λκp(θ )
{(

1 + s
θ

)α − 1
}

for p �= 1,2,

−λ log
(
1 + s

θ

)
for p = 2.

(4)

Here λ is the index parameter, θ the canonical parameter,
and the cumulant function κp(θ ) is given by [32]

κp(θ ) =

⎧⎪⎨
⎪⎩

eθ for p = 1,

α−1
α

(
θ

α−1

)α
for p �= 1,2,

− log(−θ ) for p = 2.

(5)

Indeed, a comparison of Eqs. (3) and (4) reveals similarities
in form. If we choose the index parameter such that

λ =

⎧⎪⎨
⎪⎩

X for p = 1,

aα−1 for p �= 1,2,

1/a for p = 2,

(6)

and the canonical parameter

θ =

⎧⎪⎨
⎪⎩

−μ̃ for p = 1,

−μ̃ + (α − 1)X/a for p �= 1,2,

−μ̃ − X/a for p = 2,

(7)

then the Fronczak CGFs [Eq. (3)] and the Tweedie CGFs
[Eq. (4)] are seen to be equivalent, and the problematic external
field μ̃ can be directly related to the canonical parameter θ .

The Tweedie PG distribution, for the case 1 < p < 2,
corresponds to the majority of biological observations of
Taylor’s law. Its probability density function is not known
in closed form but can be expressed as [32]

p∗(z; θ,λ,α) = c∗
p(z; λ) exp[θz − λκp(θ )], (8)

where

c∗
p (z; λ) =

{
1
z

∑∞
n=1 λnκn

p(−1/z)
/
�(−αn)n!

1
for z > 0,

for z = 0.

(9)

These Tweedie distributions are specified by three inde-
pendent adjustable parameters: α, λ, and θ . The parameter α

relates to Taylor’s power law exponent p, α = (p − 2)/(p −
1); λ and θ are analogous to the shape and scale parameters
conventionally used with statistical distributions. One can fit
the Tweedie PG cumulative distribution function (CDF) to an
empirical CDF, derived from data that exhibit Taylor’s law, to
test the model. One may also compare the value for p derived
from the CDF with that estimated from Taylor’s law to further
test the Tweedie distribution. If the comparison of the CDFs
is discordant, or if the values for p are significantly different,
then the hypothesis that the PG distribution can be used to
describe Taylor’s law would be falsified.

IV. TWEEDIE CONVERGENCE THEOREM

The CLT provides insight into the origin of Maxwell-
Boltzmann statistics; the Tweedie models are founded on a
related convergence property that provides insight into the
origin of Taylor’s law and fluctuation scaling. The Tweedie
convergence theorem [34] shows that for exponential disper-
sion models ED(μ,σ 2), with mean μ and variance σ 2V (μ), and
unit variance functions that approximate the form V (μ) ∝ μp

as either μ → 0 or μ → ∞ then c−1ED(cμ,σ 2c2−p) will
converge to the form of a Tweedie model as the constant c → 0
or c → ∞. Since the variance functions for many probability
distributions will approximate V (μ) ∝ μp for very small or
very large values of μ, the variance-to-mean power function
will appear as a focus of convergence for a wide variety of
distributions. This convergence theorem appears to relate to
stable generalizations of the CLT [32], and for these reasons
many types of non-Gaussian data will manifest with Taylor’s
law; it is thus more general than the alternative convergence
properties that have been proposed [9]. Summarized here,
the Tweedie convergence theorem tells us that any statistical
model or simulation designed to produce Taylor’s law must,
on mathematical grounds alone, converge to the form of one
of the Tweedie models.

V. EVIDENCE TO SUPPORT THE TWEEDIE
POISSON-GAMMA MODEL FOR TAYLOR’S LAW

At this point it could be surmised that we have two different
hypotheses to explain Taylor’s law that are both based upon
the same CGFs [Eq. (4)]. Like with the Maxwell-Boltzmann
distribution one might surmise that both hypotheses appear
equally justifiable. However, we have not yet reviewed in detail
systems where the Tweedie hypothesis has been tested.

In cancer biology the experimental metastasis assay has
been extensively used to assess the metastatic potential of
tumor cell lines. This assay involves the intravenous injection
of suspensions of isolated tumor cells into groups of age-
matched syngeneic mice with the subsequent enumeration
of the numbers of lung metastases from each animal. When
data from identically treated mice are compared, the numbers
of lung metastases per mouse varies more than would be
expected on the basis of a Poisson distribution. If different
cancer cell clones, each with distinct metastatic potentials, are
evaluated this way one can plot the variance of the numbers of
metastases per animal for each clone against the corresponding
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mean to find Taylor’s law [35]. Taylor’s law can also be
demonstrated with human metastases; these patterns appear to
parallel physiological heterogeneities in regional organ blood
flow [36,37]. Indeed, physiologists have long recognized an
empirical power function relationship between the relative
dispersion of blood flow measured over tissue blocks of
different sizes [38]. This blood flow relationship exactly
corresponds to Taylor’s law; it can be attributed to a gamma-
distributed capillary blood flow through Poisson-distributed
restrictive sites in the microcirculation, consistent with a PG
distribution [39]. If the number of organ metastases represents
a random function directly proportional to regional blood flow,
Taylor’s law would then manifest through the numbers of
hematogenous metastasis [40]. Tests of the PG distribution for
metastases can be conducted by comparing the empirical and
theoretical CDFs for the numbers of experimental metastases
sustained within by groups of syngeneic mice that that been
administered tumor cells from different clones, as well as by
comparing the estimates of p derived from Taylor’s law and
from the CDF [40].

The PG model has been tested with field data from the
spatial distribution of the Colorado potato beetle [41]. In this
case Taylor’s law was evident and the raw data could be used
to construct an empirical CDF to compare with the PG CDF.
This theoretical CDF agreed well with the data, moreover, the
value of Taylor’s exponent p, determined from the CDF, agreed
with Taylor’s law.

The SNP Consortium and the public Human Genome
Project have compiled a dense map of human genome sequence
variation over the 22 human autosomes as well as the X and
Y chromosomes [42]. The density of SNPs can be assessed as
equal-sized nonoverlapping enumerative bins that span each
chromosome. If these assessments are repeated for sets of
bins of different sizes, a range of values for the mean SNP
density and the corresponding variances can be obtained. The
variance-to-mean plot obtained closely agreed with Taylor’s
law; plots of the empirical and Tweedie PG CDFs agreed
well for each chromosome; and the values of p derived from
the CDFs similarly corresponded to those from the plots of
Taylor’s law [7].

A further example of Taylor’s law with DNA sequence
variations is provided here from the SNP map of the domestic
horse. Figure 1(a) details the variations in the density of SNPs
along chromosome 1. Figure 1(b) provides the fit of Taylor’s
law, determined by the method of expanding enumerative bins
p = 1.58. A close agreement was found between the empirical
and PG CDFs [Fig. 1(c)]. Furthermore, the PG CDF yielded
p = 1.57, further validating the Tweedie hypothesis.

The coalescent model of population genetics describes the
history of sequence variations derived from gene genealogies
of homologous sampled sequences [43]. Watterson provided
a theoretical basis for this model where he showed that the
number of segregating sites within corresponding cistrons
sampled from a population should approximate a geometric
distribution [27]. If within each enumerative bin there was
a Poisson-distributed number of genomic blocks, themselves
resulting from recombination and containing, on average,
a gamma-distributed number of polymorphic loci, the PG
distribution would seem potentially applicable to these data.

FIG. 1. (a) SNP density along domestic horse chromosome 1.
The Horse Genome Project provided a map of 86033 SNPs
from chromosome 1 (EquCab2, released September 2007,
http://www.broadinstitute.org/mammals/horse). Chromosome 1 was
divided into nonoverlapping enumerative bins 200 kb in length
and the number of SNPs contained within each bin were counted.
(b) The variance function for the density of SNPs. The enumeration
of SNPs was repeated for covers of equal-sized bins ranging from
200 kb to 2 Mb in size. The variance and mean number of SNPs
per bin were evaluated for each cover and plotted. The log-log plot
revealed a straight-line relationship indicative of Taylor’s law with
exponentp = 1.58 and constant a = 1.92. (c) Probability-probability
plot. A frequency histogram was constructed from the 200 kb bin
data. A theoretical Tweedie PG CDF was fitted to these data yielding
the parameters θ = −0.067, λ = 0.128, α = −0.764, and p = 1.57.
The empirical CDF was plotted versus the theoretical CDF to indicate
a straight-line relationship and thus agreement of the theoretical
model with observation.

The Human Genome Project has provided us with detailed
genetic maps of all human chromosomes. Similar to the
approach taken with SNP maps one may assess the number
of gene structures contained within equal-sized adjacent
enumerative bins that span a given chromosome. This analysis
has been done for human chromosomes 1, 2, and 7 [8,25,44]. In
all cases the chromosomal distribution of gene structures, when
assessed by the method of expanding bins, yielded Taylor’s law
and obeyed the PG distribution. In addition, the values derived
for Taylor’s exponent from the fit of Taylor’s law and the PG
CDF agreed [8,25,44].

A further example of the clustering of gene structures
is provided here. Figure 2(a) documents the fluctuations in
density of gene structures along human chromosome 8. A
close agreement of Taylor’s law was found with these data
using the method of expanding bins p = 1.59 [Fig. 2(b)]. In
addition, the empirical and PG CDFs fitted closely and yielded
p = 1.59.

Chromosomal structure is thought to reflect the accumu-
lation of multiple rearrangements, deletions, insertions, and
duplications that have occurred through evolution [45]. An
evolutionary expansion and modification of chromosomal
segments has been proposed to further explain long-range
correlations evident within genomic sequences [46]. Within
the enumerative bins one could expect a Poisson-distributed
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FIG. 2. (a) Gene density along human chromosome 8. The
National Center for Biotechnology Information (NCBI) provided
a map of 1317 gene structures from chromosome 8 (Build 37.2
http://www.ncbi.nlm.nih.gov/mapview/). Chromosome 8 was divided
into nonoverlapping enumerative bins 200 kb in length and the
number of gene structures contained within each bin were counted.
(b) The variance function for the density of genes. The enumeration
of gene structures was repeated for covers of equal-sized bins ranging
from 200 kb to 2 Mb in size. The variance and mean number of gene
structures per bin were evaluated for each cover and plotted. The
log-log plot revealed a straight-line relationship indicative of Taylor’s
law with exponentp = 1.59 and constant a = 0.84. (c) Probability-
probability plot. A frequency histogram was constructed from the
200 kb bin data. A theoretical Tweedie PG CDF was fitted
to these data yielding the parameters θ = −1.428,λ = 1.354,α =
−0.688 andp = 1.59. The empirical CDF was plotted versus the
theoretical CDF to indicate a straight-line relationship and thus
agreement of the theoretical model with observation.

number of chromosomal segments. The mean number of genes
per chromosomal segment would be expected to obey a gamma
distribution, consequent to the age distribution of different
segments and a presumed constant rate of appearance of new
genes. In this context a PG distribution would plausibly reflect
the local variations in gene density [44].

Genetic rearrangement, deletion, insertion, and duplication
are well understood processes for which there is no evidence
to indicate the involvement of external physical fields. Granted
these genetic processes are chemically driven, but it remains
unclear how a thermodynamic process would otherwise have
a causative role in the aggregation of gene structures.

In all of the examples so far presented these tests would
also seem to support the Fronczak hypothesis (ignoring
the lack of a direct and verifiable correspondence of the
Fronczak hypothesis to these biological systems) since it too
yields the Tweedie distributions. However, there remains a
domain of examples that are inconsistent with Fronczak’s
thermodynamic hypothesis that shall be discussed next.

VI. EXAMPLE OF TAYLOR’S LAW FROM
NUMBER THEORY

One further example of Taylor’s law and test of the Tweedie
hypothesis will be provided from number theory. Since this

FIG. 3. (a) The absolute value |M(n)| of the Mertens function
for the first 50,000 integers. (b) The variance function for the
Mertens function. The sequence |M(n)| was used to estimate the
variance function and plotted on logarithmic axes. Linear regression
yielded the power function with exponent p = 1.95 (95% confidence
interval by bootstrap method 1.936–1.970), constant a = 0.066, and
correlation coefficient squared of 1.00. (c) Probability-probability
plot. A frequency histogram was constructed from the values |M(n)|.
The empirical CDF function was fitted to a PG CDF,θ = −0.072,λ =
0.492,α = −0.302, and p = 1.77. The probability-probability plot
revealed agreement between the theoretical and empirical models.

example is purely numerical, a thermodynamic explanation
would be inappropriate. We will examine the summatory
Mertens function that is defined by the equation

M(n) =
n∑

i=1

μ(i), (10)

expressed in terms of the Möbius function on the integer
values n

μ(n)=
⎧⎨
⎩

1
0

(−1)k

if n = 1,

if n has one or more repeated prime factors,
if n is a product of k distinct primes.

(11)

The Mertens function exhibits an aperiodic behavior.
Figure 3(a) shows how its absolute value |M(n)| fluctuates
for the first 50,000 integers. By the method of expanding
enumerative bins the variance function taken from this data
segment yielded Taylor’s law with p = 1.95 [Fig. 3(b)]. A PG
CDF was fitted to these data and was found in close agreement
with the empirical CDF [Fig. 3(c)]. The PG CDF yielded
a value of p = 1.77, in acceptable agreement with Taylor’s
exponent. Although the Mertens function was defined on the
integers, the sampling of 50,000 values appeared sufficiently
dense that the use of the PG distribution was appropriate. In
this application, 1072 of the first 50,000 values of |M(n)| were
exactly zero, in agreement with the nonzero probability mass
that the PG distribution has at zero.

This last example of Taylor’s law was derived from a purely
numerical process; other examples of Taylor’s law can be
demonstrated from number theory that are consistent with the
Tweedie PG model.
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VII. DISCUSSION

The explanation for Taylor’s law presented here was
justified by the transformational and convergence proper-
ties of error distributions. It was not necessary to invoke
the second law of thermodynamics, for which large-scale
fluctuations might be considered improbable. And since
the Tweedie convergence theorem obviated the need to
postulate a thermodynamic mechanism, the problematic issue
of the nature of the putative external field in the various
biological and numerical systems where Taylor’s law has been
observed was avoided. An explanation for Taylor’s law and
fluctuation scaling based on the Tweedie convergence theorem
would thus appear more general and parsimonious than one
that relies on the existence of external fields or physical
processes, and it would be applicable to purely numerical
processes. In addition, the restriction 1 < p < 2, apparent to
many ecological and biological examples of Taylor’s law, can
be explained in mechanistic terms through the application of
the Tweedie compound Poisson distribution [6–8,11,44,47].

An explanation for Taylor’s law and fluctuation scaling
based on the Tweedie hypothesis is premised on a mathe-
matically proven convergence theorem; further tests of this
hypothesis come from the many biological and numerical
observations that demonstrate Taylor’s law through the agree-
ment derived from the PG CDF with both the empirical CDFs
and the Taylor’s law fits. In contrast, the Fronczak hypothesis
is based on thermodynamic theory; a specific confirmation
of it would mandate the demonstration of the putative ther-
modynamic mechanism(s) in each manifestation of Taylor’s
law. Such demonstrations for the Fronczak hypothesis become
particularly problematic given the range of manifestations of
Taylor’s law. It would seem unlikely that the same external
physical field, temperature analogue, or other physical quantity
proposed by Fronczak and Fronczak could be responsible
for all such manifestations (if any). In contrast, proof of the
Tweedie convergence theorem comes from mathematics that
shows how Taylor’s law can manifest through convergence
effects on non-Gaussian processes.

If the physical quantities upon which the Fronczak hypoth-
esis is premised (the entropy, the free energy, the external field
μ̃, and the temperature analogue 1/μ̃) cannot be measured
or demonstrated, then the Fronczak hypothesis cannot be
tested. If it is not possible to falsify (and thus to test)
the Fronczak hypothesis then, by Popper’s criteria [48],
this hypothesis should not be considered scientific. Popper’s

criteria are equally applicable to the Tweedie hypothesis: If one
were to demonstrate Taylor’s law from data that did not
converge toward one of the Tweedie distributions this would
falsify the Tweedie hypothesis. Or, if the fitted values for p
derived from Taylor’s law and the PG CDF were significantly
discordant, the Tweedie hypothesis would be falsified.

Demonstrations of Taylor’s law from purely numerical
systems constitute counterexamples where the Fronczak hy-
pothesis is inapplicable. Physical mechanisms do not influence
number theory, although number theory can be applied to
help understand physics. Eventually, perhaps, physical or even
biological examples might be found where the thermodynamic
mechanism postulated by Fronczak and Fronczak can be
demonstrated. Nonetheless, as with the CLT in Maxwell-
Boltzmann statistics, the Tweedie convergence theorem would
make the Tweedie hypothesis more general in scope than
Fronczak and Fronczak’s ad hoc hypothesis.

We find it nonetheless remarkable that the thermodynamic
approach taken by Fronczak and Fronczak should yield
CGFs identical in form to the mathematically based Tweedie
models. Possibly, there might be a means to reconcile these
two approaches, without the need to postulate the external
physical field μ̃. In the absence of observable evidence for the
postulated external field and other physical quantities, as well
as specific mechanistic explanations for how their thermody-
namic hypothesis would apply to the diverse manifestations of
Taylor’s law, we would suggest that Fronczak and Fronczak
have provided a maximum entropy derivation for the Tweedie
exponential dispersion models. Shannon has demonstrated
how this maximum entropy principle can be applied to derive
probability distributions for mathematical processes [49]; the
challenge would be to frame the Fronczak derivation in this
context.

Wigner recognized the profound insights that mathematics
can provide to physics [31]. We believe that, the Tweedie
convergence theorem provides a mathematically demonstra-
ble, and generally applicable, explanation for the genesis of
Taylor’s law and fluctuation scaling, evident within non-
Gaussian biological, physical, and numerical systems. Poten-
tially the Tweedie convergence theorem could provide further
insight into other aspects of statistical physics.

ACKNOWLEDGMENTS

The authors acknowledge support from Patricia Rinaldo
and the Danish Natural Science Research Council.

[1] L. R. Taylor, Nature (London) 189, 732 (1961).
[2] W. S. Kendal and P. Frost, J. Natl. Cancer Inst. 79, 1113 (1987).
[3] W. S. Kendal, Ecol. Model. 80, 293 (1995).
[4] M. Keeling and B. Grenfell, Philos. Trans. R. Soc. London Ser.

B Biol. Sci. 354, 769 (1999).
[5] P. Philippe, J. Theor. Biol. 199, 371 (1999).
[6] W. S. Kendal, Proc. Nat. Acad. Sci. USA 98, 837 (2001).
[7] W. S. Kendal, Mol. Biol. Evol. 20, 579 (2003).
[8] W. S. Kendal, BMC Evol. Biol. 4, 3 (2004).

[9] Z. Eisler, I. Bartos, and J. Kertesz, Adv. Phys. 57, 89 (2008).
[10] A. Fronczak and P. Fronczak, Phys. Rev. E 81, 066112 (2010).
[11] W. S. Kendal, Ecol. Model. 151, 261 (2002).
[12] L. R. Taylor and R. A. Taylor, Nature (London) 265, 415 (1977).
[13] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J.

Evans, Phys. Rev. Lett. 89, 050601 (2002).
[14] L. Taylor and R. Taylor, Nature (London) 265, 415 (1977).
[15] I. Hanski, Oikos 34, 293 (1980).
[16] R. Anderson et al., Nature (London) 296, 245 (1982).

066115-6

http://dx.doi.org/10.1038/189732a0
http://dx.doi.org/10.1016/0304-3800(94)00053-K
http://dx.doi.org/10.1098/rstb.1999.0429
http://dx.doi.org/10.1098/rstb.1999.0429
http://dx.doi.org/10.1006/jtbi.1999.0964
http://dx.doi.org/10.1073/pnas.021347898
http://dx.doi.org/10.1093/molbev/msg057
http://dx.doi.org/10.1186/1471-2148-4-3
http://dx.doi.org/10.1080/00018730801893043
http://dx.doi.org/10.1103/PhysRevE.81.066112
http://dx.doi.org/10.1038/265415a0
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1038/265415a0
http://dx.doi.org/10.2307/3544289
http://dx.doi.org/10.1038/296245a0


TAYLOR’s POWER LAW AND FLUCTUATION SCALING . . . PHYSICAL REVIEW E 83, 066115 (2011)

[17] L. R. Taylor et al., Nature (London) 303, 801 (1983).
[18] J. N. Perry and L. R. Taylor, Biometrics 44, 881 (1988).
[19] I. Hanski and I. P. Woiwod, Oikos 67, 29 (1993).
[20] M. R. Binns, Oikos 47, 315 (1986).
[21] A. W. Kemp, Biometrics 43, 693 (1987).
[22] J. N. Perry, Proc. R. Soc. London Ser. B Biol. Sci. 257, 221

(1994).
[23] M. Keeling, Theor. J. Pop. Biol. 58, 21 (2000).
[24] A. M. Kilpatrick and A. R. Ives, Nature (London) 422, 65 (2003).
[25] W. S. Kendal, Ecol. Compl. 1, 193 (2004).
[26] E. Schrödinger, What is Life? (Cambridge University Press,

Cambridge, England, 1967).
[27] G. A. Watterson, Theor. Pop. Biol. 7, 256 (1975).
[28] G. Blanc et al., Plant Cell 12, 1093 (2000).
[29] C. R. Honig, M. L. Feldstein, and J. L. Frierson, Am. J. Physiol.

Heart. Circ. Physiol. 233, H122 (1977).
[30] S. Thurner and R. Hanel, e-print arXiv:0804.3477
[31] E. P. Wigner, Commun. Pure Appl. Math. 13, 1 (1960).
[32] B. Jørgensen, The Theory of Exponential Dispersion Models

(Chapman & Hall, London, 1997).
[33] M. C. K. Tweedie, in Statistics: Applications and New Direc-

tions, Proceedings of the Indian Statistical Institute Golden
Jubilee International Conference, Indian Statistical Institute,
edited by J.K. Ghosh and J. Roy, (Indian Statistical Institute,
Calcutta, India, 1984), pp. 579–604.

[34] B. Jørgensen, J. R. Martı́nez, and M. Tsao, Scand. J. Statist. 213,
223 (1994).

[35] W. S. Kendal and P. Frost, J. Natl. Cancer Inst. 79, 1113
(1987).

[36] W. S. Kendal, Invasion and Metastasis 18, 285 (1999).
[37] W. S. Kendal, J. Surg. Oncol. 74, 116 (2000).
[38] J. B. Bassingthwaighte, R. B. King, and S. A. Roger, Circ. Res.

65, 578 (1989).
[39] W. S. Kendal, Proc. Natl. Acad. Sci. USA 98, 837

(2001).
[40] W. S. Kendal, J. Theor. Biol. 217, 203 (2002).
[41] W. S. Kendal, Ecol. Model 151, 261 (2002).
[42] The International SNP Map Working Group, Nature (London)

409, 928 (2001).
[43] J. F. C. Kingman, Stochast. Proc. Appl. 13, 235 (1982).
[44] W. S. Kendal, J. Theor. Biol. 245, 329 (2007).
[45] E. E. Eichler and D. Sankoff, Science 301, 793 (2003).
[46] W. Li and D. Holste, Phys. Rev. E. Stat. Nonlin. Soft. Matter.

Phys. 71, (2005).
[47] W. S. Kendal, J. Theor. Biol. 217, 203 (2002).
[48] K. Popper, The Logic of Scientific Discovery (Harper Collins,

New York, 1965).
[49] C. E. Shannon, in The Mathematical Theory of Communication,

edited by C. E. Shannon and W. Weaver, (University of Illinois
Press, Urbana, IL, 1949), p. 1.

066115-7

http://dx.doi.org/10.1038/303801a0
http://dx.doi.org/10.2307/2531600
http://dx.doi.org/10.2307/3545092
http://dx.doi.org/10.2307/3565443
http://dx.doi.org/10.2307/2532005
http://dx.doi.org/10.1098/rspb.1994.0118
http://dx.doi.org/10.1098/rspb.1994.0118
http://dx.doi.org/10.1006/tpbi.2000.1475
http://dx.doi.org/10.1038/nature01471
http://dx.doi.org/10.1016/j.ecocom.2004.05.001
http://dx.doi.org/10.1016/0040-5809(75)90020-9
http://dx.doi.org/10.1105/tpc.12.7.1093
http://arXiv.org/abs/0804.3477
http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.1159/000024521
http://dx.doi.org/10.1002/1096-9098(200006)74:2%3C116::AID-JSO7%3E3.0.CO;2-
http://dx.doi.org/10.1073/pnas.021347898
http://dx.doi.org/10.1073/pnas.021347898
http://dx.doi.org/10.1006/jtbi.2002.3021
http://dx.doi.org/10.1038/35057149
http://dx.doi.org/10.1038/35057149
http://dx.doi.org/10.1016/0304-4149(82)90011-4
http://dx.doi.org/10.1016/j.jtbi.2006.10.010
http://dx.doi.org/10.1126/science.1086132
http://dx.doi.org/10.1006/jtbi.2002.3021

