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Overlapping community detection using Bayesian non-negative matrix factorization
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Identifying overlapping communities in networks is a challenging task. In this work we present a probabilistic
approach to community detection that utilizes a Bayesian non-negative matrix factorization model to extract
overlapping modules from a network. The scheme has the advantage of soft-partitioning solutions, assignment
of node participation scores to modules, and an intuitive foundation. We present the performance of the method
against a variety of benchmark problems and compare and contrast it to several other algorithms for community
detection.
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I. INTRODUCTION

Community structure, or modular organization, is a signif-
icant property of real-world networks as it is often considered
to account for the functional characteristics of the system
under study [1–4]. Although the notion of “community”
appears intuitive [2,3] (for example, people form cliques in
social networks and web pages of similar content have links
to one another) there is no disciplined, context-independent
definition of what communities are [2,4]; we adopt here the
loose definition that these modules are subgraphs with more
links connecting the nodes inside than outside them [2,3,5].
The task of identifying such subgraphs in a given network
can be challenging [1,2], both in terms of recognition and
computational feasibility.

One of the key issues in community detection is describ-
ing the overlapping nature of network modules. Traditional
“hard-partitioning” algorithms [6–9] may yield excellent
identification results, but omit the important characteristic of
real-world networks where a node may participate in more
than one group (for example, individuals belong to various
social circles and scientists may participate in more than one
research group). A popular approach to tackle this problem is
the clique percolation method (CPM) by Palla et al. [10],
which is based on the belief that communities are unions
of adjacent k cliques (complete graphs with k nodes) and
that intercommunity regions of the network do not possess
such strong link density. Because communities are defined as
the largest network component containing adjacent k cliques
(cliques sharing k − 1 nodes), overlaps arise naturally between
modules. Performance may be compromised for networks with
weak clique presence, because many nodes are left out, or for
networks with very high link density, because we reach the triv-
ial solution of describing the network as a single community.

Other approaches include the algorithm of Lancichinetti
et al. [11], which seeks a local maximum of the community
“fitness” function (based on internal link density) by modi-
fying nodes’ community “appropriateness” scores through a
series of inclusion-exclusion moves. The work of Evans and

*ioannis.psorakis@eng.ox.ac.uk

Lambiotte [12] detects communities of links—in contrast to
node communities, which occupy the vast body of the literature
[2,3]—after losslessly transforming the adjacency matrix to
a line graph. By assigning links, rather than nodes, among
communities, the method allows a node to participate naturally
in more than one group, as determined by the labels assigned
to its adjacent links. The advantages of this approach have also
been presented by Ahn et al. in [13]. Finally, Nepusz et al. [14],
propose that communities should comprise “similar” nodes,
assuming that a distance metric between nodes is defined and
that similarity is inversely related to distance. When a partition
matrix, representing a reasonable community partition, is
multiplied by itself it would then be expected to approximate
the similarity matrix; this leads to a nonlinear constrained
optimization problem. The number of communities of the
proposed incidence matrix is selected by performing multiple
runs and selecting the one with the highest fitness score based
on a Newman modularitylike function. Further discussion
on similar methods, along with a comprehensive review of
community detection algorithms in general, is presented in a
survey by Fortunato [2].

In this work we propose a probabilistic approach to
community detection based on computationally efficient
Bayesian non-negative matrix factorization (NMF) [15]. The
advantages of this methodology are (i) overlapping or soft-
partitioning solutions, where communities are allowed to share
members; (ii) soft-membership distributions, which quantify
“how strongly” each individual participates in each group;
(iii) excellent module identification capabilities; and (iv) the
method does not suffer from the drawbacks of modularity opti-
mization methods, such as the resolution limit. In the following
section we present the theoretical foundations of our approach
along with an illustrative example to provide intuition behind
the method. Following the model formulation section, we
test our algorithm on a variety of artificial and real-world
benchmark problems and present our experimental results.

II. MODEL FORMULATION

A. Generative model

We consider the generative graphical model of Fig. 1.
The observed variable vij denotes the non-negative count
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FIG. 1. (Color online) Graphical model showing the generation of
count processes V from the latent structure W and H, the components
of which have scale hyperparameters βk . The hyperhyperparameters
a, b are fixed.

of interactions between two individuals i,j in a weighted
undirected network with adjacency matrix V ∈ RN×N

+ . In
the community detection context, we assume that there are
a number K of “hidden” classes of nodes in the network
that affect vij . Thus we can define allocations of nodes to
communities as latent (unobserved) variables that allow us to
explain the increased interaction density in certain regions of
the network: the more two individuals interact the more likely
they are to belong to the same communities, and vice versa.

We assume that the pairwise interactions described in
V are influenced by an unobserved expectation network V̂,
where each v̂ij denotes the expected number of interactions
(or expected link weight) that take place between i and j .
The expectation network is composed of two non-negative
matrices W ∈ RN×K

+ and H ∈ RK×N
+ so that V̂ = WH. We

hence model each interaction vij as drawn from a Poisson
distribution with rate v̂ij = ∑K

k=1 wikhkj . The inner rank
K denotes the unknown number of communities and each
element k ∈ {1, . . . ,K} in row i of W and column j of H
represents the contribution of a single latent community to
v̂ij . In other words, the expected number of times v̂ij that two
individuals i,j interact is a result of their mutual participation
in the same communities.

In the typical community-detection setting, the value of K ,
which we call complexity or model order, is initially unknown.
In previous work [16,17], the issue of inferring the appropriate
number of communities has been addressed by performing
multiple runs for various K and selecting one that yields
the highest Newman modularity Q [5]. In our setting, the
appropriate model order arises naturally from a single run,
by placing shrinkage or automatic relevance determination
priors [18] with scale hyperparameters β = {βk} on the latent
variables wik,hkj , as presented in [15]. By starting with a
large K (say N , which is the maximum possible number
of communities), the effect of these priors is to moderate
complexity by “shrinking” close to zero irrelevant columns
of W and rows of H that do not contribute to explaining
the observed interactions V. This is achieved by placing a
distribution over the latent variables wik,hkj whose expectation
approaches zero unless nonzero values are required by the data.

This approach avoids the computational load of multiple runs
and is free of the resolution bias problems [19] of modularity.

Based on the graphical model of Fig. 1, where the distri-
bution of βk is parametrized by fixed hyperhyperparameters a

and b, we express the joint distribution over all variables as

p(V,W,H,β) = p(V|W,H)p(W|β)p(H|β)p(β), (1)

hence the posterior over model parameters given the observa-
tions is

p(W,H,β|V) = p(V|W,H)p(W|β)p(H|β)p(β)

p(V)
. (2)

B. Posterior-based cost function

We aim to maximize the model posterior given the observa-
tions, or equivalently, to minimize the negative log posterior,
which may be regarded as an energy (or error) function U .
Noting that p(V) is a constant with respect to the inference
over the model’s free parameters, we hence define

U = − log p(V|W,H) − log p(W|β)

− log p(H|β) − log p(β), (3)

where the first term is the log likelihood of our data, derived
from the probability p(V|W,H) = p(V|V̂) of observing every
interaction vij given a Poisson rate v̂ij . Therefore we express
the negative log likelihood of a single observation vij as

− log p(v|v̂) = −v log v̂ + v̂ + log v!. (4)

Using the Stirling approximation to second order, namely

log v! ≈ v log v − v + 1
2 log(2πv), (5)

Eq. (4) can be written as

− log p(v|v̂) ≈ v log
(v

v̂

)
+ v̂ − v + 1

2
log(2πv), (6)

thus the full negative log likelihood for all the observed data is

− log p(V|V̂) = −
N∑

i=1

N∑
j=1

log p(vij |v̂ij )

�
N∑

i=1

N∑
j=1

(
vij log

vij

v̂ij

+ v̂ij − vij

+ 1

2
log(2πvij )

)
+ κ, (7)

where κ is a constant.
Following [15] and similar models for probabilistic Prin-

cipal Component Analysis [20] and Independent Component
Analysis [21–23], we place independent half normal priors
over the columns of W and rows of H with precision (inverse
variance) parameters β ∈ RK = [β1, . . . ,βK ]. The negative
log priors over W and H are then given by

− log p(W|β) = −
N∑

i=1

K∑
k=1

logHN
(
0,β−1

k

)

=
N∑

i=1

K∑
k=1

(
1

2
βkw

2
ik

)
− N

2
log βk + κ, (8)
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Algorithm: Community detection using NMF

Require: adjacency matrix V ∈ RN×N
+ , initial K0, fixed Gamma hyperparameters a, b.

Define: matrix operation X
Y as element-by-element division.

Define: matrix operation X · Y as element-by-element multiplication.
Define: B ∈ RK×K as a matrix with elements βk in the diagonal and zero elsewhere.

1: Auxiliary inputs W0,H0 from previous runs. If not present, initialize to random values.
2: for i = 1 to niter

3: H ←
(

H
WT1+BH

)
· [

WT
(

V
WH

)]
4: W ←

(
W

1HT+WB

)
· [(

V
WH

)
HT

]
5: βk ← N+a−1

1
2

(∑
i w2

ik
+∑

j h2
kj

)
+b

6: end for
7: K� ← number of nonzero columns of W or rows of H
8: W� ← W with zero columns removed
9: H� ← H with zero rows removed
10: return W� ∈ RN×K∗+ ,H� ∈ RK∗×N

+

− log p(H|β) = −
K∑

k=1

N∑
j=1

logHN
(
0,β−1

k

)

=
K∑

k=1

N∑
j=1

(
1

2
βkh

2
kj

)
− N

2
log βk + κ. (9)

Each βk controls the importance of community k in explaining
the observed interactions; large values of βk denote that column
k of W and row k of H have elements lying close to zero and
therefore represent irrelevant communities. By assuming the
βk are independent1 we place a standard Gamma distribution
over them with fixed hyperhyperparameters a,b [25]. The
negative log hyperpriors are thus

− log p(β) = −
K∑

k=1

logG(βk|a,b)

=
K∑

k=1

[βkb − (a − 1) log βk] + κ. (10)

The objective function U of Eq. (3) can be expressed as the
sum of Eqs. (7) and (10):

U =
∑

i

∑
j

[
vij log

(
vij

v̂ij

)
+ v̂ij

]

+ 1

2

∑
k

[(∑
i

βkw
2
ik

)
+

(∑
j

βkh
2
kj

)
− 2N log βk

]

+
∑

k

[βkbk − (ak − 1) log βk] + κ. (11)

1This corresponds to the belief that the existence of one community
is not dependent upon others. Clearly, there will be situations in which
this can be extended to allow for a full interdependency between
communities. We do not consider this here, however. Allowing
dependency is similar to the notion of structure priors discussed
in [24].

C. Parameter inference

To optimize Eq. (11) for W,V, and β we follow
Refs. [15,26–28] by adopting the fast fixed-point algorithm
presented in [15] that involves consecutive updates of W,H,

and β until a convergence measure has been satisfied (a
maximum number of iterations, or a tolerance on the cost
function). The pseudocode is presented in the algorithm
below; we discuss memory and computational efficiency in the
discussion section of this paper. The solution consists of W� ∈
RN×K�+ and H� ∈ RK�×N

+ for which V̂ = W�H� represents the
expectation network given our observation data V and prior
assumptions. The inner rank K� denotes the inferred number
of latent modules in the network.

In the case of undirected graphs, W� = HT
� (as V is

symmetric) and represents the N × K� incidence matrix of a
bipartite graph of N nodes and K� communities. Each element
w�

ik (or h�
ki) denotes the degree of participation of individual

i into community k while each normalized row of W� (or
column of H�) expresses a soft-membership distribution over
communities given a certain node. Therefore this bipartite
graph describes the overlapping mesoscopic structure of our
network, where nodes are allocated to multiple groups with
varying participation score.

The overall interaction matrix V is approximated by a sum
V̂ = ∑

k w�
·kh

�
k·, where w�

·k is the column and h�
k· row vector of

the community matrices W� and H�, respectively. Therefore
V̂ is a summation of K rank 1 matrices V̂(k) = w�

·kh
�
k· and

each V̂(k) denotes the expected number of pairwise interactions
in the context of community k. Thus if two nodes i,j have
nonzero participation rates w�

ik, h�
kj to community k, then the

average link weight for this dyad would also be nonzero due
to V̂(k)

ij = w�
ikh

�
kj .

Based on the above, our model assumes that the joint
membership of two nodes in the same community raises
the probability of a link existing between them. Therefore
our method performs best when modules are dense, with
the best-case scenario being that each community is a fully
connected subgraph.
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In the next section, we present an illustrative example of
this community extraction scheme, followed by experimental
results from various artificial and real-world networks.

III. APPLICATIONS

A. An illustrative example

Consider the small toy graph of Fig. 2 with N = 16
nodes and M = 25 edges of varying weights. We extract the
mesoscopic (community) structure of this network using NMF,
along with the popular extremal optimization (EO) [9], spectral
partitioning (SP) [29] and weighted clique percolation method
(wCPM) [30].

Although a trivial problem at first glance, each community
detection method we applied yielded different modules and
node allocations, as seen in Fig. 3. Hard-partitioning methods
such as EO and SP produce such inconsistencies mainly due to
the “broker” nature of nodes such as 6,9, or 10 that lie on high-
flow paths in the network, making them difficult to assign on
one module or the other [2]. Although this issue is addressed by
wCPM, which allows node membership to multiple modules,
it does not provide some measure of “participation strength”
or “degree of belief” in membership.

By applying NMF we extracted K� = 4 overlapping groups
as shown in Fig. 4. We can see that our method does not
force node allocations to a single group, but instead allows
the broker individuals described above to participate in more
than one community. This soft-partitioning solution allows us
to describe the different aspects of an individual’s sociality
as a collection of (possibly intersecting) sets of nodes, where
each set may play a different role or function in the whole
network [2].

Allocating nodes to multiple modules, as in Fig. 4, is
only one part of the solution. We also capture the degree
of participation of nodes in each community by using the
incidence matrix W� described in the previous section.
Figure 5(a) shows W� ∈ R16×4

+ where different colors (gray
shades) indicate various levels of participation of nodes in
communities. We can see that the matrix is not of a clear
block diagonal form, as an individual can have some form of
membership in multiple groups.

In our framework, community allocation is not a Boolean
decision but a belief; each node is assigned a membership
distributed over communities, as seen in Fig. 5(b). We can

FIG. 2. (Color online) An undirected weighted toy graph with
16 nodes. The three different line styles denote the differing strengths
of interaction within each pair of nodes.

FIG. 3. (Color online) Node allocations to communities for three
different community detection methodologies.

see that mediator nodes of high “betweenness,” such as i = 6,
have a more entropic distribution (similar to the concept of
“bridgeness” [14]) while for nodes such as i = 4 or i = 14 we
have much more confident allocations.

B. Benchmark graphs with community structure

Having soft-membership distributions not only allows us to
describe our confidence in assigning node i to community k,
but also to quantify the degree of “fuzziness” in the network.
In Fig. 5(b), nodes such as i = 6 that lie on community
boundaries have a membership distribution that is closer to
uniform. We hence expect our method to indicate networks
with little degree of modular organization. We apply the
NMF method to realizations of the very popular Newman-
Girvan (NG) random graph [31]. This benchmark tests the
module identification capabilities of a method against an
artificial graph of N = 128 nodes, observed solution of C = 4
communities (with n = 32 nodes each), average degree of

??

??

??

??

??

??

?

??

?? ??

??

???
??

??

??

???

???

???

???

???

???

???

? ?

?? ?

???

14

FIG. 4. (Color online) Our toy graph decomposed into K� = 4
overlapping communities using NMF.
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FIG. 5. (Color online) Panel (a) shows the node allocations
proposed by our algorithm. Colors (gray shades) close to white
indicate strong participation of node i (vertical axis) to community k

(horizontal axis). Panel (b) shows example (normalized) rows of W�

that correspond to the membership distribution of different nodes.

〈k〉 = 16, and a variable intercommunity degree 〈kout〉 that
controls the module cohesiveness of the network.

In Fig. 6(a) we plot our module identification performance
based on the normalized mutual information (NMI) criterion
[32], a real number between 0 and 1 which is maximal
when the detected communities exactly meet expectations.
In Fig. 6(b) we monitor our allocation confidence based on
the mean entropy (in bits) H = −∑K

k=1 wik log2 wik of each
node membership distribution. We can see that as we make the
network fuzzier by increasing 〈kout〉, our method “responds”
by increasing the degree of node participation to multiple
communities. An attractive aspect of this test is that the
increase in entropy [see Fig. 6(b)] does not affect the module
identification performance [we see from Fig. 6(a) that NMI
remains close to unity] and is stable for the vast majority of
〈kout〉 values. For comparison, we also provide in Fig. 6(a)
the NMI performance of some popular hard-partitioning
methods: extremal optimization [9], spectral partitioning [29],
and hierarchical clustering [2]. For hierarchical clustering,

TABLE I. Real world datasets.

Dataset N M

Dolphins [34] 62 159
Books US politics [35] 105 441
Les Misérables [36] 77 254
College football [31] 115 613
Jazz musicians [37] 198 2742
C. elegans metabolic [9] 453 2025
Network science [5] 1589 2742
Facebook Caltech [38] 769 16656

angular distance acted as node similarity and complete-linkage
clustering acted as group similarity; this combination has been
empirically found to be optimal [2].

We extend the above test to the case of Lancichinetti-
Fortunato random graphs (LFR) [33], which reflect more ac-
curately the properties of real-world networks. In this setting,
community cohesion is controlled by mixing parameters μk

and μw, which denote the expected fraction of intercommunity
degrees and weights per node. Other configuration parameters
include the total number of nodes N , the average degree 〈k〉,
the exponent of the degree distribution γ1, and the exponent of
the community-size distribution γ2. We tested our method for a
(decaying) range of values for μk,μw (where we set μk = μw),
in weighted graphs of N = 1000 nodes and various values of
〈k〉, as seen in Fig. 7(a). In the same spirit as the NG graph
case, in Fig. 7(b) we monitor the mean entropy of membership
distributions per node (in bits) to quantify the confidence of our
node allocations to communities. In Fig. 7(a) we can see that
our model has an excellent module identification performance
and starts to fail only when the mixing coefficients μ have
values greater than 0.5, denoting no community organization
in the graph. On the other hand, the increasing fuzziness of the
network (based on μ) is captured in the mean entropy of the
membership distributions; as the community structure is less
cohesive, we are less confident in the allocation of nodes to
groups.

C. Real-world datasets

We present the performance of our community detection
method on a variety of popular benchmark datasets (see
Table I) and compare it against the extremal optimization (EO)
[9] and Louvain [6] methods. In contrast to the artificial graphs
we used above, the absence of an “observed solution” for

TABLE II. Modularity results for NMF, EO, and Louvain methods.

Dataset NMF EO Louvain

Dolphins 0.47 ± 0.03 0.51 ± 0.01 0.52
Books US politics 0.52 ± ε 0.48 ± 0.01 0.50
Les Misérables 0.53 ± 0.02 0.53 ± 0.01 0.57
College football 0.60 ± ε 0.58 ± 0.01 0.60
Jazz musicians 0.43 ± 0.01 0.42 ± 0.01 0.44
C. elegans metabolic 0.36 ± 0.01 0.40 ± 0.09 0.43
Network science 0.83 ± 0.01 0.86 ± 0.01 0.95
Facebook Caltech 0.38 ± 0.01 0.37 ± 0.01 0.37
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FIG. 6. (Color online) Panel (a) compares the NMF (dashed 	 line at the top) approach against extremal optimization (EO) (pale � line at
the top), spectral partitioning (SP) (◦ line), and hierarchical clustering (hierarchical) (� line) in identifying the communities of Newman-Girvan
artificial graphs. Each point is the mean of 100 graph realizations. Panel (b) shows the increase in uncertainty in assigning nodes to communities,
as we increase the fuzziness of modular organization in NG graphs. Each point is the mean of 100 graph realizations.

these problems prevents us from using the normalized mutual
information criterion for performance evaluation. Instead we
use the popular modularity Q [5], which is a measure of how
“statistically surprising” the intracommunity link density is
for a proposed network partition. For the purposes of the
experiment, we remove the overlapping aspect of the NMF
solutions by assigning a node to a single community; the
one for which it has the maximum degree of membership.
Although this “greedy allocation” scheme omits the wealth of
information provided by our model solutions, it is necessary
in order to perform modularity comparisons against hard-
partitioning methods. Comparison with clique percolation is
also absent, as it provides a uniform participation score of
nodes to modules, thus no greedy allocation can by applied.
For each dataset, we ran the three methods 100 times, recording
the values of modularity Q along with the number of extracted
communities K�. The values are reported in Tables II and
III; because the Louvain method demonstrated stable behavior
across different runs, its standard deviations have been omitted.

For NMF initialization we used K0 = N with hyperparameters
a = 5 and b = 2, giving a vague prior. We note that the results
are not very sensitive to changes in these values.

From Table II we can see that our approach performs
competitively despite not being designed with the aim of max-
imizing modularity, unlike EO and the Louvain method. Ad-
ditionally, it has the advantage of providing soft-partitioning
solutions and node membership scores to each community.
Finally, although our method favors sparse solutions, it
does not suffer from the resolution limit [19] of modularity
optimization methods such as EO, where smaller groups
are merged together [3,19], leading to a smaller number of
communities, as seen in Table III.

Figure 8 illustrates the first network in Table III , in which
vertices are situated according to the Kamada-Kawai free-
energy technique in Pajek software [39]. The hard partitioning
of the Louvain method can be contrasted with the soft
partitioning of an example run of the NMF method, in which
vertices near the boundary of two or more communities are
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FIG. 7. (Color online) Results of the NMF method on realizations of the LFR random graphs for N = 1000 and different values for the
average degree 〈k〉 and community cohesion μ parameters. Each point represents the mean and standard deviation over 100 graph realizations.
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TABLE III. Number of communities from the NMF, EO, and
Louvain methods.

Dataset NMF EO Louvain

Dolphins 6.67 ± 0.83 4 ± 0 5
Books US politics 6.23 ± 0.62 4.04 ± 0.4 3
Les Misérables 9.97 ± 0.78 4.96 ± 1.72 6
College football 8.86 ± 0.79 8 ± 0 10
Jazz musicians 8.57 ± 8.89 4 ± 0 4
C. elegans metabolic 15.69 ± 1.14 7.96 ± 1.06 10
Network science 342.53 ± 5.28 58.24 ± 12.36 418
Facebook Caltech 24.28 ± 1.72 6.84 ± 1.82 10

represented by pie charts in a manner similar to that used
by Ball et al. [40]. With the aid of the aforementioned
greedy allocation scheme, the NMF community assignments
agree with the Louvain community assignments for 55 of
the 62 nodes. Of the seven mismatches, six correspond to
the putative additional community (here colored dark green,
in the dense central portion of the figure) postulated by the
Louvain method; NMF replaces this tiny community with
soft partitioning among the other communities. The seventh
mismatch occurred for a node connected to two nodes of the
eight-node community (upper portion of the graph) and two
nodes of the eighteen-node community (right portion of the
graph); the Louvain method allocated it to the eight-node

(a)

(b)

FIG. 8. (Color online) The Dolphins network [34], with (a) hard
partitioning as per the Louvain method and (b) soft partitioning as
per the NMF method. Node size increases nonlinearly with vertex
degree, and soft partitions are shown as pie charts.
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FIG. 9. (Color online) Modularity of network partitions of four
community detection algorithms, ran on realizations of an ER graph
family G(100,p). Each point represents the mean and standard
deviation of modularity over 100 instances of G(100,p).

community whereas NMF allocated it to both communities
in the approximate proportion of 49:51, respectively.

D. Graphs without community structure

We present the behavior of NMF in cases in which there is
no community structure in the network, specifically focusing
on the popular Erd´́os-Rényi (ER) random graphs. In such
graphs, each link exists with a probability p which is common
for any pair of nodes in the graph. Additionally, the probability
of link formation at a given pair of nodes is independent of
the presence of other links. This eliminates the tendency to
form closed triangles and cliques that characterize real-world
networks.

Therefore given various realizations of an ER graph family
G(N,p) (N number of nodes and p probability of pair
connection), we want our method to be able to capture such
absence of mesoscopic organization, instead of declaring
community structure when there is none. In Fig. 9 we compare
NMF against three modularity-based methods: extremal opti-
mization (EO), the Louvain method, and spectral partitioning,
based on the Q value of their extracted network partitions, in
realizations of an ER graph class G(100,p). We control the
“network load” (number of links in the graph) by changing
the value of p. For each value of p we generate 100 graphs,
run community detection with each algorithm, and record the
modularity values. The generated ER graphs we used have no
disconnected components.

In Fig. 9 we can see that EO (black ◦ line), Louvain (light
dashed line), and SP (�line) produce significantly higher
modularity values than NMF (bottom ×line), especially for
sparse realizations of the Erd´́os-Rényi random graph, denoting
the presence of modular organization. However, those high
Q values do not correspond to any community structure,
as Erd´́os-Rényi random graphs do not possess it by design.
On the other hand, NMF has a more stable behavior as all
modularity values are close to zero, indicating that nodes
have no “preference” of being connected with members of
the same group or otherwise. Especially for the case of
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sparse graphs with p � 0.1, EO and Louvain achieve higher
modularity values; in particular, they are very close to Q =
0.3, a threshold above which Newman and Girvan consider
community structure to be present [5]. This overestimation
of modular organization can be very misleading, especially
when studying real-world networks which are usually sparse
[41] due to their power-law degree distribution. Therefore if
certain modularity optimization methods produce higher Q

values than NMF, it might not mean necessarily that they
have found a node configuration that denotes better community
structure.

IV. IMPLEMENTATION DETAILS AND COMPLEXITY

As discussed in Sec. II C, parameter inference is performed
by a series of update equations for the latent variables
in the model. The computational load is governed chiefly
by the matrix multiplication WH appearing in the denom-
inator of the element-by-element division V

WH in steps 3
and 4 of the algorithm above, which is of order O(N2K).
In practice, such cost can be significantly reduced if we
exploit the sparse nature of adjacency matrices [42]: the
dot products

∑
k wikhkj within WH need not be calculated

when vij = 0, thus reducing significantly the effect of the
quadratic term N2 in our theoretical complexity expression.
For the case of undirected networks, in which V = VT, the
dot product operations are halved because WH is symmet-
ric, and halved again because step 4 of the algorithm is
redundant (W = HT).

Holistic community detection methods such as NMF,
which operate upon the full adjacency matrix V, can be
memory inefficient when implemented naively. The quadratic
complexity, O(N2), can be mitigated by loading into memory
only certain columns/rows of V when needed, as no holistic
operations (such as inversion or multiplication) are required
by the algorithm for V or V̂. In addition, all element-by-
element division and multiplication operations should be
parallelized, as there are no data dependencies among the
threads.

V. DISCUSSION AND FUTURE WORK

In the present work we described a probabilistic approach
to community detection that adopts a Bayesian non-negative
matrix factorization model to achieve soft partitioning of
a network in a computationally efficient manner. We have
demonstrated how community detection can be seen as a
generative model in a probabilistic framework in which priors
exist over the model parameters. This enables model order
selection, which in our framework is the number of latent
communities (or classes of nodes) in the data. We also showed
that the degree of participation of two individuals in various
communities is a latent generator of the expected number of
interactions between them.

Following the model formulation section, we demonstrated
how NMF not only captures the membership of a node in
multiple communities, but also quantifies how strongly that
individual participates in each of the groups. By using the
entropy of the node membership distribution, we can identify
core nodes in each community or, inversely, broker nodes that

act as mediators between different groups. At a global level,
the mean entropy of the membership distributions can help us
quantify the degree of fuzziness in the network, or the clarity
of community structure. Network visualization tools can also
be improved in this manner, as the degree of membership over
different communities can be utilized to position an individual
in a cloud of nodes.

We also showed that NMF has a competitive perfor-
mance against popular community detection methods, on
various popular network datasets. Although NMF is not a
method aiming to maximize modularity Q, it competes well
with methods that directly maximize modularity and we
have showed that it can even outperform these methods in
several module identification problems, while at the same
time having the advantage of providing soft-partitioning
solutions.

This work addresses the issue of extracting community
partitions from a single interaction network defined by V. We
acknowledge that in many problems, this matrix describes only
a snapshot V(t) of a time-evolving, dynamic complex system.
Therefore we seek to extend our community detection method
to allow for a time-evolving solution space. At present we are
approaching this via a jump-diffusion model (based around a
Markov model), in which rate parameters are allowed to evolve
with time and the structure of the community solutions may
also have abrupt changepoints [43]. Our aim is to evaluate
this approach in time-evolving systems in order to model
community drifts and the transitions from one community
structure to another.

Our current method produces point estimates for the model
parameters via a maximum a posteriori (MAP) scheme. A
fully Bayesian treatment can be employed via reversible jump
Markov-chain Monte Carlo as presented in [44,45], or via the
use of variational Bayes as derived in [45]. The advantage
of a posterior distribution over quantities such as the inner
rank dimensionality K is that we can see at which resolutions
modular organization is most prevalent.

We also acknowledge that NMF, along with the majority
of community-detection methods, assumes a fully observed
adjacency matrix. This is not the case in many real-world
applications in which data-collection limitations arise; for
example when the system under study is sampled or when
sensors fail to record every observation. However, NMF can
be easily extended to allow for missing data [45].

Finally, in this paper we considered cases of undirected
networks with symmetric interaction matrices V. Although
NMF does not allow the presence of negative links in the graph,
it is still possible to consider the popular cases of asymmetric
communication rates that arise in systems such as email or
telephone networks.
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