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Evolutionary dynamics in a simple model of self-assembly
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We investigate the evolutionary dynamics of an idealized model for the robust self-assembly of two-dimensional
structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that
drive the self-assembly process. The relationship between the model’s rule set and its resulting self-assembled
structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets
evolve under selection for specified target structures. The corresponding complex fitness landscape generates rich
evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate,
and method of recombination. Furthermore, these systems are simple enough that in some cases the associated
model genome space can be completely characterized, shedding light on how the evolutionary dynamics depends
on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the
preference for dihedral over cyclic symmetry observed for homomeric protein tetramers.
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I. INTRODUCTION

Self-assembly processes, in which constituent components
reliably assemble into a complete structure without external
control, are ubiquitous in nature, providing the means by
which sophisticated biological machinery such as protein
complexes are formed within organisms [1]. A key question
then arises: How did the interactions that drive these self-
assembly processes evolve over billions of years to form the
optimized systems we observe today [2–4]? Bioinformatic
studies of protein complexes [5] suggest that a number of
observed trends in protein quaternary structure are caused not
only by the biological function under selection, but also by
the details of the evolutionary dynamics. Some of these trends
have recently been explained by using computer simulations
of a simple continuous patchy particle model [6] for globular
proteins [7,8]. However, such models are computationally
expensive because a detailed simulation of the assembly
process is required at each step in evolutionary time.

In this paper we study the evolutionary dynamics of a
highly idealized coarse-grained model for the evolution of
self-assembling systems, for which the assembly process
can be simulated quickly and straightforwardly. The model
consists of an “alphabet” of square tiles that self-assemble into
polyominoes: unions of connected cells on a two-dimensional
(2D) square lattice. The alphabet of available tiles, which
we term the assembly rule set, contains a description of the
interactions that drive the assembling system toward a final
structure [9]. A physical interpretation of the model consists
of a structure assembling on a 2D substrate in contact with
a suspension of tiles, as shown in Fig. 1. These tiles can
form many kinds of structures, both bounded and unbounded.
We focus on deterministic rule sets that always assemble into
the same bounded 2D structures, a class of behavior that is
analogous to the monodisperse self-assembly observed for
example for many kinds of protein quaternary structures.

These models may also be relevant for experimental
systems such as 2D self-assembled systems that have been

made of RNA [10] and DNA [11] tiles. Each tile can be
tailored to interact with its neighbors through complementary
bonding. Patterns and grids of varying geometries on the
nanoscale have been produced by changing these design rules,
with some examples being circuit patterns [12] and Sierpinski
triangles [13]. The variety of structures that can be produced
using DNA tiling [14] and DNA-linked particles [15] is rapidly
increasing. The evolutionary design of polyomino structures
may shed light on the design of these synthetic systems.

Pioneering work by Wang [16] demonstrated that tiles
could be used to specify a Turing machine. In an important
development, Winfree et al. showed that DNA nanotechnology
could be used to create molecular Wang tiles [11]. Self-
assembling tile sets can thus perform computational tasks
such as binary counting, and a measure of the complexity of
assembly sets required for such algorithmic applications has
been computed [17]. This theoretical work has been extended
to study the details of tile assembly nucleation [18] and the
effects of errors in the assembly process [19].

In this study, we use genetic algorithms (GAs) [20,21] that
search through the space of all possible rule sets to find those
that generate the deterministic assembly of desired polyomino
structures. Despite its simplicity, and resulting computational
tractability, the model produces rich evolutionary behavior.
The assembly process can be viewed as a mapping that
transforms an assembly rule set into an assembled polyomino
structure. This mapping is reminiscent of the genotype-
phenotype map in evolutionary biology, whereby information
in the genome (the genotype) is used to develop the physical
form of a biological structure (the phenotype).

We investigate how the evolutionary dynamics of our
model system depends on parameters such as population size,
mutation rate, and recombination. In GAs, mutation rate has
been shown to dramatically affect the speed of evolution,
with populations evolving at higher rates around an optimal
mutation rate that is roughly the reciprocal of the genome
length [22,23]. Biological organisms also often have mutation
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FIG. 1. (Color online) Illustration of a possible realization of
physical polyomino assembly. Square tile building blocks interact
with each other through complementary bonding between edges,
here illustrated with interacting polymer chains. In addition, tiles
experience an attractive interaction to a flat substrate, leading to
growing polyomino structures on a surface.

rates around this optimal value [24,25], and theoretical work
based on the quasispecies model supports this result as a
representation of an optimal balance of strengths between
mutation and selection [26–28]. Recombination has also been
shown to increase the speed of evolution on a simple fitness
landscape [29]. We study how these evolutionary variables
affect the ability of our self-assembling systems to adapt to
high-fitness structures.

An important property of our model is that it is simple
enough to allow, in some cases, an exhaustive search of the
associated search space, yielding a fully characterizable but
highly nontrivial fitness landscape [30,31] that facilitates a
detailed analysis of the underlying evolutionary dynamics.

In addition, we aim to explore the emergence of symmetry
in evolving self-assembling systems. It has been observed, for
example, that homomeric tetramer protein complexes show a
strong preference for dihedral (D2) symmetry over cyclic (C4)
symmetry [5,7]. We study this preference as a function of var-
ious evolutionary parameters with our simplified polyomino
system, for which a complete characterization of the fitness
landscape can be achieved.

This paper is structured as follows. In Sec. II we describe
our model of self-assembling polyominoes and our imple-
mentation of GAs. In Sec. III we exhaustively study the search
space defined by a particular parametrization of our model.
Section IV analyzes how evolutionary variables including
mutation rate, population size, and search space size affect
the dynamics of polyomino evolution. In Sec. V we apply our
model to study the evolution of homomeric tetramer protein
complexes, and we list our conclusions in Sec. VI.

II. MODEL AND METHODS

A. Model implementation

Our model uses interacting square tiles to model the
self-assembly of 2D polyomino structures on a square lattice
[9]. The interactions between adjacent tiles are defined by
the nature of each tile’s edges, which are assigned “colors,”
with any two colors either experiencing no interaction or
an attraction. In this conceptual model, there is no energy
or temperature scale, so two edges are either noninteracting
or have an effectively infinite attractive interaction, making
bonding irreversible.

A given assembly scenario consists of nt tile types and an
alphabet of nc available colors. Each tile is entirely specified
by a description of its four edge colors. We denote a tile as an

ordered set of four colors, with the first element corresponding
to the top edge and subsequent elements corresponding to the
edges reached in clockwise order, for example, {1,2,3,4}. An
nc × nc binary interaction matrix A describes the interaction
between colors, with colors i and j experiencing an attractive
interaction if Aij = 1, and no attraction otherwise. The
generalized case of varying interaction strengths has been
studied analytically [32], but for simplicity we consider binary
interactions.

The tiles are similar to Wang tiles [33], with two important
differences: Interactions between colors are not limited to each
color bonding only with itself, and the tiles may be rotated to
any of the four possible orientations allowed by C4 symmetry
(for example, {1,2,3,4} ≡ {3,4,1,2}). The sides of a tile
therefore comprise what is termed “an nc-ary fixed necklace”
of length 4 [9,34]. The generalization to free necklaces [34], in
which tiles may also be “flipped” ({1,2,3,4} ≡ {1,4,3,2} and
its cyclic variants), is visited in Sec. V.

Assembly progresses on an infinite square lattice and takes
places in two phases: initiation and growth (see Fig. 2).
The initiation phase involves one or more tiles being placed
on the (initially empty) lattice at prescribed positions and
orientations: These are the nucleus tiles, each of which is
described by the tile type of the nucleus, its co-ordinates on
the lattice, and its orientation. The combined instruction set
representing nucleus, tile edge, and interaction matrix data is
the rule set for a particular assembly scenario.

There are several alternative schemes for nucleating
assembly in this model. Assembly may progress from a single
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FIG. 2. (Color online) Illustration of polyomino assembly for a
rule set with nt = 4,nc = 7 and with the nucleus and interaction
conventions described in the text. A binary representation of a rule set
is translated to nucleus, tile, and interaction information. The nuclei
are placed on a lattice in the initiation stage, and growth progresses
stochastically, to a final output possessing shape and tile, but not
orientational, determinism: The diagonal neighbors of the central tile
have two possible orientations, as their 4 edge can bond to either of
the two adjacent 3 edges.
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initial tile, laid down at the start of the assembly process.
In this case, the single tile may be of a fixed, specific tile
type—which we term a single fixed nucleus (SFN)—or of
a tile type arbitrarily chosen from the rule set—which we
term a single general nucleus (SGN). It has been shown that to
guarantee deterministic assembly from an arbitrary nucleus tile
often requires considerably more information content within
genomes [9].

The question of nucleating tile-based self-assembly has
been addressed theoretically [35] and experimentally [18] in
the context of algorithmic DNA assembly. In these studies,
seed particles constructed of DNA form the nucleus of a
structure and contain information to regulate the assembly
process. This approach effectively corresponds to an SFN
setup.

We adopt conventions for the nucleus tiles and the structure
of the interaction matrix A, allowing us to simplify the repres-
entation of a rule set. We use an SFN and take the nucleus
tile to be of the tile type first described in the rule set.
Furthermore, we fix the orientation of the nucleus tile, so
that the edge specified first in the rule set is taken to be the
upper edge of the tile when first placed on the grid. Under our
convention, the position of the nucleus tile is arbitrary, and
polyominoes that differ only by translations are counted as
equivalent.

We usually (with an exception in Sec. V, which allows
the incorporation of self-interacting colors) fix the interaction
matrix by defining the interaction between colors i and j

(represented by non-negative integers) as

Aij = (1 − i mod 2)δi(j+1) + (i mod 2)δi(j−1), (1)

so that each color only interacts with one partner, 1 ↔ 2,
3 ↔ 4, . . . , and 0 provides a neutral edge, which does not
interact with any other edge type. While many other interaction
matrices are possible, we employ this choice for simplicity
and consistency. This choice of matrix contains no colors
that bond to more than one other color, which would lead
to nondeterministic assembly (see Sec. II B). We note that the
structure of this matrix leads to degeneracy between rule sets:
All bonding pairs have identical physical characteristics, and
within a rule set, one pair may be replaced by another without
changing the resulting structure, providing that the replacing
pair does not interfere with bonds elsewhere in the rule
set.

The combination of conventions for assembly nucleation
(SFN, with the first tile specified in the rule set as the
nucleus) and the interaction matrix [Eq. (1)] allows us to
represent a given rule set by specifying the edges of the tiles
involved in assembly alone. Rule sets can then be represented
straightforwardly by a binary string (see Fig. 2), by writing
each numerical parameter in the rule set (each tile edge)
as its binary counterpart and concatenating all the binary
variables into one long string. This resulting “genome” is
then suitable for processing with GAs (see Sec. II C). We
chose this particular representation of the rule set because it
is commonly used for GAs, and mimics, in a very simplified
way, the discreteness of the genetic code. Nevertheless, many
other encoding schemes could be used. For example, within the
family of binary encoding schemes one could use Gray coding,

in which the binary representations of successive integers
differ by only one change at a single point in their string
of bits [36]. Many other protocols could be envisaged: For
example, genomes could be stored as a list of decimal values.
The choice of protocol for representing a rule set as a genome
will affect connectivity relationships on the underlying search
space. For example, a decimal code would lead to a more
connected space than the binary code that we use, while a
Gray coding would affect the search space structure in more
subtle ways. Although we do not study in detail the effect
of coding protocol in this paper, it should be kept in mind
that the coding protocol can affect the detailed evolutionary
dynamics.

Growth progresses stochastically in the following manner.
A tile type is chosen randomly from a uniform distribution over
the available tiles. A position on the lattice is selected randomly
with the constraint that it must be adjacent to a previously laid
tile. The chosen tile is cycled in random order through its
four possible orientations at the chosen point. If during this
cycling the tile experiences an attractive interaction to any
of its four neighboring lattice points, it bonds immediately
in that configuration at the chosen site, as illustrated in
Fig. 2. In this way, bonding occurs irreversibly, but the
model can be generalized to allow reversible interactions by
introducing a temperature scale, relaxing the binary constraint
on interaction matrix A, and allowing assembly to proceed
within a simulation that includes thermal effects.

B. Classes of assembly behavior

Rule sets in our model may result in unbound structures:
those where the assembly process proceeds in at least one
direction without termination. Unbound structures may result,
for example, from a set of one or more tiles that bonds to
itself repeatedly, forming an endless chain of repeated units,
as illustrated in Fig. 3(a).

Self-assembly in biology may also yield unbound struc-
tures. Proteinaceous structures consisting of extended sets
of repeated units include helical protein filaments such as
microtubules [37], actin filaments [38], and tobacco mosaic
virus [39]; 2D arrays such as S-layers [40] and purple
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FIG. 3. (Color online) (a) Unbound and (b) nondeterministic rule
sets. The interactions in this case follow the convention in Eq. (1), so
edge types 1 and 2 experience an attractive interaction and 0 is neutral.
The rule set in (a) consists of one block that is capable of bonding to
itself, thus creating an endless chain of repeated blocks. The rule set
in (b) contains a block capable of bonding to more than one other,
leading to tile nondeterminism depending on which bonding block is
added first. In this case, the two different bonding tiles create different
structures, leading to shape nondeterminism.
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membranes [41]; and even 3D crystals [42], although some
biological mechanism must usually be present to regulate
the size of these assemblies and prevent them being truly
unbound [43].

Another assembly feature that may result from our model
is nondeterminism, whereby the same set of rules may lead
to different structures forming in the growth phase. This
nondeterminism is due to the inherent stochasticity in the
assembly process. Nondeterminism may arise when a tile edge
is capable of bonding to more than one other tile edge, which
may occur, for example, when the partner to a given edge
type appears on more than one tile within the rule set, as
in Fig. 3(b).

Nondeterminism may occur in several ways. Shape non-
determinism is the least subtle form, whereby the overall
shape of the produced structure (disregarding any detail of tile
types, sides, and orientations) differs stochastically in different
assembly runs [see Fig. 3(b), for example]. Tile nondetermin-
ism occurs when the same overall structure is achieved for all
runs, but sites within the structure are occupied by different
tile types stochastically. Orientational nondeterminism occurs
when the structure is both shape and tile deterministic, but
tiles within the structure differ stochastically in orientation
between assembly runs (an example of this is shown in Fig. 2).
Another type of nondeterminism, steric nondeterminism, may
also occur as a result of the different speeds of growth in two
directions that converge on the same point: If two arms of
a structure pass through the same lattice point, the structure
will differ depending on which arm arrives there first and
hinders growth of the other. This type of nondeterminism
does not require the multiple bonding edges mentioned
above and is thus hard to detect through observation of the
genome.

In biology, nondeterminism can also occur in a number
of ways. Some closely related proteins coassemble into
complexes of well-defined size and shape, but in which the
identity of the protein at any position is random. An example
of this phenomenon is in the seeds of pea plants [44] where
the legumin protein is formed by a number of paralogous
genes, which result in hexamers containing randomly assorted
subunits of similar but distinct polypeptide sequences. This
example would correspond to tile nondeterminism in our
model. There also exist examples of shape nondeterminism
in biology, where proteins, such as certain heat shock proteins,
assemble into clusters with a polydisperse distribution of
sizes [45,46].

Finally, our assembly model may yield structures that are
bound (of finite size) and deterministic (in which the self-
assembly process always forms the same structure, with a
specific shape). The majority of protein quaternary structures
fall into this category [43].

For completeness, we note that there is incomplete overlap
between the sets of nondeterministic and unbound structures:
Rule sets may code for outputs that are unbound but determin-
istic, bound but nondeterministic, bound and deterministic,
or unbound and nondeterministic. In this study, we focus
on bound, deterministic structures and refer to structures
not meeting these criteria as UND structures (unbound or
nondeterministic). Some examples of these structures are
shown in Fig. 4.

A (b, nd) B (u, nd) C (u, nd)

D (u, d, 1D) E (u, d, 2D) F (u, nd)

G (u, d, 2D, sf) H (u, nd) I (u, nd)

J (u, nd) K (u, d, 2D) L (u, d, sf)

M (u, nd) N (b, nd) O (u, d)

FIG. 4. (Color online) Illustration of some UND polyomino
types resulting from growth of genomes with nt = 2, nc = 8. UND
polyominoes form the majority of achievable structures. The two
colors label the two different tile types that may be involved in
assembly. Letters in brackets denote whether the structures are
bound (b), unbound (u), deterministic (d), nondeterministic (nd),
space-filling (sf), and periodic in one (1D) or two (2D) dimensions.

All these forms of nondeterminism can, in theory, be
detected by running each growth phase a large number k times
and comparing the output each time. We employ k = 10, a
value that was confirmed through preliminary investigation
to detect most nondeterministic structures while retaining
computational speed. In this investigation, we choose tile and
orientational determinism as our desirable criterion.

C. Genetic algorithm details

GAs are a class of optimization procedures that employ
operators based on evolutionary biology to reach a solution to
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some problem [20,21]. Typically, GAs involve a population of
N individuals, each representing a trial solution to a problem.
A fitness function quantitatively measures the performance of
an individual at solving the required problem.

GAs are run for a number of time steps or generations. Each
generation, a fitness function is used to assign a fitness value fi

to each genome i in a population of N individuals. A selection
operator is then applied, selecting genomes for reproduction
according to their fitness values, with high-fitness genomes
being preferentially selected. The N rule sets comprising the
next generation are then formed from selected genomes. We
employ the roulette-wheel selection method [47], where the
probability P (i) of a genome i being selected is proportional
to its fitness: P (i) = fi/

∑
j fj .

A common practice in the implementation of GAs is
to preserve a certain number of the fittest individuals in a
population from one generation to the next. This approach is
termed elitism, with a proportion ε of fit individuals preserved,
immune to the effects of mutation [21]. We explore the use of
elitism in Sec. IV F but generally set ε = 0.

GAs may employ crossover, modeling recombination.
Without crossover, in the asexual regime, new individuals
begin as cloned copies of selected genomes. With crossover,
modeling sexual reproduction, new individuals are formed
by selecting two “parent” rule sets from the old generation,
forming a new rule set by combining the rule sets of these
parents. The crossover scheme we employ is single-point
crossover, where the first LR bits from one parent and the
last L − LR bits from the other are combined to form a new
individual, and LR is chosen randomly from [0,L].

The implementation of crossover in a simulation is con-
trolled by the crossover rate R, giving the proportion of new
genomes that are formed through crossover. For simplicity, we
only employ values of R = 0 (corresponding to asexual repro-
duction) and R = 1 (corresponding to sexual reproduction).

Another genetic operator used in GAs is mutation, whereby
individuals in a generation undergo stochastic changes to their
rule sets. We employ point mutation, whereby each bit in the
genome is flipped with probability μ.

Genomes may contain redundant information, with a tile
type being coded for more than once in the binary string.
In addition, information on tiles and edges that do not
play a role in the assembly of the final structure may be
included in the genome. This unused information in genomes
allows neutral mutation to progress. A genome may also,
in the aforementioned nondeterministic case, code for many
different polyomino structures, and the same structure may
be produced by more than one genome, providing a many-to-
many mapping.

III. SEARCH SPACE ANALYSIS

The process of evolution can be viewed as an optimization
process on the high-dimensional search space defined by all
possible genomes [30,31]. An advantage of our self-assembly
model is that the search space for simple structures can be
fully characterized. We first investigate the structure of the
search space for a polyomino model with two tiles (nt = 2)
and up to eight colors (nc = 8), allowing three bond types
(1 ↔ 2,3 ↔ 4,5 ↔ 6), with colors 0 and 7 corresponding to

neutral edge types. Each of the 8 tile edges can be represented
by log2 8 = 3 bits, giving a binary genome of length L =
24. The search space therefore consists of 224 � 1.6 × 107

individuals. We refer to search spaces as Snt ,nc
, labeled by the

number of blocks (tiles) nt and number of colors nc, so that
the aforementioned search space is S2,8.

We adopt the convention that the first tile encoded in the
genome is the assembly nucleus, and its initial orientation is
specified by the order in which its edges are encoded, with the
top edge first and others following in a clockwise direction.
We then exhaustively evaluate all polyomino structures that
may be constructed in this system. The majority are UND
structures, some examples of which are shown in Fig. 4 to
illustrate the diversity of achievable forms. These structures
include nondeterministic, bound structures (for example, A in
Fig. 4), deterministic structures that are translationally periodic
in one (D) or two dimensions (E, K), some of which may be
space filling (G). Unbound structures displaying shape but not
tile determinism order also exist (F, M).

The resulting structures are illustrated, along with the
volume of search space they occupy, in Fig. 5. Sets of genomes
encoding the same phenotype form the neutral network of
a given phenotype. The large differences in neutral network
size corresponding to different phenotypes are related to the
differing amounts of information required to specify bonds for
different phenotypes. For example, the single tile phenotype
only requires an absence of any bonding edges rather than
any specific interaction pairs and correspondingly occupies a
large volume of genome space. By contrast, the 4 × 4 block
phenotype requires two interacting pairs of edges, at specific
positions relative to each other, and the number of genomes
fulfilling these criteria is much smaller.

10 224 858

3 132 646

649 536

1 135 584

112 128

75 744

34 368

35 328

17 184

3 744

17 664

(Unbound/Non-deterministic)
X

(2x2)

(catherine wheels)

(hollow square)

(4x4)

(cross)

FIG. 5. 61.1% of the polyominoes that can be grown from
genomes with nt = 2,nc = 8 are UND structures (X). The rest are
bound, deterministic polyominoes. The number of genomes that
encode for each polyomino are given; for sets of structures with
identical values, each structure occurs the given number of times in
genome space. Some structures are given names for ease of reference
in the text.
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FIG. 6. (Color online) Transitions between polyominoes in the S2,8 (nt = 2,nc = 8) system. (a) The value of a pixel denotes the total
number of single-point mutations that result in a change from phenotype x to phenotype y over all genotypes in S2,8 that encode x and y.
(b) The value of a pixel denotes the average proportion of mutations that cause an x → y transition, where the average is taken over all
occurrences of x in S2,8. Pixels in the “no transitions” category denote transitions between phenotypes that cannot be accomplished with a
single mutation.

We now investigate the possible mutational transitions
between structures in the model search space. Within the S2,8

search space, all single mutation transitions were recorded,
identifying the effect of every possible single mutation on
every possible genome—which may change the phenotype or
be neutral (with no phenotypic effect). Figure 6(a) depicts
the number of possible single-mutation transitions between
different phenotypes, while Fig. 6(b) depicts the probability
of a transition to another structure given an initial struc-
ture. In Fig. 6(b), the total number of transitions between
two phenotypes is normalized by the number of genomes
encoding the x-axis phenotype (see Fig. 5). The resulting
quantity measures the average number of mutations in a
genome that encodes phenotype x that cause a transition to
phenotype y.

The Fiedler eigenvalue method [48] was used to arrange
the phenotypes in Fig. 6 to maximize the “blockiness” of
the resulting matrix by clustering rows and columns whose
elements follow similar trends. This method noticeably groups
modularly related polyominoes; for example, the 2 × 1 and
3 × 1 structures are clustered together, as several single-
mutation changes allow transitions between these structures
through the addition or subtraction of a single block. This
clustering reflects the fact that pairs of polyominoes that share
modules (tiles or bond sequences) are more closely connected
in genome space than unrelated structures. (We provide, in the
supplemental material [49], the entire rule set-phenotype map
for S2,8.)

Figure 6(b) shows that the majority of single mutations
from a given phenotype are either neutral, preserving the
phenotype—leading to high diagonal values in the plot—
or cause a transition to a UND or single-tile phenotype.
The fraction of neutral mutations is noticeably smaller for
larger polyominoes (for example, the “Catherine wheel”
structures and the 4 × 4 block have diagonal values under
0.3) than smaller ones (for example, the single tile, 2 × 1
blocks, and the 2 × 2 block have diagonal values over

0.6), partially because genomes encoding small polyominoes
contain more redundant information than those encoding large
polyominoes.

Another observable feature of the search space is that, for
several phenotypes, the most common result of mutations that
are not neutral and do not result in a UND phenotype is a
loss of part of the structure associated with the phenotype.
For example, a significant proportion of mutations lead from
the 4 × 4 block to the 2 × 2 block, removing the outer
“shell” of tiles. The T-shaped tetrominoes also show many
transitions to the L-shaped triominoes, as one tile is lost
from the phenotype. These triominoes in turn show many
transitions to the 2 × 1 blocks, from the loss of another bonded
tile.

Figure 6(b) gives a measure of the average robustness
and evolvability [50] of a given phenotype. The diagonal
values give the phenotypic robustness, measuring the average
(over all genomes that encode a given phenotype) number of
possible mutations that preserve phenotype. This averaging
gives a mean phenotype robustness rather than the robustness
value for any individual genome [51]. Phenotypic evolvability
can be measured in two different ways. First, a sum over
off-diagonal values gives the number of mutations that result in
a useful (non-UND) phenotypic change. Second, the number
of nonzero off-diagonal values in a column give the number of
different phenotypes that can be accessed from the source
phenotype. The first measure can be used to describe the
probability that a non-neutral mutation will result in a useful
phenotype. The second is more closely related to Wagner’s
definition of phenotype evolvability [51]: It measures the
diversity of phenotypes accessible from the neutral network of
a given phenotype. In our model, robustness and evolvability
are related differently in different phenotypes: The Catherine
wheel structures are highly evolvable according to both of the
above definitions, but have low robustness (about 0.3), whereas
the 2 × 2 square has high evolvability and high robustness
(about 0.6).
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IV. EVOLUTIONARY DYNAMICS

A. Evolving polyomino size

In evolution, selection drives a system toward high-fitness
phenotypes (analogous to a thermodynamic drive toward low-
energy structures), and entropic effects favor those structures
that occupy a large proportion of search space. This interplay of
fitness and entropic terms is analogous to the concept of free
energy in thermodynamics, and indeed several studies have
analyzed evolution using a “free fitness” quantity [52,53]. It
may be expected that the importance of a given phenotype in
evolutionary dynamics is related to several factors, including
the fitness of the phenotype and how frequently genomes that
produce it occur in the search space. For example, if fitness is
defined as proportional to polyomino size, we may expect large
structures that occupy a large volume of search space (i.e., with
relatively large neutral networks)—like the Catherine wheels
and the 4 × 4 block in Fig. 5—to play important roles in
evolutionary pathways.

Having characterized the S2,8 search space in detail, we
now proceed to simulate evolution on a fitness landscape in
this search space, with a particular aim being to relate the
evolutionary dynamics back to the structure of the underlying
search space. We use a specific fitness function to drive
evolution toward a given target with a GA. A simple example is
evolution toward a bound, deterministic polyomino matching
or exceeding a certain size, using the fitness function:

F (P1,P2, . . . ,Pk; s∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,

s(P1) � s∗ and all Pi

identical and bound;
s(P1)/s∗,

s(P1) < s∗ and all Pi

identical;
0,

Pi unbound or Pi �= Pj

for any i,j .

(2)

Here the fitness function takes a set of polyominoes
{P1, . . . ,Pc} produced through k repeats of the assembly
process, and a desired size s∗. The function returns a zero
fitness value if the set of polyominoes is UND, and a fitness
value proportional to polyomino size for bound, deterministic
structures. A value of one means that a solution matching the
size criterion has been found.

We note that the previous section suggests that only a
small minority of the possible mutations to a genotype lead
to a phenotype of larger size. However, it may be expected
that on the rare occasions that such mutations do take place,
selection will allow these phenotypic changes to be retained
and propagate through the population.

Figure 7 shows the time evolution of a population of
polyominoes toward the target s∗ = 16. On the S2,8 landscape,
only one phenotype fulfills this criterion: the 4 × 4 block. We
employ what we term zero initial conditions, in which every
bit in every genome at the start of the simulation is set to
zero. In the self-assembly implementation described above,
this approach means every initial genome encodes a single
tile phenotype, which is laid down and incapable of further
bonding.
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FIG. 7. (Color online) Fitness curves during a typical evolution-
ary run. A population of genomes is evolved toward a structure of
size s � 16 using the fitness function in Eq. (2), at μL = 0.5, R = 0,
N = 10. The plot shows the mean (dashed) and maximal (solid)
fitness within a population as time progresses.

The simulation begins with the trivial, single-tile pheno-
type, then quickly “discovers” beneficial interactions, increas-
ing the size of the largest phenotype in the population first
to two then to four, with the 2 × 2 square structure being
discovered. The mean fitness lags behind the maximal fitness,
as many members of the population will still possess lower
fitness values; the mean fitness rises only gradually above
the value corresponding to the single tile phenotype, as the
information for the 2 × 2 square structure does not imme-
diately propagate through the whole population. The slow
spread of information is due to both the finite fitness advantage
resulting from the larger size of the square structure and the
possibility of further mutations leading to UND structures.
After several generations, a further beneficial interaction is
discovered, creating the Catherine wheel octomino, and in
the next generation this structure is expanded upon to form
the 4 × 4 structure. Note that the Catherine wheel structure
is one of only a few phenotypes exhibiting a single-mutation
transition to the 4 × 4 block (see Fig. 6).

The discovery of the 4 × 4 block leads to a sharp rise in the
mean fitness, which lasts several generations before eventually
leveling off at a value well below the maximum fitness. The
population is dominated by the 4 × 4 block, but the high
transition probability to other structures combined with the
mutation rate means that other lower fitness structures are
also present in the steady-state population. Such behavior is
reminiscent of the concept of a quasispecies, first described by
Eigen and Schuster [26–28], and often applied to RNA virus
evolution. Although the quasispecies model was derived for
infinite populations, the existence of a “mutational cloud” or
quasispecies can hold under a much wider set of conditions,
including finite populations, as long as the mutation-selection
balance takes into account the connectivity of different mutants
[54].

B. Varying mutation rate

In GA experiments, the discovery time τD measures how
long a system takes to produce a single copy of a maximally fit
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FIG. 8. (Color online) Adaptation time τ (solid lines) and
discovery time τD (dashed lines) in generations, in S2,8 evolving
to s∗ � 16, with mutation rate μ, at different N and with R = 0.

solution, giving an indication of the speed at which evolution
progresses. Specifically, τD is the first generation in which at
least one genome encoding a maximally fit solution is present.

The distribution of τD in an ensemble of GA experiments
is generally observed to be long-tailed, with infrequent
occurrences of very high discovery times. Due to computa-
tional limitations, we generally employ a cutoff of 20 000
generations in our GA runs. As these rare, high values can
skew the mean of such a distribution, we use the median of
the distribution as a measure for τD , because this statistic is
less prone to skew from the rare events and artifacts from the
imposed cutoff. One thousand GA runs were performed for
each data point in the following plots.

We measured the value of τD in the S2,8 system, as a
function of mutation rate μ at a range of population sizes N .
We set R = 0 and use zero initial conditions. Figure 8 shows
the results. τD decreases monotonically with μ except in the
case of low N , where a slight increase at high μ is observed.
The decrease in τD at high μ is due to the allowed larger steps
across search space and a more explorative search. The slight
increase in τD at high μ in the low N case may be due to the
inability of a completely random search to efficiently explore
the search space with a small population; in other words, either
some memory of previously discovered information or a large
population is required for optimal search. We see in Sec. IV C
that the monotonic decrease in τD for larger population sizes
is due to the small size of the S2,8 search space and that τD

exhibits an optimum with μ in larger search spaces.
Another time scale of interest in evolutionary simulations

is the adaptation time τ of a system, measuring how long
a solution, designated as maximally fit, takes to dominate
the population. As mentioned in the previous section, full
adaptation of the population to a single most fit phenotype
is not expected for the regimes we study (μLN > 1) because
at any time, the system is likely to have at least one phenotype-
changing mutation in the population. We are instead in a
regime reminiscent of a quasispecies. In order to define an
adaptation time, we chose the criterion that at least 50% of
the population has achieved maximum fitness. Although this
definition is somewhat arbitrary, it did not qualitatively affect
our results for τ .

Figure 8 shows τ values for the S2,8 system, with R = 0. A
general observation is the presence of an optimal mutation

rate μ∗, at which τ is a minimum. The optimal mutation
rate arises from the following competition. At very low μ,
τ increases divergently as μ decreases. This increase in τ at
low μ is steeper at low N than at high N . The reason is simply
that at low mutation rates, it takes a long time for the system
to discover new phenotypes, and this is made worse in smaller
populations.

On the other hand, at very large mutation rates, the
system may not be able to achieve full adaptation be-
cause the mutational drive to other phenotypes overwhelms
the relative fitness advantage of the maximally fit phenotype.
In the context of the quasispecies model this was called an
error catastrophe by Eigen and collaborators [26–28]. Again,
although our model makes slightly different assumptions than
the quasispecies model, the basic principle that the “mutational
entropy” can overwhelm a relative fitness advantage should
hold under more general conditions. Fairly straightforward
arguments from population genetics suggest that the mutation
rate at which adaptation starts to become difficult should scale
as μ ∼ 1/L [55]. However, the prefactor will depend on the
topology of the fitness landscape, including the connections
between the different phenotypes. For example, at higher
mutation rates it will be harder to adapt if the fitness peak
has a smaller neutral network than one that has a larger neutral
network. In some cases, a high enough mutation rate can even
lead to the “survival of the flattest” effect, where the system
adapts to a phenotype with a large neutral network at the
expense of a different phenotype that has equivalent or higher
fitness, but a much smaller neutral network [56].

Figure 9 shows examples of the time evolution of the fitness
during simulations at a range of μ values (low, μL = 0.1;
intermediate, μL = 0.5; high, μL = 2). At low μ, the mean
fitness closely tracks the maximal fitness, as diversity is low
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FIG. 9. (Color online) Fitness curves with time for simulations
in S2,8 evolving to s∗ � 16, with N = 80,R = 0 and (a) μL = 0.1,
(b) μL = 0.5, and (c) μL = 2. Upper curves show the maximum
fitness in the population and lower curves show the mean fitness.
Adaptation, defined as the point where 50% or more of the population
has maximal fitness, occurred at generations 95 for (a) and 51 for (b).
(c) Failed to adapt within the 20 000-generation cutoff.
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and the population is confined around a small region of genome
space. The behavior is due to the high correlation between
generations: As little change is introduced to the gene pool
through mutation, diversity in the population is low.

At high μ, the mean fitness fluctuates around a low value,
dominated by the entropic drive toward common, low-fitness
structures (as most mutations are deleterious; see Fig. 6). In this
regime, the population is decorrelated, and highly genetically
diverse, resembling a random search across genome space.

Behavior at μL = 1 is intermediate between these regimes,
with some diversity resulting in a rather lower mean fitness
than maximal fitness, but a clear relationship between the
two showing that information is not being lost through
decorrelation.

The relationship between mean and maximal fitness also
depends on the robustness of the phenotypes within a popu-
lation. In Figs. 9(a) and 9(b), the mean and maximal fitness
values are closer in magnitude for local optima than for the
global optimum. This difference arises because the robustness
of the global optimum is lower than that of the local optimum,
as the population has more difficulty adapting to the fitter
phenotype.

These results can be recast into the language of exploration
and exploitation [57–59] Exploration refers to the random
search regime at high μ, where genome space is explored
uniformly and randomly and the entropic effect of mutation
is too high for the population to become localized and adapt.
Exploitation refers to the highly correlated regime at low μ,
where evolution progresses through small changes made to
existing information, resembling a “hill-climbing” process
with a low diversity. The intermediate μ regime may be
thought of as providing a combination of these two effects,
with enough exploration to allow escape from local optima
and enough exploitation to experience a drive to higher fitness
values.

C. Comparing search spaces

To investigate the effect of changing the search space for the
system, we next considered the S6,8 space, involving nt = 6
blocks rather than the nt = 2 used previously. Genome length
is now L = 72, with 272 � 4.7 × 1021 points in search space,
more than 14 orders of magnitude larger than the S2,8 space.
We used a sampling approach, investigating 108 points in
S6,8, to study how the structure of this new search space may
affect the search for an s � 16 structure. A larger number of
genomes in the new space encode for such a structure, with
many possible ways of achieving the 4 × 4 square and other,
more diverse structures with s � 16. However, the associated
exponential increase in the overall size of the search space
means that a smaller proportion of genomes encode structures
with s � 16, with many more genomes now producing small
or UND polyominoes.

Figure 10 shows the τ and τD behavior with μ in S6,8. In
this plot, we see first of all that even though the search space
is many orders of magnitude larger, the optimal adaptation
and discovery times are at most an order of magnitude larger.
The qualitative behavior of the discovery time τD also shows
an important difference from the simpler S2,8 system. This
measure now exhibits an optimum with μ, generally around
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FIG. 10. (Color online) Adaptation time τ (solid lines) and
discovery time τD (dashed lines) in S6,8 evolving to s∗ � 16, with
mutation rate μ, at different N and with R = 0.

μL � 1. At higher μ values, τD increases, indicating that
the large steps performed by high-μ search in this case are
not beneficial. This optimum arises from a tradeoff between
exploration and exploitation: The system must have a high
enough μ to successfully explore a range of genome space,
but must have a low enough μ so that useful information is not
lost.

At high μ, the gene pool decorrelates significantly from
generation to generation, resulting in loss of information about
intermediate-fitness structures that have been discovered. In
the smaller S2,8 system, Fig. 8 suggests that this loss of
information is not an important effect, as the highly random
search afforded by high μ has a finite chance of discovering
a suitable solution through exploration alone. However, in the
exponentially larger S6,8 space, random search has a very low
probability of discovering a suitable solution, and exploitation
of existing information is important in the discovery of better
solutions.

D. Initial conditions

Many studies of evolution employ random initial condi-
tions, where the initial population is randomized before numer-
ical simulation [29,60,61]. While this picture is appropriate for
the modeling of randomly distributed alleles in a population,
it is of dubious biological relevance when bits in a genome
represent more fundamental units of genetic information, as
it corresponds to an interbreeding population with entirely
different, randomized genomes. In considering the evolution
of a self-assembling system such as protein quaternary
structure [5,7], it may be that the uniform population of
trivial phenotypes afforded by our aforementioned zero initial
conditions is more biologically relevant.

To compare the two scenarios, we ran simulations of the
S2,8 and S6,8 systems with random, rather than zero, initial
conditions. The results (Fig. 11) show a significant departure
from our results with zero initial conditions. The difference
is particularly pronounced at high N , where the diversity
provided by a large population of random genomes will lead
to very low discovery times, as space can be explored very
quickly from this start point before any adaptation takes
place. In fact, the N = 640 S2,8 system shows a discovery
time of one, as the proportion of search space corresponding
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FIG. 11. (Color online) Adaptation time τ (solid lines) and
discovery time τD (dashed lines) with random initial conditions in
(a) S2,8 and (b) S6,8, evolving to s∗ � 16, with mutation rate μ, at
different N and with R = 0.

to a solution (35 328/224 � 2.1 × 10−3) is more than 1/N

(1/640 � 1.6 × 10−3), making it likely that at least one
random genome in the initial population will already be a
suitable solution. By contrast, this random search effect has
little impact in the much larger search space of the S6,8

system.

E. Recombination

We next set R = 1, modeling sexual reproduction. This
parametrization was observed to have little effect on the
behavior of τ values in the S2,8 and S6,8 systems with
zero initial conditions, leading only to a slight increase in
adaptation times for given μ. The effect of setting R = 1
with random initial conditions was much more pronounced.
In this case, discovery times were significantly reduced and
adaptation times were raised in both systems, suggesting that
recombination may act to increase the “effective mutation rate”
experienced by a genome.

In this picture, recombination may act to decorrelate an
offspring from both its parents if the genetic diversity in the
population is high. This effect may be, to first order, absorbed
into an effective mutation rate dependent on the diversity in the
population. Random initial conditions ensure that this diversity
is high, particularly for large N , and hence the steps across
genome space caused by crossover may be large. This “genetic
drift” acts in cohort with the bare mutation rate μ, facilitating
rapid discovery of solutions on the small S2,8 search space, but
acting to hinder adaptation at higher μ.

F. Elitism

Optimization-oriented applications of GAs often employ
elitism. In a population of N individuals with elitism ε [where
ε ∈ [0,1)], the fittest εN individuals are preserved totally
intact from one generation to the next, immune to the action
of mutation and recombination. In this way, the information
within the fittest individuals—the location of the highest
peak thus far discovered—is preserved, so that decorrelation
from this point progresses more slowly and can never be
complete. This approach is often beneficial for optimization
as it allows larger μ values to be used—increasing exploration
efficiency—without loss of information about the current best
solution.

The biological relevance of elitism is questionable. The
problem arises from the immunity of the fittest individuals
to mutation (and crossover, in a sexually reproducing popu-
lation). This situation essentially corresponds to a number of
extremely long-lived individuals which continually reproduce
through their lifetimes, dying only when a fitter solution is
found.

Elitism can have a profound effect on the evolutionary
dynamics of a model. Figure 12 shows (μ,τ ) curves for a range
of evolutionary scenarios with ε = 0.1. These effects include
a general reduction in τ values, showing that elitism is a useful
tool in pure optimization application of GAs. The increase in

1

10

100

1000

10000

 0.01  0.1  1  10

τ

μL

N = 10
N = 80

N = 640

1

10

100

1000

10000

 0.01  0.1  1  10

τ

μL

N = 10
N = 80

N = 640

(a)

(b)

FIG. 12. (Color online) Adaptation time τ (solid lines) and
discovery time τD (dashed lines) with ε = 0.1 for (a) S2,8 and
(b) S6,8, with zero initial conditions. The increase in τD with high
μ for nt = 6 has vanished, and all τ values are lower than the ε = 0
equivalents.
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τD with high μ on S6,8 is no longer observed, as elitism retains
information from one generation to the next, meaning that
the search never becomes fully random. In experiments with
recombination (not pictured), elitism also acts to stabilize the
population, with adaptation observed in ε = 0.1 simulations
in some regimes that struggled to adapt with ε = 0.

V. HOMOMERIC PROTEIN TETRAMERS

It has been estimated that between 50% and 70% of proteins
form homomeric clusters in vivo [62]. These complexes are
usually symmetrical, with each protein in an identical environ-
ment. Homomeric tetramers, for example, may display cyclic
symmetry (C4) or dihedral symmetry (D2). The C4 geometry
involves only one type of interaction, whereas the D2 complex
involves at least two self-complementary interactions. In
an important recent study by Levy et al. [5], it was shown
that dihedral complexes are over 10 times more abundant than
cyclic complexes with the same number of subunits. Moreover,
these authors found that the evolutionarily older interactions
are typically stronger than the more recently evolved patches,
and that the clusters disassembled in a hierarchical fashion,
with the newer (and weaker) bonds breaking first.

The relationship between the strength of the patches and
their evolutionary history, as well as the observed hierarchi-
cal disassembly can be rationalized with simple statistical
mechanical models [7]. Similarly, the preference for dihedral
over cyclic symmetry has been linked to the fact that for D2

structures, two pairs of identical edges bond (requiring self-
complementary interactions or homointeractions), whereas
in C4 structures, one pair of different edges bond (using
non-self-complementary interactions or heterointeractions).
Statistical models of the formation of homointeractions and
heterointeractions have shown that the former have a wider dis-
tribution of energies than the latter. It has been suggested that
this wide distribution makes stable low-energy bonds easier to
evolve using homointeractions than heterointeractions which
may result in a biological preference for D2 structures [63–65].
Another reason for the preference for D2 may be that evolution
does not need to proceed to a tetramer structure in a single step,
but can go through a dimeric intermediate.

Our simple polyomino model cannot be used in its current
form to study the strength of patches, and by extension, the
hierarchical assembly and/or disassembly. However, it can
be used to investigate the effect of homo/heterointeractions
and evolutionary intermediates on the evolutionary preference
for D2 over C4. In order to model this system, we must
generalize our model to allow tetrameric structures to form
in both symmetry configurations, as shown in Fig. 13. To
do this, we allow building block tiles to “flip,” so that, for
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FIG. 13. Illustration of D2 and C4 symmetries in homomeric
tetramers.

example, tiles {1,2,3,4} and {1,4,3,2} are equivalent. The
sides of building blocks now correspond to free, rather than
fixed, necklaces [34]. This condition reflects the fact that
homointeraction interfaces require a rotation by π radians with
respect to each other to form a bond.

In order to investigate homointeractions, we altered the
form of the interaction matrix described in Eq. (1). The number
of homointeractions supported by the interaction matrix are
labeled as nsi. We first investigate the case where heteroint-
eractions are equally easy to evolve as homointeractions. To
achieve this, we choose a new interaction matrix such that
the bonding pairs are: 3 ↔ 3,4 ↔ 4,2 ↔ 6, with all other
colors neutral. This setup was chosen so that, given zero
initial conditions, the formation of two self-interacting edges
involves the same number of mutations as the formation of a
non-self-interacting bonding pair. Specifically, the discovery
of colors 3 and 4 (011 and 100) or 2 and 6 (010 and 110)
are equally likely, each requiring three beneficial mutations.
We label this new search space S ′

1,8, with a characteristic
number of self-interactions nsi = 2 (involving labels 3 and 4).
Similarly, we can extend this space to nsi = 3 (also in-
volving 1 ↔ 1) or nsi = 4 (also involving 5 ↔ 5 bonds).
We note that, given that nt = 1 for this system, there is
no distinction between the SFN and SGN cases mentioned
in Sec. II A.

In a similar manner to that used for the S2,8 system in
Sec. III, we can evaluate all possible structures in this new
search space and the possible transitions between phenotypes
(see Fig. 14). There are 4096 different possible genotypes,
which are distributed among the possible phenotypes, as shown
in Table I. A completely random search would thus, according
to these figures, display a D2 structure frequency of 0.68.
While the interactions are chosen so that the minimal number
of mutations required to reach a D2 structure from zero initial
conditions is the same as that required to reach a C4 structure,
the redundancy available to D2 genomes (which may contain,
for example, one unpaired heterointeraction in addition to their
homointeractions) gives D4 a higher search space volume than
that of the less redundant C4 structures.

To study the dynamic effects of the structure of search
space, we simulated a population of 105 random walkers in
genome space. Each walker started from zero initial conditions
and then took mutational steps until a genome encoding one
of the two tetrameric states was reached. A mutational step
involved an application of the mutation operator from a GA,
rather than enforcing exactly one mutation per step. Walks
were terminated and ignored if they reached the UND state
(something that mirrors what might happen in nature where
this usually would be lethal for the organism).

TABLE I. Number of genomes in the S ′
1,8 search spaces that

encode different structures.

UND Monomer Dimer D2 C4

nsi = 2 1214 994 1488 272 128
nsi = 3 1829 431 1212 552 72
nsi = 4 2510 146 736 672 32
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FIG. 14. (Color online) Transition probabilities for S ′
1,8.

(a) Number of self-interacting colors nsi = 2 and (b) nsi = 4.
(i) Transition probabilities between phenotype x and phenotype y.
(ii) Transition probabilities represented in a network between phe-
notypes. The edge widths are proportional to their probability.

A similar random walker analysis is possible in phenotype
space, on the network in Fig. 14(a)(ii). Here each random
walker occupies a node in the network, and may, at each
time step, undergo a transition between nodes according to
the weight of the connecting edge. A population of walkers
was initialized at the monomer node and allowed to walk, with
UND encounters being terminated and ignored. The results of
both of these walker simulations are shown in Table II.

TABLE II. Proportion of random walker and GA simulations on
S ′

1,8 that result in a D2 structure being discovered before a C4 structure.
Columns are search space proportion (SSP), defined as the number
of genomes encoding D2 structures divided by the total number of
tetramer genotypes. The same property is also shown for genotype
walker (GW), phenotype walker (PW), and GAs, with FF denoting
fitness function, as described in the text. nsi is the number of self-
interacting colors in the rule set. GAs were run with N = 80, μL =
0.5.

SSP GW PW GA, FF A GA, FF B

nsi = 2 0.68 0.58 0.48 0.55 0.67
nsi = 3 0.88 0.75 0.67 0.69 0.80
nsi = 4 0.95 0.86 0.75 0.96 0.98

To test the effect of a dimer intermediate on the probability
of obtaining a D2 or a C4 structure, we also used a GA to
run an evolutionary simulation. We employed two different
fitness functions, representing two situations: dimers possess-
ing either no fitness advantage or a large fitness advantage
over monomers. As the only possible phenotypes in this
landscape are UND and s = 1, s = 2, s = 4, we represent
a fitness function with the values awarded to these four
cases, respectively. Fitness function A gives no advantage
to dimer formation: F (UND) = 0, F (1) = 0.1, F (2) = 0.1,

F (4) = 1. Fitness function B gives a large fitness advantage
to dimer formation: F (UND) = 0, F (1) = 0.1, F (2) = 0.9,

F (4) = 1. We ran 104 simple GAs for each case, with N = 80
and μL = 0.5, and measured the proportion of times a run
discovered (rather than adapted to) either a C4 or a D2

phenotype. Table II shows the results of simulations with these
fitness functions.

It is also instructive to consider what happens when an
evolutionary bias toward homointeractions is included, that
is, for spaces with nsi = 3 and nsi = 4. We note that the
evolutionary landscape changes significantly [see Fig. 14(b)],
and this is reflected in the distribution of phenotypes shown
in Table I. The number of UND genotypes is observed to
increase with nsi, due to the greater number of genomes that
encode extended, unbound structures in these systems with a
large numbers of self-interactions.

Table II compares a measure of the D2:C4 ratio expected
from search space structure with results for walker and GA
simulations on these systems. A number of trends can be
observed in Table II. Although the interactions are chosen
so that the minimum number of mutations required to reach
a D2 structure from zero initial conditions is the same as
that for a C4 structure, D2 structures appear more frequently,
which is commensurate with the fact that they occupy a larger
proportion of search space.

However, the proportion of runs that first discover D2

structures is lower than expected from the search space
structure for genotype walkers, and lower still for phenotype
walkers. The slightly lower proportion for genotype walkers is
due to the starting point of the simulations: Monomers, of all
possible phenotypes, display the highest transition probability
to C4 structures, so C4 discovery is more likely from the zero
initial conditions we employ (encoding a monomer) than from
a random start point.

The significantly lower D2 proportion from phenotype
walkers is due to the shorter length of the monomer →
tetramer pathways, which requires only one transition, whereas
monomer → dimer → D2 requires two. In this case,
the phenotype representation has masked the genetic detail
whereby the minimal number of steps required to reach
D2 and C4 structures from zero initial conditions are iden-
tical. The steps in the minimal monomer → C4 pathway
involve one neutral monomer step (0000 → 0002) and
one phenotype-changing monomer → C4 step (0002 →
0062), whereas both steps to reach a D2 structure are
phenotype-changing (0000 → 0003 → 0043). The observed
difference is an illustration of the influence of a com-
plex genotype-phenotype map. In this case, information is
lost when mutational steps across a neutral network are
disregarded.
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The proportion of GA runs with fitness function A that
find a D2 structure is lower than found for the genotype
walkers for nsi = 2 and nsi = 3. This difference arises from
the different amounts of time required for a GA to identify
D2 and C4 structures. For nsi = 2 and 3, it is observed that
the mean discovery time for C4 structures is lower than the
mean discovery time for D2 structures. A GA reports the
structure it first discovers, whereas a set of genotype walkers
reports the proportion of structures discovered regardless of
the relative time taken to reach these structures. The lower C4

mean discovery time for low nsi GAs therefore results in more
C4 structures being reported than in the genotype walkers. For
nsi = 4, the mean discovery time for D2 structures is lower
than that for C4 in GAs, reflected in the higher observation of
D2 structures in these GA simulations. Note that if the GWs
were run in parallel sets, and the set was stopped at the first
discovery of a tetramer, this would also favor C4 for nsi = 2,3
and D2 for nsi = 4.

Another effect that acts to change the expected D2 : C4

ratio arises from UND structures. In a GA, genomes encoding
UND structures will be replaced (due to their zero fitness) by a
copy of another genome chosen by selection. This replacement
genome will be either a monomer or a dimer, according to
the current state of the GA population. As nsi increases, or
if fitness function B is used, the population becomes more
likely to contain dimers, due, respectively, to their increased
presence in search space and their increased fitness. If UND
genotypes are replaced by monomers, C4 discovery will be
more likely (the case at low nsi). If they are replaced by dimers,
D2 discovery will be more likely (the case at high nsi).

Another noticeable result is that conferring a fitness
advantage to dimers increases the proportion of D2 structures
discovered in GAs. This increase is due to selection favoring
dimers in the evolving population, from which situation the
dimer → D2 transition is most likely.

The above GA results concern the discovery of tetramers
rather than adaptation of the population to tetramers. When
adaptation was considered, the nsi = 2 and 3 trends remained
very similar. The nsi = 4 system became 100% dominated
by D2 tetramers, as the genomes encoding C4 structures in
this system were individual and isolated. In other words,
they exhibit low phenotypic robustness and adaptation proved
impossible with such small neutral network sizes. This is an
example of the “survival of the flattest” effect which selects
for D2 over C4 [56].

We note that the coarse-grained nature of our model greatly
simplifies the description of protein surfaces. In proteins,
interacting sites consist of multiple amino acid residues, rather
than a single color type as we employ. Point mutations in reality
will normally alter not more than one constituent amino acid
of a bonding site, rather than entirely changing the bonding
characteristics of an interaction site. In addition, the spatial
structure of protein complexes is vastly more complicated
than the simple 2D tile geometry we employ here. However,
this simple system nonetheless displays interesting dynamic
behavior. We show that favoring homointeractions in the
search space and favoring dimers in the fitness function, can
both significantly enhance the proportion of D2 tetramers
over C4 tetramers. By performing a complete enumeration
of the the fitness landscape, we also uncover some subtle

issues related to the underlying structure of the landscape. For
example, considering only the phenotype structure can mask
important genotypic structure that influences the evolutionary
dynamics.

VI. CONCLUSIONS

We have studied the evolutionary dynamics of self-
assembling polyominoes. We focused on deterministic self-
assembly—where a given rule set always leads to the same
polyomino structure—because an analogy can be made with
monodisperse self-assembly seen in nature, for example, in
protein quaternary structure.

Although our model is simple enough to be easily tractable
with modest computational resources, it exhibits rich evo-
lutionary behavior that is linked to its nontrivial genotype-
phenotype mapping. The evolutionary dynamics can be viewed
as a search performed by a population of individuals on a
complex fitness landscape. An advantage of the polyomino
system is that in some cases this landscape can be fully
enumerated and classified in terms of adjacent structures and
the transitions between them. Such information helps explain
some of the detailed behavior observed in GA simulations.
Properties like robustness and evolvability [50] can easily be
extracted from the fully enumerated landscapes.

We also investigated the effect of changing the mutation
rate, the population size, and the size of the search space on
adaptation and discovery times for the evolution of certain
classes of polyominoes. We find that there is an optimal,
intermediate mutation rate value for adaptation. For smaller
μL the system takes longer to discover the desired phenotypes,
whereas for larger μL the mutational entropy prevents it from
adapting to the right phenotype, consistent with results from
quasispecies theory [26–28].

For smaller spaces and larger populations the discovery
time keeps decreasing with increasing mutation rate, but for
larger spaces, there is also an optimal mutation rate for the
discovery time. These effects can be cast into the language of
exploration and exploitation [57–59]. For low μL, the system
can only take small steps across the search space, leading to
confinement of the gene pool around fitness optima [30], low
diversity, and slow exploration of surrounding space. At high
μL, the system decorrelates very quickly, reducing its ability
to exploit beneficial mutants through further small changes,
raising diversity to almost the level expected for a randomized
population. The search’s hill-climbing ability is decreased as
large steps randomize the gene pool very quickly.

The modeling of evolutionary processes with GAs is
complicated by the fact that the number of parameters that can
be varied is very large. One advantage of our polyomino system
is that the effects of varying the GA parameters can be easily
quantified. We studied some popular parameter choices and
argue that, for example, the use of random initial conditions
or elitism may not be the most biologically relevant way to
parametrize a GA. We also noted that other encodings of
the genomes are possible, for example, a Gray code, or a
decimal code. Preliminary simulations suggest that although
these different encodings lead to different connectivities
of the space, they do not qualitatively change our main
conclusions. However, the effect of the encoding protocol on
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evolutionary dynamics would be an interesting topic of future
study.

Finally, we studied the evolution of polyomino tetramers,
inspired by recent work on the structure and evolution of
homomeric protein tetramers [5,7]. In nature there is a strong
preference of D2 over C4 symmetries, and we show that both
an increase in the probability of homointeractions as well as a
fitness advantage of dimeric intermediates can strongly favor
the formation of D2 symmetry. Our simplified model shows
that the outcome of evolutionary dynamics is affected by the

topology of the search space, including emergent properties
like phenotypic robustness.
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