
PHYSICAL REVIEW E 83, 066113 (2011)

Quasistationary analysis of the contact process on annealed scale-free networks
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We present an analysis of the quasistationary (QS) state of the contact process (CP) on annealed scale-free
networks using a mapping of the CP dynamics in a one-step process and analyzing numerically and analytically
the corresponding master equation. The relevant QS quantities determined via the master equation exhibit an
excellent agreement with direct QS stochastic simulations of the CP. The high accuracy of the resulting data allows
a probe of the strong corrections to scaling present in both the critical and supercritical regions, corrections that
mask the correct finite-size scaling obtained analytically by applying an exact heterogeneous mean-field approach.
Our results represent a promising starting point for a deeper understanding of the contact process and absorbing
phase transitions on real (quenched) complex networks.
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I. INTRODUCTION

Complex network theory represents a general unifying for-
malism under which it is possible to understand and rationalize
the intricate connectivity and interaction patterns of many
natural and manmade systems. Thus, a systematic statistical
analysis of large-scale datasets has unveiled the existence of
apparently universal topological features, shared by a large
number of different systems from the technological, social,
or biological domains [1–3]. Among these characteristics,
probably the most intriguing is the discovery of the apparently
ubiquitous scale-free (SF) nature of the connectivity described
by a probability P (k) ∼ k−γ that an element (vertex) is
connected to other k elements (has degree k), with a degree
exponent usually in the range 2 < γ < 3 [1,3]. These and other
discoveries have promoted a large modeling activity, aimed at
understanding the origin and nature of the observed topological
features [2,3]. In recent years, the research community has
also devoted a great deal of attention to the study of the
dynamical processes on complex networks [4,5], which can
have important implications in the understanding of real
processes such as the spread of epidemics in social systems
[6] or traffic in technological systems as the Internet [7] or
transport infrastructures [8].

The theoretical understanding of dynamical processes on
complex networks is based in the application of mean-
field approaches that are essentially based in the annealed
network approximation [5]. Any nonweighted network is fully
characterized by its adjacency matrix aij , taking the value 1
when vertices i and j are connected by an edge, and zero
otherwise. In real (quenched) networks, the values of the
adjacency matrix are fixed and do not change with time. When
a dynamical process takes place on top of such a network, one
considers the network frozen, with respect to the characteristic
time scale τD of the dynamics. Other networks, however, are
dynamical objects, changing in time over a characteristic time
scale τN . In this case, the adjacency matrix is defined only in a
statistical sense, and a complete description of the network can
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be given in terms of its degree distribution P (k) and its degree
correlations P (k|k′) [9]. In the limit τN � τD , when all edges
are completely reshuffled between any two dynamical time
steps, the resulting network is called annealed [10]. Annealed
networks represent an extremely important theoretical tool
because mean-field predictions for dynamical processes turn
out to be exact in this kind of substrate [5].

Dynamical processes with absorbing configurations consti-
tute a subject of outstanding interest in nonequilibrium Statis-
tical Physics [11,12] that have also found a place in network
science, as representative models of practical problems ranging
from epidemic spreading [13,14], infrastructure’s resilience
[15,16], or activated dynamics [17], to mention just a few. The
simplest lattice model allowing absorbing configurations is the
classical contact process (CP) [18], whose universality class
and mean-field (MF) description have been discussed in the
past few years [10,19–22]. In the CP defined in an arbitrary
network, vertices can be in two different states, either empty or
occupied. The dynamics include the spontaneous annihilation
of occupied vertices, which become empty at unitary rate, and
the self-catalytic occupation of an empty vertex i with rate
λni/ki , where ni is the number of occupied neighbors of i,
and ki is its degree. The model is thus characterized by a
phase transition at a value of the control parameter λ = λc,
separating an active from an absorbing phase devoid of active
vertices. Despite its simplicity, the CP on SF networks exhibits
a very complex critical behavior, even if studied in an annealed
substrate [10,21,22]. This case is particularly interesting, since
in annealed networks all connections are rewired at a rate much
larger than the typical rates involved in the dynamical process,
implying that dynamical correlations are absent [10]. In this
case, the MF approach is expected to be an exact description
of the problem.

The configuration in which all vertices are empty plays
a very particular role, since once the system has fallen into
this state, the dynamics become frozen. For this reason, these
states are called absorbing and constitute a central feature in
the analysis of finite-size systems, since, in this case, the
single actual stationary state is the absorbing one [11]. Finite
size and absorbing states must therefore be handled using
suitable strategies, concomitantly with an ansatz for the finite-
size scaling (FSS) [23]. A widely adopted procedure is the
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so-called quasistationary (QS) state [24,25], in which the ab-
sorbing configuration is suitably excluded from the dynamics.

In this work, we present a study of the QS state of the CP on
SF annealed networks, combining the QS numerical approach
developed in Ref. [24], suitably extended to complex networks,
with the theoretical analysis of an approximated one-step
process derived from mean-field theory [21]. Our analysis
allows us to determine the probability distribution of activity
both close to the critical point and in the off-critical regime, as
well as to obtain high-quality data for relevant QS quantities,
such as the density of active sites or the characteristic times.
This last information is used to check the finite-size scaling
forms derived from mean-field theory, which turn out to be
loaded with very strong corrections to scaling.

The results presented in our paper provide a deeper
understanding of the nontrivial dynamics of the contact
process in annealed networks. Moreover, they open the path
to the extension of the QS approach to the analysis of other
dynamic processes with absorbing-phase transitions taking
place on more complex and/or realistic substrates such as, for
example, quenched networks and small-world topologies [26],
where edges are never rewired and dynamic correlations are
usually present.

We have organized our paper as follows. In Sec. II, we re-
view the necessary background for QS analysis and numerical
simulations, while in Sec. III we summarize the main results
of MF theory for the CP on annealed networks. A master
equation approach for the QS state is developed in Sec. IV.
Section V is devoted to discuss the finite-size scaling forms of
the relevant QS quantities, as well as the corrections to scaling
at criticality. The off-critical analysis is discussed in Sec. VI.
Finally, our concluding remarks are presented in Sec. VII.

II. FINITE SIZE AND THE QUASISTATIONARY STATE

In finite systems, the absorbing state is a fixed point that
can be visited even in the supercritical phase due to stochastic
fluctuations. Numerical simulations of finite systems are
particularly sensitive to absorbing states and therefore suitable
simulation strategies are required. The standard procedure
consists in restricting the averages to those runs that did not
visit the absorbing configuration [11], the so-called surviving
averages. From a mathematical point of view, it is useful to
define the QS state that consists of the ensemble of states
accessed by the original dynamical process at long times
restricted to those not trapped into an absorbing one [24]. The
intensive quantities in a QS ensemble must converge to the
stationary ones in the thermodynamic limit. Thus, in the active
phase, the lifespan grows exponentially fast with the system
size and the QS state becomes identical to the stationary one.
In the subcritical phase, on the other hand, the activity in the
QS state corresponds only to a few [O(1)] particles fluctuating
above the absorbing state, implying a density that vanishes
inversely proportional to the system size.

Formally, the QS state is related with the original one in the
limit t → ∞ by

P (σ,t) = Ps(t)P̄ (σ ), (1)

where P̄ (σ ) is the QS probability associated to the state σ

and Ps(t) is the survival probability, i.e., the probability that

the system is active up to time t . For a one-step process, the
state of the system is completely determined by the number of
occupied vertices n. Letting Pn(t) be the probability that the
system has n particles at time t , the QS distribution P̄n is given
by Pn(t) = Ps(t)P̄n, for which the normalization

∑
n�1 P̄n = 1

applies. The probability of visiting the absorbing state is
redistributed among the active configurations, proportionally
to P̄n, which constitutes the essence of the QS state [24].
Knowledge of the QS distribution allows the computation of
the standard quantities associated to this state. For example,
the probability to visit the vacuum in the CP is given by
Ṗ0 = P1, independently of the network substrate. Thus, it is
straightforward to show that the survival probability and the
preabsorbing state are related by dPs/dt = −P̄1Ps providing
a characteristic time scale [25]

τ = 1

P̄1
. (2)

Analogously, the density of active sites in the QS state is
given by

ρ̄ = 1

N

∑
n�1

nP̄n. (3)

The standard numerical procedure to simulate the QS
regime based on averages over survival runs has a limited
accuracy due to the very rare achievement of surviving
configurations at very large times. Thus, for instance, the
stationary densities are determined as a plateau at long times
in the curve ρ̄(t) that is usually noisy and short close to or
below criticality due to the limited number of independent
runs computationally accessible. The previous interpretation
of the QS state provides an alternative simulation strategy, in
which every time the system visits the absorbing state, this
configuration is replaced by an active one randomly taken
from the history of the simulation [24]. For this task, a list
with M active configurations is stored and constantly updated.
An update consists in randomly choosing a configuration in
the list and replacing it by the present active configuration
with a probability pr . After a relaxation time tr , the QS
distributions are determined during an averaging time ta .
The improved QS method has been successfully applied to
accurately determine the universality class of several models
with absorbing configurations [24,27,28].

III. CP IN ANNEALED NETWORKS

The network in which dynamics takes place is assumed to be
annealed and therefore completely characterized by the degree
distribution P (k), the probability that a randomly chosen
vertex has a degree k, and the degree correlation function
P (k′|k) defined as the conditional probability that a vertex of
degree k is connected to a vertex of degree k′ [9]. The number
of vertices of the network is denoted by N and its maximum
degree (cutoff) by kc [29]. In an annealed framework, the
MF rate equation for the density of occupied vertices in the
degree class k (i.e., the probability that a vertex of degree k is
occupied) is given by [21]:

d

dt
ρk(t) = −ρk(t) + λk[1 − ρk(t)]

∑
k′

P (k′|k)ρk′

k′ . (4)
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The first term represents the spontaneous annihilation and the
second one the creation inside the compartment k due to the
interaction with all compartments under the hypothesis that
there are no dynamical correlations. A simple linear stability
analysis shows the presence of a phase transition, located at the
value λc = 1 and independent of the degree distribution and
degree correlations, separating an active from an absorbing
phase with ρk = 0 [10]. Considering, in addition, uncorrelated
networks with P (k′|k) = k′P (k′)/〈k〉 [2], the overall density
ρ = ∑

k ρkP (k) obeys the equation

d

dt
ρ(t) = −ρ(t) + λρ

[
1 − 〈k〉−1

∑
k

kP (k)ρk(t)

]
. (5)

In Ref. [21], it was realized that the low-density regime
of Eq. (5) can be understood as a one-step process (biased
random walk) with transition rates

W (n − 1,n) = n,
(6)

W (n + 1,n) = λn

[
1 − 〈k〉−1

∑
k

kP (k)ρk(t)

]
,

where W (m,n) corresponds to the transition from a state with n

particles to one with m particles. The stationary state ∂tρk = 0
of Eq. (4) reads as

ρ̄k = λkρ̄/〈k〉
1 + λkρ̄/〈k〉 . (7)

Close to the criticality, when the density at long times is
sufficiently small such that ρ̄kc � 1, Eq. (7) becomes ρ̄k 	
λkρ̄/〈k〉. Substituting in the transition rates, the first-order
approximation for the one-step process is

W (n − 1,n) = n,
(8)

W (n + 1,n) = λn(1 − λgn/N ),

in which g = 〈k2〉/〈k〉2. Based on numerical evidences and
scaling arguments, later confirmed by more rigorous means in
Refs. [10,22], the authors proposed that the critical character-
istic time τ and stationary density ρ̄ scale as [21]

τ ∼ (N/g)1/2 (9)

and

ρ̄ ∼ (Ng)−1/2, (10)

respectively. For a network with degree exponent γ and a
cutoff scaling with the system size as kc ∼ N1/ω, where ω is an
arbitrary positive parameter, the factor g scales for large N as
g ∼ k

3−γ
c for 2 < γ < 3 and g ∼ const for γ > 3. Therefore,

the critical QS density scales as ρ̄ ∼ N−ν̂ , where

ν̂ = 1

2
+ max

(
3 − γ

2ω
,0

)
. (11)

Similarly, the characteristic time follows τ ∼ N−α̂ with
exponent

α̂ = 1

2
− max

(
3 − γ

2ω
,0

)
. (12)

The MF supercritical density for an infinite system was
found to vanish at criticality as ρ̄ ∼ �β , where β = 1/(γ − 2)

[21] and � = λ − λc. For finite systems, the QS density has
an anomalous cutoff-dependent FSS given by [10]

ρ̄(�,N ) = 1√
gN

G

(
�

√
N

g

)
for

�

g
� λ〈k〉

kc

, (13)

where G(x) ∼ x for x � 1 and G(x) is constant for x � 1.
The anomaly lies on the supercritical density dependence on
the system size through the factor g given by ρ̄ ∼ �/g if
� >

√
g/N [10].

IV. MASTER EQUATION APPROACH FOR THE QS STATE

In order to gain analytical information about the QS
distribution not far away from the critical point, we can
consider the one-step process approximation described by the
transition rates in Eq. (6). Starting from them, it is possible to
write down a master equation (ME) for the evolution of the
number of particles Pn(t), taking the standard form

Ṗn =
∑
m

W (n,m)Pm(t) −
∑
m

W (m,n)Pn(t). (14)

In the long time limit, we have ρ̇k ≈ 0 and, consequently,
Eq. (7) can be applied resulting in the ME

Ṗn = (n + 1)Pn+1 + un−1Pn−1 − (n + un)Pn, (15)

with un = λn(1 − ) and  given by

[ρ] = λρ

〈k〉2

∑
k

k2P (k)

1 + λkρ/〈k〉 . (16)

Substituting now Pn(t) = Ps(t)P̄n and using dPs/dt = −P̄1Ps

[25], the following recurrence relation is obtained

P̄n = 1

n
[(un−1 + n − 1 − P̄1)P̄n−1 − un−2P̄n−2], (17)

where n = 2, . . . ,N and P̄0 ≡ 0. The QS distributions are
completely determined since P̄1, the initial condition to iterate
Eq. (17), is given by the normalization

∑
n�1 P̄n = 1.

Full information of the QS distribution can be obtained from
the ME by solving it numerically. A numerical recipe to iterate
the recurrence relation is as follows [25]: Start with a guess for
P̄

(0)
1 and iterate Eq. (17) to find P̄ (0)

n , n = 2, . . . ,N . Repeat the
procedure using P̄

(j+1)
1 = P̄

(j )
1 /

∑
n P̄

(j )
n until normalization

is reached. Suitable truncations can be used to speed up the
numerical process and to prevent instabilities. The truncations
at finite densities are justifiable, since the central limit theorem
guarantees that fluctuations much larger or much smaller than
the average are exponentially negligible.

In order to explore the properties of the QS state, we have
performed extensive Monte Carlo simulations of the CP on
annealed networks. We use a random-neighbor network (RNN)
[10] with degree distribution P (k) ∼ k−γ , degree correlations
P (k′|k) = k′P (k′)/〈k〉, a degree cut-off kc = N1/ω, and a fixed
minimum degree k0 = 2. The single effect in increasing the
minimum degree k0 is a shift to higher densities, which does not
affect the critical properties. In an annealed approach, all links
are redefined between any two time steps in such a way that the
neighbor of a given vertex is selected by randomly choosing
a vertex of the network with a probability k′P (k′)/〈k〉. We
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FIG. 1. (Color online) QS probability distributions at criticality
obtained in simulations of the CP on annealed SF networks with a
cutoff N 1/2 are compared with the numerical solutions of Eq. (17).
In the main plot, the networks have size N = 2 × 104. Inset A shows
the curves of the main plot in a logarithmic scale in order to compare
the tails. Inset B shows the QS distributions for a small network of
size N = 102 with γ = 2.75.

perform stochastic simulations using the usual scheme [11]:
At each time step, an occupied vertex is chosen at random
and the time updated as t → t + �t , where �t = 1/[(1 +
λ)n(t)] and n(t) is the number of occupied vertices at time t .
With probability p = 1/(1 + λ), the occupied vertex becomes
vacant. With complementary probability 1 − p = λ/(1 + λ),
one of its neighbors (following RNN rules) is selected and, if
empty, occupied. If the selected neighbor is already occupied,
the simulation goes to the next step. QS states were simulated
using the method described in Sec. II with M = 103, pr =
0.02�t , and ta = tr = 106. Due the short distance between
vertices, the relaxation times are very short if compared with
critical relaxation on regular lattices. The network sizes were
varied from 103 to 107 and 50−500 network samples were used
in the averages (the larger the size of the network, the smaller
the number of samples). During the averaging interval, the
current configuration is counted in the QS distribution with a
probability proportional to its lifespan.

The QS probability distributions obtained in simulations
of the critical CP are shown in Fig. 1 for different values
of the degree exponent γ and network size N and compared
with the results of the numerical solution of the recursion
relation [Eq. (17)]. A remarkable agreement between the
simulations and the one-step-process approach is achieved
even for the asymptotic (Gaussian) tail as one can see in inset
A of Fig. 1. A good accordance, which is improved as size
increases, is observed even for sizes as small as 103, while neat
discrepancies appears for N ∼ 102 (inset B of Fig. 1). Actually,
we can show that the one-step and the Langevin approach
developed in Ref. [10] are equivalent in the low-density limit
(see Appendix) and, consequently, the lower the density the
better the one-step mapping.

V. THE QS STATE AT CRITICALITY

A. Analytical approximation at criticality

At criticality, where the densities at long times are very low,
we have un = λn(1 − λn/�), where � = N/g. In this limit,
Eq. (15) corresponds exactly to the ME of the CP on a complete
graph of size �, for which the QS analysis was already worked
out elsewhere [25]. Analytical insights about the criticality can
be obtained through a van Kampen’s expansion [30] of the
recurrence relation (17). Let us consider the scaling solution
of Eq. (17)

P̄n = 1√
�

f

(
n√
�

)
, (18)

where f (x) is a scaling function to be determined. Plugging
Eq. (18) into (17), and performing a Taylor expansion up to
second order, the result up to order �−1 is

x
d2f

dx2
+ (2 + x2)

df

dx
+ 2xf = −f0f, (19)

where f0 = P̄1�
1/2 = f (0) must be chosen to impose the

normalization condition
∫ ∞

0 f (y)dy = 1. Dickman and Vidgal
[25] analyzed Eq. (19) numerically and checked the agreement
with the recurrence relation for the CP on the complete graph.
We complement the analysis by obtaining the asymptotic
behaviors analytically. It is straightforward to see that the
distribution decays linearly as f (x) 	 f0(1 − f0x/2) for x �
1. A correction to this initial behavior can be obtained
discarding the term xf ′′(x) (a low curvature approximation)
and the solution satisfying the boundary condition f (0) = f0

is

f (x) 	 2f0

2 + x2
exp

[
− f0√

2
arctan

(
x√
2

)]
, x � 1. (20)

For x � 1, the zeroth-order terms are discarded and
Eq. (19) turns to f ′′ + xf ′ + 2f 	 0. The solution satisfying
the boundary condition xf (x) → 0 for x → ∞ (〈x〉 is finite)
is

f (x) ∼ exp(−x2/2), x � 1, (21)

implying a Gaussian tail.
In Fig. 2, we compare the results of numerical simulations

of the CP at criticality (λ = 1) on a network with N = 16 ×
104 nodes, degree exponent γ = 2.25, and cutoff scaling expo-
nent ω = 2, with the corresponding analytical approximations.
Despite the lack of rigor, the analytical result is in good
agreement with numerical simulations. The approximation
given by Eq. (20) agrees with numerical analysis, even for
x ≈ 1 or equivalently for a number of active vertices n ≈√

�. For the particular network of Fig. 2, we have
√

� ≈
147. The accordance still holds for small networks (∼103)
independently of the exponent degree and cutoff scaling.

The scaling function given by Eq. (18) encloses the FSS
form of the CP at criticality. In fact, the mean number of
occupied vertices at the QS regime is given by

n̄ =
N∑

n=1

nP̄n =
N∑

n=1

n√
�

f

(
n√
�

)
, (22)
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FIG. 2. Comparison between the numerical simulations of the CP
on annealed networks at criticality and the asymptotic behaviors of the
QS distribution given by Eqs. (20) and (21). Numerical simulations
for N = 16 × 104, γ = 2.25, and ω = 2 are represented by circles
and the asymptotic solutions by lines. The dashed line is the linear
approximation for n/

√
� � 1. The inset shows the comparison with

the Gaussian tail using a straight line of slope −1/2�.

where � = N/g. Letting x = n/
√

� and �x = 1/
√

�, the
sum can be approximated by a continuous integration when
N → ∞, namely

n̄ = �1/2
N/

√
�∑

x=m/
√

�

xf (x)�x ≈ �1/2
∫ ∞

0
xf (x)dx ∼ �1/2.

(23)

Therefore, the critical QS density is simply ρ̄ ≡ n̄/N ∼
(gN )−1/2, recovering the result first presented in Ref. [21].
Analogously, the characteristic time τ is also directly obtained
by the present QS analysis by noticing that, since P̄1 =
f0�

−1/2, we have τ = 1/P̄1 ∼ �1/2 = (N/g)1/2.

B. Scaling at criticality

The analysis of the QS state, either by direct QS simulations
or by the iterative solution of the corresponding approximate
ME, allows us to obtain high-quality data for the characteristic
quantities at criticality, namely the stationary density ρ̄ and
the characteristic time τ . At criticality, these quantities are
expected to exhibit a scaling with system size of the form
ρ̄ ∼ N−ν̂ and τ ∼ Nα̂ , with exponents given by Eqs. (11) and
(12) and depending on the cutoff scaling exponent ω.

QS critical densities as functions of the network size N ,
computed for several degree exponents and ω = 2 are shown
in the main plot of Fig. 3. Again, an incontestable agreement
between QS simulations and the numerical ME approach is
observed. Similar agreement is obtained for the analysis of the
characteristic time (data not shown). However, if one tries to
recover the theoretical scaling exponents, taking the values ν̂ =
max[1/2,(5 − γ )/4] and α̂ = min[1/2,(γ − 1)/4], by means
of a direct power law regression (insets in Fig. 3), a very poor
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FIG. 3. QS critical density for the CP on annealed SF networks
with cutoff kc = N 1/2. In the main plot, the densities obtained with the
numerical solution of the ME (lines) and QS simulations (symbols)
are shown. Inset A shows the exponent of the scaling law ρ̄ ∼ N−ν̂ ,
obtained analytically for asymptotically large systems (N → ∞),
performing a direct fit to a power-law form (PL) of the data in main
figure, and performing a fit to a power with corrections to scaling.
Inset B shows the same analysis for the characteristic time τ ∼ Nα̂ .

agreement with the expected analytical exponents is observed,
as already noted in Ref. [31]. Indeed, if we look carefully at
the data we can observe that, even though a pretty good linear
fit can be resolved for data range corresponding to 103 � N �
107 as shown in Fig. 4, the actual regressions are a little bit
curved. Indeed, a careful analysis of the numerical data can
resolve a slight downward (negative) curvature for γ � 5/2
and an slight upward (positive) curvature for γ > 5/2 at λ =
λc. In a QS analysis, these behaviors usually indicate a system
slightly out of the critical point, being sub and supercritical for
down and upward curvatures, respectively. But this is not the
case for the data shown in Figs. 3 and 4, since the MF result
is exact for the critical CP on annealed networks. Similar
behaviors occur for plots of τ versus N .

As noted in [10,21], the origin of this poor agreement
between theory and simulations lies in the implicit dependence
on N of the g factor defining the size scaling of ρ̄ and τ . In fact,
the scaling forms ρ̄ ∼ N−ν̂ and τ ∼ Nα̂ only make sense in the
limit of very large N , when g has achieved its truly asymptotic
form. For intermediate values of N , instead, one should keep
the scaling forms with the simultaneous dependence on g and
N [21]. If we want instead to make explicit the scaling with
network size, we must consider that g = 〈k2〉/〈k〉2 behaves, in
the continuous degree limit, as

g = (γ − 2)2k
γ−1
0

(γ − 1)(3 − γ )

(1 − ξγ−1)(1 − ξ 3−γ )

(1 − ξγ−2)2
k3−γ
c , (24)

where ξ = k0/kc < 1. So, when N → ∞, g ∼ N (3−γ )/ω for
2 < γ < 3, and g ∼ const for γ > 3.

From Eq. (24), it is possible to work out the explicit form
of the corrections to scaling in a direct analysis of the QS
quantities as functions of the network size. So, considering
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FIG. 4. Power law regressions (solid lines) of the critical QS
densities (symbols) for CP on annealed SF networks with cutoff
kc = N 1/2 and degree exponents γ = 2.25 and γ = 3.00. Inset shows
the QS densities for γ = 2.25 rescaled by pure power law (PL),
ζ = ρ̄N 0.6875, and a PL with correction to scaling, ζ = ρ̄N0.6875(1 +
2 × 20.25N−0.125 + 3 × 20.5N−0.25)0.5.

2 < γ < 3 and performing an expansion to leading order in ξ ,
Eq. (24) yields

g 	 const × (1 − ξ 3−γ + 2ξγ−2 · · ·)k3−γ
c . (25)

Substituting into the MF scaling result ρ̄ ∼ (gN )−1/2, we
obtain the expression for the stationary density

ln ρ = C − ν̂ ln N + 1

2

k
3−γ

0

N
3−γ

ω

− k
γ−2
0

N
γ−2
ω

. (26)

Notice that the corrections do not introduce any parameters to
be fitted. Similar expressions are found for γ � 3. Equation
(26) explains the deviations from the power law regime ρ̄ ∝
N−ν̂ observed for the CP on annealed SF networks. It is easy
to see that the leading term for 2 < γ � 5/2 is negative and
causes a downward curvature, in the same way that the leading
term for γ > 5/2 bends the curve upwardly. Even though
the correction vanishes for N → ∞, it may occur extremely
slowly due to the small exponents involved. For γ ≈ 3 and
γ ≈ 2, the corrections are logarithmic and are thus relevant
for any finite size.

Introducing the corrections given in Eq. (26) in the form

ln ρ ′ = ln ρ −
(

1

2

k
3−γ

0

N
3−γ

ω

− k
γ−2
0

N
γ−2
ω

)
= C − ν̂ ln N (27)

and performing a linear fit, the asymptotic exponent ν̂ is
recovered as one can see in inset A in Fig. 3. Equivalent
corrections can be easily obtained for ln τ vs. ln N , and the
expected exponent α̂ is recovered as shown in inset B in
Fig. 3. Additional proof of the strong finite size corrections
is provided in the inset of Fig. 4, in which the critical QS
density is rescaled by the predicted PL with exponent ν̄ and
by this same PL with the correction given by Eq. (26). The
first case is clearly size dependent while the second is flat. It
is worth noting that the corrections are so strong for γ = 2.25

8 10 12 14 16 18
ln N

0

1

2

3

4

5

6

7

8

9

ln
τ

2.0 2.5 3.0 3.5
γ

0.1
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0.4
0.5

α N→∞
PL
PL+correction

2.0 2.5 3.0 3.5
γ

0.5
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0.7
0.8
0.9
1.0

ν

N→∞
PL
PL+correction

γ=2.25

γ=2.50
γ=2.75γ=3.00γ=3.50

A

B

FIG. 5. Critical QS characteristic times for CP on annealed SF
networks with cutoff kc = N 1/(γ−1). In the main plot, lines represent
numerical solution of the ME and symbols QS simulations. The
inset A shows the exponent of the scaling law ρ̄ ∼ N−ν̂ while the
inset B shows the exponent of the scaling law τ ∼ Nα̂ . Legends as in
Fig. 3.

and ω = 2 that keeping only the leading term O(N−0.125) was
not enough to account for the deviation.

We additionally performed the analysis for ω = γ − 1,
which corresponds to the natural cutoff that emerges in the
absence of a structural cutoff [5]. For the sake of simplicity,
a hard cutoff was adopted such that connectivities larger
than kc = N1/(γ−1) are forbidden. For this cutoff, the scaling
exponents for the critical density and characteristic time
are ν̂ = max[1/2,1/(γ − 1)] and α̂ = max[1/2,(γ − 2)/(γ −
1)], respectively. Exactly as in the ω = 2 case, the QS
analysis via ME agrees with simulations and the correct
scaling exponents are obtained if corrections to the scaling
are considered. Figure 5 shows the characteristic time and
the insets therein show the scaling exponent analysis for
ω = γ − 1. Comparing the insets in Figs. 3 and 5, we can
observe that the relative deviation between the exponents
obtained using a simple and a corrected PL is smaller for
the natural (ω = γ − 1) than for the cutoff kc = N1/2. Indeed,
Eq. (26) tells that the larger the cutoff exponent ω, the stronger
the corrections to the scaling. However, even if the cutoffs are
not imposed, the natural one emerges spontaneously in net-
works with power-law degree distributions [5]. Consequently,
these corrections to the scaling may also be present in the CP
and other dynamical processes in SF substrates, including the
quenched case.

The previous results may have a remarkable impact in the
analysis of absorbing phase transitions in complex networks.
The usual QS analysis assumes a power-law dependence of the
order parameters with the size at criticality. Such assumption
is commonly used as a criterion to determine the critical point
of absorbing phase transitions in regular lattices [11] and
has been extended to quenched complex networks [19,20].
Corrections to scaling in the form 1 − const × N−0.75 were
already observed in QS simulations of the directed percolation
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FIG. 6. (Color online) Supercritical densities as functions of the
system size for three degree distributions and a cutoff kc = N 1/2. Solid
lines are the ME numerical solutions and symbols QS simulations.

universality class in hypercubic lattices, including the contact
process [24,32]. Since these corrections decay with a large
exponent, they are significant only for small systems. In
complex networks, the scenario is quite different since the
corrections, which emerge from the intrinsic SF nature of the
substrate, vanish very slowly and are important even for large
systems (N ∼ 107 in the present work).

VI. OFF-CRITICAL QS ANALYSIS

The analysis performed for the critical CP in the previous
sections is expected to work also for the off-critical phase if the
densities are still sufficiently small. In Fig. 6, we compare the
QS density obtained by ME iterative solution and numerical
computed for networks with different degree exponents. In the
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FIG. 7. (Color online) Collapses of the numerical ME solution
using the anomalous scaling function given by Eq. (13). Densities
obtained for network sizes N = 16 × 104, 64 × 104, 256 × 104, and
1024 × 104 are shown. Data were shifted to avoid overlaps.
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FIG. 8. (Color online) Probing the anomalous FSS ρ̄ ∼ �/gb in
the ME equation iterations of the supercritical CP for λ = 1.040 (top)
and 1.004 (bottom) and a cutoff exponent ω = 2. Dashed horizontal
lines are guides to the eye.

plot, we explore the supercritical regime with rates λ = 1.004
and 1.040 (0.4% and 4% above the critical point, respectively).
The one-step ME predicts QS densities very accurately, even
for a substantial distance from the critical point, corrobo-
rating that the approach is also suitable for the supercritical
phase. The anomalous FSS form in the supercritical regime,
Eq. (13), depending on �, N , and g simultaneously, is checked
in Fig. 7, where we present the collapses of the data obtained
from iterative solutions of the ME. Degree exponents γ = 2.25
and 2.75 using structural (ω = 2) and natural (ω = γ − 1)
cutoffs are shown. Excellent collapses are obtained in all cases,
in agreement with Refs. [10,22].

The strong size dependence observed in Fig. 6 for SF
networks (γ = 2.25 and 2.75) but not for the homogeneous
one (γ = 3.25) calls for an anomalous dependence of ρ̄ on
g, as pointed out in the Langevin [10] and random walk
mapping [22] approaches. Our numerical approach allows
a more detailed investigation of this issue. Inspired by the
anomalous FSS prediction [10],

ρ̄ ∼ �/g,� >
√

g/N, (28)
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we have performed a further test, analyzing the behavior of
the QS density, rescaled as gbρ̄, as a function of N , as shown
in Fig. 8. The theoretical exponent b = 1, which corresponds
to the anomalous scaling in Eq. (28), does not show up as a
plateau in the plots of gbρ̄ versus N . Interestingly, plateaus are
observed if an exponent b < 1 is used instead. For λ = 1.040,
plateaus are observed for b = 0.88 and b = 0.53 for γ = 2.25
and γ = 2.75, respectively. In an analysis performed closer to
the critical point, for λ = 1.004, the plateaus are observed with
larger exponents b = 0.95 and b = 0.56 for γ = 2.25 and γ =
2.75, respectively. Notice that a scaling consistent with b = 1
was obtained for γ = 2.25 but not for γ = 2.75. Actually, the
anomalous scaling (28), derived from Eq. (13), is valid for√

g/N < � � g〈k〉/kc. For ω = 2, the right and left sides of
this inequality scale as g〈k〉/kc 	 cγ N−(γ−2)/2 and

√
g/N 	

c̃γ N−(γ−1)/4, respectively, where cγ = k
γ

0 (γ − 2)/(3 − γ ) and
c̃2
γ = k

γ−1
0 (γ − 1)(γ − 2)2/(3 − γ ) are constants of the same

order and cγ > c̃γ . If γ is close to 3, the exponents involved
in the lower and upper bounds of � are very close and we
cannot make � sufficiently small to fulfill the upper bound
and still larger than the lower one, except for numerically
unaccessible large systems. Therefore, this anomalous scaling
can be clearly seen only for γ close to 2. The scaling forms
with b < 1 are thus metastable crossovers between the regimes
ρ̄ ∼ (gN )−1/2 and ρ̄ ∼ �/g, that can last for decades, and
could only be resolved by simulations in much larger systems
sizes than those considered in this work (up to N = 109 in the
ME solutions).

VII. CONCLUDING REMARKS

The contact process on scale-free networks shows re-
markably rich features, even in the simple case of random
annealed topologies. In the present work we have explored the
quasistationary properties of this problem by combining QS
numerical simulations and a master-equation approach applied
to an approximate mapping to a one-step process. The resulting
master equation, apart from providing quite accurate analytical
approximations for the asymptotic shape of the QS activity
distribution at the critical point, can be very efficiently solved
numerically. The QS distribution and the relevant QS quantities
(density of active sites and characteristic time) determined in
this way show an excellent agreement with direct QS numerical
simulations of the contact process, both at criticality and in the
supercritical regime.

The high accuracy of our data has allowed us to identify
strong corrections to the scaling in the critical quantities
that mask the correct finite-size scaling exponents obtained
analytically by means of an exact mean-field solution. Both
critical density and characteristic time show tenuous curva-
tures as functions of the network size N due to finite-size
corrections to scaling that may provide incorrect exponents if
a simple power law decay is assumed. In annealed networks,
for which the critical point is exactly known, we can deter-
mine the corrections to scaling analytically and thus recover
the theoretical exponents in the finite-size analysis, including
the abrupt change when the network loses its SF property.
The analysis of the supercritical region, on the other hand,
hints that those finite-size corrections are also relevant for
very large network sizes. Indeed, the asymptotic scaling is

observable only for extremely large values of N , much larger
than those possibly attainable with present-day computers.

It is worth noticing that the QS analysis presented in
this work is equivalent to the Langevin approach developed
in Ref. [10] in the limit of very low densities (i.e., in
the critical region; see Appendix). The main difference is
that the former starts from an approximation of the original
dynamical processes [Eq. (6)], while the latter represents an
exact Langevin approach in the coarse-grained limit (density
approximated by a continuous variable). The critical advantage
of the present approach lies in the fact that our ME analysis
determines the critical properties in a very intuitive way, as well
as easily obtains highly accurate results, free from statistical
errors, for all quantities of interest.

Our work opens the path to a more detailed characterization
of absorbing phase transitions on scale-free networks, in
general, and the CP in particular. In the more realistic
framework of quenched networks, in which edges are frozen
and do not change, this goal may be hindered by the
interplay between corrections to scaling and the usual lack
of knowledge about the true position of the critical point.
In fact, the standard characterization of the QS state by the
usual procedure assuming a simple power law of the system
size at the critical point may be affected by two sources of
errors: the analysis may be misleadingly done off the critical
point and/or be affected by important scaling corrections.
Further work in this direction, following the proposed lines,
might thus help to throw light on the numerical assessment of
the correct critical scaling of absorbing phase transitions on
heterogeneous networks.
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APPENDIX

The connection between the Langevin approach developed
in Ref. [10] and the one-step process of Eq. (6) can be
established by analyzing the respective Fokker-Planck (FP)
equations. The general form of a FP equation for a stochastic
variable x is [30]

∂P (x,t)

∂t
= − ∂

∂x
A(x)P (x,t) + ∂2

∂x2
D(x)P (x,t), (A1)

where A(x) and D(x) are the drift and the diffusion terms, re-
spectively. The Langevin analysis in Ref. [10] yielded A(n) =
n[λ − 1 − λ(n/N )] and D(n) = 2λn�(n/N ), where  is
given by Eq. (16) and

�(ρ) =
∑

k

kP (k)

〈k〉[1 + λkρ/〈k〉]3
. (A2)

In turn, the drift and diffusion terms of the FP
equation for an arbitrary one-step process is given by
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A(n) = W (n + 1,n) − W (n − 1,n) and D(n) = W (n +
1,n) + W (n − 1,n) [30], respectively. Equation (6) results
in exactly the same drift obtained in the Langevin
approach, while the diffusion term takes the form

D(n) = (1 + λ)n + λ(n/N ). At low densities, one
can expand  and � to leading order and obtain
D(n) 	 2n + O() in both cases. Therefore, Langevin
and ME approaches are equivalent in the low-density limit.
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