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Developing an effective coarse-grained (CG) approach is a promising way for studying dynamics on large
size networks. In the present work, we have proposed a strength-based CG (s-CG) method to study critical
phenomena of the Potts model on weighted complex networks. By merging nodes with close strengths together,
the original network is reduced to a CG network with much smaller size, on which the CG Hamiltonian can be
well defined. In particular, we make an error analysis and show that our s-CG approach satisfies the condition
of statistical consistency, which demands that the equilibrium probability distribution of the CG model matches
that of the microscopic counterpart. Extensive numerical simulations are performed on scale-free networks and
random networks, without or with strength correlation, showing that this s-CG approach works very well in
reproducing the phase diagrams, fluctuations, and finite-size effects of the microscopic model, while the d-CG
approach proposed in our recent work [Phys. Rev. E 82, 011107 (2010)] does not.
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I. INTRODUCTION

In the last two decades, we have witnessed dramatic
advances in complex networks research, which has been one of
the most active topics in statistical physics and closely related
disciplines [1–3]. The central issue in this field is to study how
the topology of networks influences dynamics, such as phase
transition, self-organized criticality, and epidemic spreading,
etc. [4–6]. Usually, Monte Carlo (MC) simulations [7] have
been widely used to study such dynamics. However, the sizes
of many real-world networks are very large, such as the human
brain, composed of about 1011 neurons and 1014 synapses
[8], and thereby brute-force simulations are quite expensive
and sometimes even become impossible. Phenomenological
models, such as mean-field description, may capture certain
properties of the system, but often ignore microscopic details
and fluctuation effects that may be important near some
critical points. Therefore a promising way to bridge the gap
between the microscopic details and system level behaviors
is to develop coarse-grained (CG) approaches, aiming at
significantly reducing the degree of freedom while properly
preserving the microscopic information of interest.

Recently, several CG approaches have been proposed in
the literature. Renormalization transformation has been used
to reduce the size of self-similar networks while preserving
the most relevant topological properties of the original ones
[9–12]. Gfeller and Rios proposed a spectral decomposition
technique to obtain a CG network which can reproduce the
random walk and synchronization dynamics of the original
network [13]. Kevrekidis et al. developed equation-free multi-
scale computational methods to accelerate simulation using a
coarse time stepper [14], which has been successfully applied
to study the CG dynamics of oscillator networks [15], gene
regulatory networks [16], and adaptive epidemic networks
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[17]. Nevertheless, none of the works mentioned above has
considered critical phenomena in complex networks, which
has been a frontier topic in the context of network science [6].

Very recently, we have proposed a degree-based CG
(d-CG) approach to study the critical phenomena of the
Ising model and the susceptible-infected-susceptible epidemic
model on unweighted networks [18]. A local mean-field
(LMF) scheme was introduced to generate the CG network
from the microscopic one. Specifically, we have proposed a
so-called condition of statistical consistency (CSC) that the
CG model should satisfy to guarantee the validity of the CG
approach. We showed that the CSC can be exactly fulfilled
if we merge nodes with the same degree together. Extensive
numerical simulations showed that our d-CG approach does
work very well to reproduce the phase transition behaviors
of the original network, including the critical point and the
fluctuation properties, but with much less computational effort.
Our method also makes it feasible to investigate the finite size
effects of both models, which should be much more expensive
and even forbidden if we use brute-force methods. However,
this d-CG approach can only apply to binary networks, i.e.,
each of the link in the network either exists or not, but with
no weight. As we know, many real-world networks are in-
trinsically weighted, with their links having diverse strengths.
Examples include the collaboration networks [19–21], airport
networks [22,23], metabolic networks [24], and predator-prey
relationship networks [25], to list just a few. Therefore a
straightforward question is can we use CG approaches to study
the critical phenomena in weighted networks?

To answer this question, in the present work, we have
considered the critical phenomena of the Potts model in
weighted complex networks. The Potts model is related to
a number of important topics in statistical and mathematical
physics [26,27] and was successfully applied to neural net-
works, multiclass classification problems, the graph coloring
problem, and so on. It contains a system of coupled nodes,
each of which has p possible states. Only when two nodes
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are in the same state do they have pairwise interactions. With
the increment of temperature, the Potts model undergoes an
order-disorder phase transition at some critical temperature.
For p = 2, the Potts model is equivalent to the well-known
Ising model [6,26]. Instead of the d-CG scheme, we have
proposed a strength-based CG (s-CG) approach, where those
nodes with similar strengths are merged together to form a
CG node. Note that in weighted networks, it is impractical
to merge nodes with exactly the same strength together. By
detailed analysis of the discrepancy between the Hamiltonian
of a CG configuration and that of its corresponding micro-
scopic configurations, we show that the s-CG approach can
approximately satisfy the CSC defined on weighted networks.
Extensive numerical simulations are performed on scale-free
(SF) networks and random networks, without or with strength
correlation, showing that our s-CG approach works very well
in reproducing the phase diagrams, fluctuations, and finite size
effects of the microscopic model, while the simple d-CG does
not. Compared to our previous work [18], the present study
steps forward several important steps. First of all, we should
note that s-CG is a brand new method compared to d-CG
and the latter cannot apply to weighted networks, although
they share some similar ideas. Second, weighted networks
are of more ubiquitous importance than binary unweighted
ones, thus the s-CG approach should find more applications.
What is more, we have extended the study from the simple
two-state Ising model to a more general one, the multistate
Potts model. In addition, we have performed error analysis in
the present study, which clearly demonstrates the robustness
of our approach.

II. COARSE-GRAINING PROCEDURE

A. CG Potts model

In this paper, we consider the p-state Potts model on a
weighted network consisting of N nodes, whose Hamiltonian
is given by

H = −
∑
i<j

wij δαi ,αj
, (1)

where wij is the weight on the edge connecting a pair of nodes i

and j (wij = 0 if the nodes i and j are not connected). αi ∈
{1, . . . ,p} denotes the state of node i, and δαi ,αj

= 1 if αi = αj

and 0 otherwise.
To set up the CG Potts model, one needs to obtain the CG

Hamiltonian defined on the CG network, followed by CG MC
simulations to study the dynamic behaviors. The CG network
is simply obtained by node merging, i.e., qμ nodes within
the original micronetwork are merged into a single CG node
Cμ, where μ = 1, . . . ,Nc labels the CG node and Nc is the
size of the CG network. Following the LMF scheme used
in [18], the weight of the edge between two CG nodes μ and ν

reads

w̄μν =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

qμ(qμ − 1)

∑
i,j∈Cμ;i<j

wij for μ = ν,

1

qμqν

∑
i∈Cμ,j∈Cν

wij for μ �= ν.

(2)

The CG Hamiltonian H̄ can be readily obtained,

H̄ = H̄1 + H̄2,

where

H̄1 = −
∑

μ

w̄μμ

∑
α

ημ,α(ημ,α − 1)

2
, (3a)

H̄2 = −
∑

μ,ν(>μ)

w̄μν

∑
α

ημ,αην,α. (3b)

Herein, H̄1 (H̄2) denotes CG interactions inside (among) the
CG nodes, respectively. ημ,α stands for the number of α-state
micronodes inside Cμ. Since there are ημ,α (ημ,α−1)

2 possible
distinct pairs of α-state micronodes inside Cμ, and each pair
has a weighted coupling w̄μμ, the CG interactions among all
the α-state nodes inside Cμ are given by

H̄
(α)
μ,1 = −w̄μμ

ημ,α(ημ,α − 1)

2
.

Summation of this over all CG nodes μ and states α gives the
result in Eq. (3a). Equation (3b) can be interpreted in a similar
way. Note that Eqs. (3) are closed at the CG level, i.e., as long
as one has constructed the CG network, w̄ and H̄ are then
both well defined, based on which one can perform CG-MC
simulations without going back to the microlevel.

B. CSC

The above procedure indicates how to calculate the CG
Hamiltonian if we already have the CG network. However,
which qμ nodes are merged together to form a CG node Cμ

is yet not determined. Generally speaking, one may construct
the CG network deliberately, for instance, one may simply
generate Nc values, qμ, obeying

∑Nc

μ=1 qμ = N and then just
randomly merge qμ micronodes to form Cμ. Therefore an
important question arises: How do we guarantee that the
CG model can reproduce the dynamics of the corresponding
microscopic model correctly?

We address this problem by extending the so-called CSC as
proposed in [18]. We introduce �ημ = {ημ,α}α=1,...,p to denote
the state of Cμ and �η = {�ημ}μ=1,...,Nc to denote the configura-
tion of the CG network. Note that a given CG configuration
�η corresponds to many microscopic configurations, which
defines the degeneracy factor g(�η). In the equilibrium state
of the CG model, the probability of finding a given CG
configuration �η is given by the canonical distribution, i.e.,

pCG(�η) = g(�η)e−H̄ /kBT /Z̄,

where Z̄ = ∑
�η pCG(�η) is the CG partition function, kB is the

Boltzmann constant, and T is temperature. It is important to
note, however, that pCG(�η) can be calculated exactly from the
equilibrium distribution of the micromodel,

pmicro(�η) =
∑′

e−H/kBT /Z,

where Z is the partition function of the micromodel, and the
prime means summation over all the microscopic configu-
rations that contribute to �η. Since we are interested in the
equilibrium phase transition behavior of the Potts model, we
thus assert that for the CG model to be statistically consistent
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with the micromodel, pCG(�η) and pmicro(�η) must be equal, i.e.,
the CSC reads

g(�η)e−H̄ /kBT /Z̄ =
∑′

e−H/kBT /Z. (4)

C. s-CG scheme and error analysis

In the present work, we propose a s-CG scheme to construct
the CG network, i.e., nodes with the same or similar strengths
are merged together to form a CG node, where the strength si

of node i is defined as si = ∑
j wij [22,28]. In the following,

we will show that if nodes inside each CG node have the
same strength, the CSC will hold exactly within the annealed
network approximation (ANA) [6,29–31]. In addition, if the
strengths within Cμ are nearly the same, the CSC can also hold
approximately.

ANA has been widely used to study the ensemble averaged
dynamics of complex networks and proved to be successful.
ANA assumes that one can replace the dynamics on a given
network by that on a weighted fully connected graph with
connectivity Aij = didj /(DN ), where di (dj ) denotes the
degree of node i (j ) and D is the mean degree of the
network. Analogously, in weighted networks link weight can
be expressed as

wij = sisj /(SN ), (5)

where S is the mean strength of the network. Substituting
Eq. (5) into Eq. (2), the adjacency matrix of the CG network
now reads

w̄μμ = 2

qμ(qμ − 1)

∑
i<j∈Cμ

(Sμ + δsi)(Sμ + δsj )

SN

= S2
μ

SN
(1 − �μ), (6a)

w̄μν = 1

qμqν

∑
i∈Cμ,j∈Cν

(Sμ + δsi)(Sν + δsj )

SN
= SμSν

SN
. (6b)

Herein, we have written si = Sμ + δsi , with Sμ =
1
qμ

∑
i∈Cμ

si being the mean strength within Cμ. �μ =
〈δs2〉μ

S2
μ(qμ−1) where 〈δs2〉μ = 1

qμ

∑
i∈Cμ

(δsi)2 is the variance of

strengths within Cμ. In Eq. (6a), we have used the
fact that (

∑
i∈Cμ

δsi)2 = 2
∑

i<j∈Cμ
δsiδsj + ∑

i∈Cμ
(δsi)2 =

0. Equation (6b) holds simply because
∑

i∈Cμ,j∈Cν
δsiδsj =

(
∑

i∈Cμ
δsi)(

∑
j∈Cν

δsj ) = 0. Substituting Eq. (6) into Eq. (3),
we can get

H̄1 = − 1

SN

∑
μ

S2
μ(1 − �μ)

∑
α

ημ,α(ημ,α − 1)

2
, (7a)

H̄2 = − 1

SN

∑
μ,ν(>μ)

SμSν

∑
α

ημ,αην,α. (7b)

To compare the CG Hamiltonian with the microscopic one,
we now group the micronodes with same state α inside Cμ as
Cμ,α . Clearly, the size of Cμ,α is ημ,α . As in Eq. (3), we can
also split the micro-Hamiltonian H into two parts,

H = H1 + H2, (8)

where H1 and H2 denote energy contributions from intra- and
inter-CG nodes, respectively. With ANA, and noting the fact
only nodes with same state have interactions at the microlevel,
one has

H1 = −
∑

μ

∑
α

∑
i<j∈Cμ,α

sisj

SN

ημ,α(ημ,α − 1)

2
, (9a)

H2 = −
∑

μ,ν(>μ)

∑
α

∑
i∈Cμ,α,j∈Cν,α

sisj

SN
ημ,αην,α. (9b)

Following similar steps to obtain Eq. (7), we may also write
si = Sμ,α + δsi (here node i belongs to the group Cμ,α) and
Eqs. (9) change to

H1 = −
∑

μ

∑
α

∑
i<j∈Cμ,α

(Sμ,α + δsi)(Sμ,α + δsj )

SN

× ημ,α(ημ,α − 1)

2

= − 1

SN

∑
μ

∑
α

S2
μ,α(1 − �μ,α)

ημ,α(ημ,α − 1)

2
, (10a)

H2 = −
∑

μ,ν(>μ)

∑
α

∑
i∈Cμ,α,j∈Cν,α

(Sμ,α + δsi)(Sν,α + δsj )

SN
ημ,αην,α

= − 1

SN

∑
μ,ν(>μ)

∑
α

ημ,αην,αSμ,αSν,α. (10b)

Here �μ,α = 〈δs2〉μ,α

S2
μ,α (ημ,α−1) where

〈
δs2

〉
μ,α

=
1

ημ,α

∑
i∈Cμ,α

(δsi)2 is the variance of strengths within the
group of nodes Cμ,α. Comparing Eqs. (7) with Eqs. (10),
the discrepancy between the CG Hamiltonian and the
micro-Hamiltonian is given by

H̄1 − H1 = − 1

SN

∑
μ

∑
α

ημ,α(ημ,α − 1)

2

× [
S2

μ(1 − �μ) − S2
μ,α(1 − �μ,α)

]
, (11a)

H̄2 − H2 = − 1

SN

∑
μ,ν

∑
α

ημ,αην,α(SμSν−Sμ,αSν,α). (11b)

Obviously, for the exact s-CG algorithm where all the nodes
inside a given CG node have same strength, �μ = �μ,α =
0 ∀(μ,α) and Sμ = Sμ,α , hence H̄1 = H1 and H̄2 = H2. In this
case, all those microscopic configurations contributing to a CG
configuration �η have exactly the same Hamiltonian H , which
also is equal to the CG Hamiltonian H̄ . Since the constrained
summation

∑′ contains exactly g(�η) items, the numerators on
both sides of Eq. (4) are exactly equal, i.e., g(�η)e−H̄ /kBT =∑′

e−H/kBT . Since we can also write the microscopic partition
function as Z = ∑

�η(
∑′

e−H/kBT ), it is readily shown that the
two partition functions are equal, Z̄ = Z. Therefore the CSC,
Eq. (4), exactly holds.

However, we should note that for a weighted network, the
exact s-CG method is not practical, since the strength of a
given node is generally not an integer. Therefore usually one
can only merge nodes with close strengths together. Let us

analyze Eq. (11) again. The factor �μ scales as
〈δs2〉μ

S2
μqμ

, hence if
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FIG. 1. (Color online) (a), (b) M and χ as functions of T for the three-state Potts model on unweighted SF networks (N = 16384 and
θ = 0), obtained from MC simulation (solid line), HMFT (triangle), random-merging CG (dotted line), and the s-CG (square and circle).
(c) Dependence of Tc on the network size N obtained from the s-CG approach with the fixed Nc = 64. All the networks have the fixed D = 20.
The error bars (not shown) are smaller than the symbol sizes.

we merge many nodes with similar strengths together, �μ 	 1
is expected to be true. One may also expect that �μ,α 	 1 for
the same reason. Therefore the discrepancy between H̄ and
H mainly depends on the difference between Sμ and Sμ,α .
Here, we note that the nodes with α state flip with time
during the simulation. In the equilibrium state, one expects
that Cμ,α may scan throughout Cμ many times, such that
Sμ,α averaged over time is close to Sμ. Hence (H̄ − H )/H
averaged over long time could be small. Note that if we
merge nodes randomly, �μ 	 1 and �μ,α 	 1 will be violated
and the above reasoning should fail. We thus conclude that
the pratical s-CG approach, by merging nodes with similar
strengths together, can satisfy the CSC approximately.

III. NUMERICAL RESULTS

To show the validity of our s-CG approach, we perform
extensive simulations on weighted SF networks. SF networks
are very heterogeneous and serve as better candidates to test
our method than other homogeneous networks, such as small-
world or random networks (other types of complex networks
have also been investigated; the qualitative results are the same
and not shown here). We first generate a standard (unweighted)
SF network by using the Barabási-Albert (BA) model [32]
with power-law degree distribution P (k) ∼ k−3. To convert
this unweighted SF network into a weighted one, we use the
algorithm as proposed in [33]: The weight of a link between
node i and j (1 � i,j � N ) is given by wij = ( i

N
+ j

N
)θ /2,

where the indexes of all nodes have been randomly shuffled
and θ is a tunable parameter. Note that θ = 0 corresponds to
an unweighed network.

The MC simulation at the microscopic level follows stan-
dard Metropolis dynamics: At each step, we randomly selected
a micronode and try to update its state to another state randomly
chosen from the other possible p − 1 states, with an acceptance
probability min(1,e−	H/kBT ), where 	H is the associated
change of the micro-Hamiltonian. In the present work, we set
kB = 1. Similarly, during each CG-MC step, a CG node Cμ

is randomly chosen with a probability proportional to its size
qμ. The probability for the process that an α node changes
to a β node, with correspondingly ημ,α → ημ,α − 1 and
ημ,β → ημ,β + 1, is given by ημ,α min(1,e−	H̄/kBT ), where

	H̄ is the change of CG Hamiltonian during this process.
Since Nc can be much smaller than N , the CG MC is expected
to be much faster and memory saving than the microlevel MC
simulation.

The collective state of the system is described by the
total magnetic moment M = 1

2N

∑
μ,α |Mμ,α|, where Mμ,α =

pημ,α−1
p−1 (μ = 1, . . . ,Nc) denotes the α component of the

magnetic moment within Cμ. With increasing temperature T ,
the Potts model undergoes a phase transition at some critical
temperature Tc from an ordered state, where M ∼ O(1) is
strictly nonzero, to a disordered state with M � 0. We use
the similar s-CG approach to construct the CG network with
different Nc and compare the results obtained from CG-MC
simulations with those of micro-MC simulations.

To begin, we consider the three-state Potts model. In
Fig. 1, we show the results for θ = 0, where the network is
essentially unweighted and the s-CG approach is identical
to the d-CG. Figures 1(a) and 1(b) show the moment M

and susceptibility χ = βN (〈M2〉 − 〈M〉2) as functions of T ,
respectively. The susceptibility is related to the variance of the
total magnetization according to the fluctuation-dissipation
theorem. Apparently, our CG results (empty squares and
solid circles) are in excellent agreement with the microlevel
counterparts (solid lines). As comparisons, we have also
shown the results obtained by a random-merging (RM) CG
model (dotted lines) and the heterogeneous mean-field theories
(HMFT) [34] (empty triangles). Here, the RM model means
that one simply merges N/Nc randomly selected nodes to
form a CG node. Evidently this random scheme fails to
reproduce the microscopic behaviors at all. The results of the
HMFT are obtained by numerically solving the self-consistent
equations of order parameter [34]. We find that the HMFT
can predict the curve of M ∼ T quite well, however, it fails
to predict the curve of χ ∼ T . Strikingly, even when the
original network is reduced to one with only 16 CG nodes,
the CG model still faithfully reproduces the phase transition
curves and fluctuation properties. Since Nc is largely reduced
compared to N , a considerable speedup of CPU time can be
achieved, which makes it feasible to study system size effects.
Figure 1(c) plots Tc as a function of ln N , obtained by our CG
method with Nc = 64. Tc is determined as the location of the
peak in the χ ∼ T curve, as in Fig. (1(b)). The dependence
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FIG. 2. (Color online) (a), (b) M and χ as functions of T for the three-state Potts model on weighted SF networks with D = 20, N = 1024,
θ = 2.4, and Nc = 16. (c) Dependence of Tc on the network size N . The error bars are omitted for clarify since they are smaller than the
symbol sizes.

is linear with a slope � 1.68, which agrees rather well with a
theoretical prediction Tc/ ln N = S

4p
� 1.67 [34], where S is

the average node strength in the network.
For θ �= 0, the networks are weighted. Here we take θ = 2.4

as an example to ensure the heterogeneity of the link weights.
Figures 2(a) and 2(b) show M and χ as functions of T ,
respectively. As in Fig. 1(b), the peak in χ locates the critical
point Tc. Clearly, the s-CG results (solid circle) are still
in excellent agreement with the MC results (solid lines),
however, the d-CG (solid squares) [18] and RM CG (dotted
lines) both fail. For such weighted networks, the dynamic
equations of HMFT is not available either. Thus, for such
weighted networks, our s-CG approach is the only promising
CG approach so far. In Fig. 2(c), we have also shown the
dependence of Tc on the network size N . Apparently, there is
also a linear dependence between Tc and ln N with the slope
being about 1.288. As mentioned in the former paragraph,
this slope depends on the average strength S. For a weighted
network, one may estimate S by 〈wij 〉D, where 〈wij 〉 �∫ 2

0 xθ/4dx = 1
4(θ+1) 2

θ+1. Substituting D = 20, θ = 2.4, and

p = 3 to these formula, we obtain Tc/ ln N = S
4p

� 1.293,
which is consistent with the simulation value.

In real-world networks, correlation is an ubiquitous feature.
For instance, social networks show that nodes with large
degrees tend to connect together, a property referred to as
“assortative mixing” [35]. In contrast, many technological and
biological networks show “disassortative mixing,” i.e., con-
nections between high-degree and low-degree nodes are more
probable [36,37]. Previous studies showed that correlations
may play important roles in network dynamics [35–39]. In the
present work, we have used our s-CG method to study the
phase transition of the Potts model on correlated networks,
which cannot be studied by the HMFT, which assumes no
degree correlation. To characterize the assortative property of
the weighted network, a strength correlation coefficient r , an
extension of the degree correlation [35], can be defined as

r = (〈sisj 〉 − 〈si〉〈sj 〉)
/(〈

s2
i

〉 − 〈si〉2
)
. (12)

Here si and sj are the strengths of the two end nodes of an
edge. r is zero for networks with no strength correlation, such
as BA-SF networks, and positive or negative for assortative or
disassortative mixing networks, respectively.

Figure 3(a) shows Tc as a function of r , obtained from our
s-CG approach and micro-MC simulations for θ = 0. Again,
the fits between CG-MC and MC are good. Figure 3(b) shows
the effects of correlated network size on Tc. Interestingly,
we find that the linear dependence between Tc and ln N is
lost for correlated networks. For assortative (disassortative)
networks Tc grows monotonically much faster (slower) than
ln N , respectively. In other words, the ordered state in an
assortative (disassortative) network is harder (easier) to be
destroyed with increasing temperature than in an uncorrelated
network. This is understandable since a “hub” node in the
network is more difficult to change its state than a “leaf node
due to a larger energy barrier. In an assortative network, hub
nodes are connected together, such that they tend to freeze into
a local ordered state which is stable to thermal fluctuations.
For a disassortative network, a hub node is usually connected
to many leaf nodes. Since leaf nodes can change state easily,
the “alone” hub node is more likely to change state with
the help of their “boiling” neighbors. Therefore assortative
correlations tend to increase Tc as observed here.

In Fig. 4, M and χ of the three-state Potts model on
weighted networks are plotted as functions of T at different
correlation coefficient r , obtained from our s-CG approach
and micro-MC simulations. Again, the agreements between
CG-MC and MC are excellent, further demonstrating the
validity of our method.

FIG. 3. (Color online) Phase transition behaviors of the three-
state Potts model on unweighted correlated networks. (a) Tc plotted
as a function of the network correlation coefficient r , obtained
via CG-MC and MC simulations, with N = 1024 and Nc = 64.
(b) Dependence of Tc on the network size N . The solid line cor-
responds to uncorrelated networks for comparison. All the networks
have the fixed D = 20.
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FIG. 4. M and χ as functions of T for the three-state Potts model on weighted correlated networks. The symbols and lines correspond to
the CG-MC and MC simulation results, respectively. Other parameters are the same as in Fig. 2.

So far, we have shown that our CG model can faithfully
reproduce the phase transition of the p = 3 states Potts model.
In the following, we will demonstrate the validity of our CG
approach for the general p-state Potts model. It was known that
the order of the phase transition for the p-state Potts model
in regular lattices depends on both p and dimensionality. In
two-dimensional lattices, the transition is first order for p � 5,

while in three-dimensional lattices the transition is first order
for p � 3 [26]. For the networked p-state Potts model, it was
shown that the first-order phase transition is suppressed as the
degree distribution of a network becomes more heterogeneous
[34,40,41]. In Fig. 5(a) and 5(b), we plot M and χ as functions
of T for the p-state Potts model with p = 5,8,12 on weighted
BA networks. It is clearly observed that there are good

FIG. 5. M and χ as functions of T for the p-state Potts model: (a), (b) correspond to weighted BA networks, and (c), (d) to weighted ER
networks. The symbols and lines in (b) are the same as (a), and the symbols and lines in (d) are the same as (c). Other parameters are the same
as in Fig. 2.
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agreements between CG-MC simulations and MC simulations.
It is also found that the jump of magnetization at the phase
transition, a signature of a first-order transition, is not profound
even for p = 12. However, it is expected that the first-order
phase transition will appear in a more homogeneous network.
To the end, we consider a well-known homogeneous network
model, Erdös-Rényi (ER) random networks, to test the feasi-
bility of our CG approach in the first-order phase transition. In
Figs. 5(c) and 5(d), we plot M and χ as functions of T for the
p-state Potts model with p = 3,5,8 on weighted ER networks.
The agreements between CG-MC and MC are good, and the
results show that for p = 3 the phase transition is second order,
while for p = 5 and p = 8 the phase transition is first order.

IV. CONCLUSIONS

In summary, we have developed a s-CG approach for
studying the phase transition of the Potts model on weighted
networks. We have utilized a LMF scheme to generate

the connectivity of the CG network and derived the CG
Hamiltonian. To address the problem of how to guarantee
the validity of the CG model, we have proposed the so-called
CSC, which requires that the probability to find a given CG
configuration in the equilibrium state, calculated from the
CG model, should be the same as that calculated from the
original microscopic model. We show, by performing error
analysis, that our s-CG approach, by merging nodes with close
strengths together, holds the CSC approximately with ANA.
Detailed numerical simulations demonstrate clearly that our
s-CG approach can reproduce the microscopic MC simulation
results very well, not only for the onset of phase transition, but
also for the fluctuations and system size effects.
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