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Close or connected: Distance and connectivity effects on transport in networks
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We develop an analytical approach that provides the dependence of the mean first-passage time (MFPT)
for random walks on complex networks both on the target connectivity and on the source-target distance. Our
approach puts forward two strongly different behaviors depending on the type—compact or non compact—of
the random walk. In the case of non compact exploration, we show that the MFPT scales linearly with the inverse
connectivity of the target and is largely independent of the starting point. On the contrary, in the compact case, the
MFPT is controlled by the source-target distance, and we find that unexpectedly the target connectivity becomes
irrelevant for remote targets.
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I. INTRODUCTION

Complex networks theory is nowadays a common tool to
analyze a broad class of phenomena in social, biological, or
physical sciences [1–3]. An important issue in the field is to
quantify the impact of topological properties of a network on
its transport properties. As a paradigm of transport process,
random walks on complex networks have been intensely
studied [4–9], and the mean first-passage time (MFPT) [10] to
a target node—which quantifies the time needed for a random
walker to find a target on the network—has been widely used
as an indicator of transport efficiency [11–18].

A striking topological feature of many real-world complex
networks is the wide distribution of the number k of links
attached to a node—the connectivity—as exemplified by the
now celebrated class of scale-free networks, such as internet
[19], biological networks [20], stock markets [21] or urban
traffic [22], for which the connectivity is distributed according
to a power law. The impact of connectivity on transport
properties has been put forward in [8,23–25], where it was
found in different examples that transport toward a target
node can be favored by a high connectivity of the target, and
different functional forms of the dependence of the MFPT on
the target connectivity were proposed. On the other hand, the
dependence of the MFPT on geometric properties, such as the
volume of the network and the source to target distance, has
been obtained recently in [26–29], where it was shown that the
starting position of the random walker plays a crucial role in the
target search problem. In this context, quantifying the relative
importance of distance and connectivity effects on transport
properties on complex networks remains an important and
widely unanswered question, which can be summarized as
follows: is it faster for a random walker to find a close or a
highly connected target?

Here we propose a general framework, applicable to a broad
class of networks, which deciphers the dependence of the
MFPT both on the target connectivity and on the source to
target distance, and provides a global understanding of recent
results obtained on specific examples. Our approach highlights
two strongly different behaviors depending on the so-called
type—compact or non compact—of the random walk. In the
case of non compact exploration, the MFPT is found to scale
linearly with the inverse connectivity of the target and to be

widely independent of the starting point. On the contrary, in the
compact case, the MFPT is controlled by the source to target
distance, and we find that unexpectedly the target connectivity
is irrelevant for remote targets. This analytical approach,
validated numerically on various examples of networks, can
be extended to other relevant first-passage observables, such
as splitting probabilities or occupations times [27].

II. MODEL AND NOTATIONS

We are interested in the MFPT denoted T(rT |rS) of a
discrete Markovian random walker to a target rT , starting from
a source point rS , and evolving in a network of N sites. We
denote by k(r) the connectivity (number of nearest neighbors)
of site r, and by 〈k〉 its average over all sites with a flat measure.
The corresponding degree distribution is denoted by p(k). We
assume that at each time step n, the walker, at site r, jumps
to one of the neighboring sites with probability 1/k(r). Let
P (r,n|r′) be the propagator, i.e., the probability that the walker
is at r after n steps, starting from r′. The stationary probability
distribution is then given by Pstat(r) = k(r)/N〈k〉, and it can
be shown that detailed balance yields the following symmetry
relation:

P (r,n|r′)Pstat(r′) = P (r′,n|r)Pstat(r), (1)

which will prove to be useful.
We consider networks with only short-range degree corre-

lations, namely such that 〈k(r)k(r′)〉 = 〈k〉2 for |r − r′| larger
than a cutoff distance R, where the average is taken over all
pairs r,r′ with |r − r′| fixed. Here |r − r′| denotes the chemical
distance between r and r′, defined as the length (in number of
steps) of the shortest path between r and r′. This hypothesis
of short-range degree correlations is verified in particular by
networks whose Pearson assortativity coefficient [30] is zero,
such as Erdos-Renyi networks. It is, however, less restrictive,
since local degree correlations can exist and many networks
actually comply with this assumption, as exemplified below.
The hypothesis of short-range degree correlations implies in
particular that the degree distribution in a shell of radius r > R,
defined as the set of sites r′ such that |r − r′| = r , is identical
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to the degree distribution p(k) over the whole network,
so that ∑

r′\|r−r′|=r

Pstat(r′) � Nr(r)/N, (2)

where Nr(r) is the number of sites r′ such that |r − r′| = r . We
then introduce the weighted average at distance r of a function
f of two space variables defined by

{f (r,r′)}r′ = N

Nr(r)

∑
r′/|r−r′|=r

f (r,r′)Pstat(r′), (3)

and the standard flat average

〈f (r,r′)〉r′ = 1

Nr(r)

∑
r′/|r−r′ |=r

f (r,r′). (4)

III. SCALING FORM OF THE PROPAGATOR FOR
SCALE-INVARIANT PROCESSES

We focus hereafter on transport processes having scale-
invariant properties. In this case, we can assume that the
propagator in the infinite network size limit P0, after averaging
over points at a distance r from the starting point, satisfies the
standard scaling for |r − r′| > R:

〈P0(r,n|r′)〉r ∝ n−df /dw�
( r

n1/dw

)
, (5)

where the fractal dimension df characterizes the accessible
volume Vr ∝ rdf within a sphere of radius r , and the walk
dimension dw characterizes the distance r ∝ n1/dw covered
by a random walker in n steps. �(u) is a scaling function
here, which for instance is well approximated by a stretched
exponential [�(u) = exp(−uα)] in the case of fractal media
[31], where α > 0 depends on the medium. A first central
result of this paper is to show numerically that the dependence
of the propagator on the connectivity of the target site can be
actually made explicit and reads

〈P0(r,n|r′)〉r,k ∝ kn−df /dw�
( r

n1/dw

)
, (6)

where the average is taken over sites r at a distance r from
r′ with fixed connectivity k. An argument supporting the
k dependence hypothesized in Eq. (6) is that it satisfies
the symmetry relation of Eq. (1). Numerical simulations
on various examples of scale-invariant networks, such as
percolation clusters and (u,v) flowers (see definition below),
validate this assumption, as shown in Figs. 1 and 2. We stress
that the scaling form (6) is verified in the cases of both compact
(dw > df ) and non compact (dw < df ) exploration. We believe
that this result on its own can be important in the analysis of
transport processes on networks. We show next that it enables
us to obtain the explicit dependence of first-passage properties
on the connectivity of the target site.

IV. MEAN FIRST-PASSAGE TIME

We now extend the theory developed in [26] to compute
the MFPT of a discrete Markovian random walker to a target
rT , and obtain explicitly its dependence on k(rT ). As shown
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FIG. 1. (Color online) Plot of the propagator P (rT ,n|rS) for non
compact exploration. Top: Supercritical 3D percolation networks
(p = 0.8) of different sizes and for different k(rT ). rs is chosen in
the center of the network, and t is small enough to avoid hits on the
network’s border. Here r denotes the usual Euclidean distance. Black,
red, green, blue, magenta, and orange symbols stand respectively for
k = 1, 2, 3, 4, 5, and 6. Circles, triangles, diamonds, and squares
stand respectively for networks of size 203, 253, 303, and 403. Bottom:
(2,2,2) flowers. Black, red, and green circles stand respectively for
k = 2, 6, and 18.

explicitly in [26,33] (see also [4] for a different derivation),
the MFPT satisfies the following exact expression:

Pstat(rT )T(rT |rS) = H (rT |rT ) − H (rT |rS), (7)

where H (r|r′) = ∑∞
n=1[P (r,n|r′) − Pstat(r)] is the pseudo-

Green function of the problem [34]. Note that averaging
Eq. (7) for rS covering the nearest neighbors of rT gives the
expression of the averaged MFPT 〈T〉Kac(rT ) expected from
the Kac formula [35,36]:

〈T〉Kac(rT ) = 1/Pstat(rT ) − 1 = N〈k〉/k(rT ) − 1, (8)

which we will use below.
Following [26], we consider the large N limit of Eq. (7).

Making use of Eq. (1), we obtain

Pstat(rT )T(rT |rS) ∼ G0(rT |rT ) − k(rT )

k(rS)
G0(rS |rT ). (9)

Here G0 is the usual infinite space Green function defined by
G0(r|r′) = ∑∞

n=1 P0(r,n|r′), and ∼ denotes equivalence for
large N . It is useful to notice that this leading term of the
MFPT still satisfies the Kac formula (8). We next take the
weighted average of Eq. (9) over the source points and obtain

Pstat(rT )TrT
(r) ∼ G0(rT |rT ) − k(rT )

〈k〉 〈G0(rS |rT )〉rS
, (10)
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FIG. 2. (Color online) Plot of the propagator P (rT ,n|rS) for
compact exploration.Top: Critical 3D percolation networks (p =
0.2488) of different sizes and for different k(rT ). rs is chosen in
the center of the network, and t is small enough to avoid hits on
the network’s border. Black, red, green, blue, magenta, and orange
symbols stand respectively for k = 1, 2, 3, 4, 5, and 6. Circles and
triangles stand respectively for networks of size 403 and 503. Bottom:
(3,3) flowers (see [32]) for different k(rT ). Black, red, green, and blue
circles stand respectively for k = 2, 4, 8, and 16.

where we defined TrT
(r) ≡ {T(rT |rS)}rS

. Substituting the
scaling (5) in Eq. (10) then yields the large N equivalence
of the MFPT to a target site rT averaged over sources, which
is valid for r > R:

TrT
(r) ∼ N〈k〉(Ak + Brdw−df ). (11)

In this expression, the constant Ak depends on the connectivity
k of the target and B is a constant independent of k and r , which
depends on the scaling function �. We now distinguish two
regimes depending on the compact or non compact nature of
the transport process, and focus on the large r regime.

A. Compact case dw � d f

In the compact case dw � df , which corresponds to
recurrent random walks, we obtain that the MFPT scales in
the large r limit as

TrT
(r) ∼ N〈k〉Brdw−df . (12)

This shows that, unexpectedly, the MFPT is asymptotically
independent of the connectivity of the target, while the
dependence on the distance r is crucial. Equation (11) is
valid for r large enough (typically r > R). The dependence
of Ak on k, which impacts on the MFPT for r small only,
can be estimated by assuming that this expression still holds
approximately for short distances. Following [37], we take
r = 1 in Eq. (11) and use the Kac formula (8) to obtain

1/k ≈ Ak + B, (13)

which provides the k dependence of Ak . We next aim at
evaluating B. We introduce the weighted average of the
MFPT over the target point τ (r) = ∑

rT
Pstat(rT )TrT

(r). Using
Eq. (13), this quantity writes

τ (r) ∼ N
[
1 + B〈k〉(rdw−df − 1)

]
. (14)

In the case of compact exploration, the continuous space limit
can be defined (see [37]) and imposes τ (r → 0) = 0. This
extra equation, based on the existence of a continuous limit,
enables us to evaluate B as B = 1/〈k〉. Note that, for fractal
trees (dw − df = 1), we recover the exact result τ (r) = Nr .
Finally, one has

TrT
(r) ∼ N〈k〉

(
1

k
+ 1

〈k〉 (rdw−df − 1)

)
, (15)

which fully elucidates the dependence of the MFPT on k and
r . We recall here that this expression is originally derived for r

large, and that the small r regime relies on the less controlled
assumption that the scaling form of the propagator (6) holds
for any distance r and, in particular, that a continuous limit
exists. It will, however, prove numerically to be accurate in
various examples for all r values.

B. Non compact case dw < d f

In the non compact (or transient) case dw < df , we obtain
that the MFPT scales in the large r limit as

TrT
(r) ∼ N〈k〉Ak. (16)

This shows that the MFPT is independent of r for r large, as
was already discussed in the literature [26]. The dependence
on k is now fully contained in the constant Ak , which we now
determine. Following [24], we assume that the FPT distribution
is proportional to exp[−Akt/(N〈k〉)], with A = O(1), and
widely independent of r in agreement with the result obtained
in Eq. (16) for the first moment. This implies that the global
MFPT, defined as the MFPT averaged over all source points
and denoted by {TrT

}, scales as {TrT
} ∝ N〈k〉/k. Using the

exact result derived in [25]

{TrT
} = H (rT |rT )

Pstat(rT )
, (17)

we obtain that H (rT |rT ), and therefore asymptotically the infi-
nite space Green function G0(rT |rT ), is independent of k in the
case of non compact exploration. This is checked numerically
in Fig. 3. Identifying in Eq. (11) Ak = G0(rT |rT )/k, which is
finite in the case of non compact exploration, we finally obtain

TrT
(r) ∼ N〈k〉

(
A

k
− Brdw−df

)
. (18)
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FIG. 3. (Color online) Numerical computation of H (rT |rT ) av-
eraged over a network of a given size, as a function of the target
connectivity k, on supercritical (p = 0.8) and critical (p = 0.2488)
3D percolation networks. The inset stands for the supercritical
percolation network, for three sizes 103 (black circles), 153 (red
triangles), and 203 (green diamonds). Equation (22) gives H (rT |rT ) =
C. The main figure stands for the critical percolation network, also
for three sizes (same symbols), and a fit in CkNdw/df −1 (straight line).

As in the compact case, this expression is valid for r large and
becomes hypothetical for r small. It reveals that, in the case
of non compact exploration, the MFPT is independent of r

for r large and scales as the inverse connectivity of the target.
This behavior is in strong contrast with the case of compact
exploration.

V. SUMMARY OF THE RESULTS AND DISCUSSION

Finally, our central result can be summarized as follows,
where the case of marginal exploration (dw = df ) has been
obtained along the same line:

TrT
(r)

N〈k〉 ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

k
+ 1

〈k〉
(
rdw−df − 1

)
if dw > df ,

1

k
+ B ln(r) if dw = df ,

A

k
− Brdw−df if dw < df .

(19)

This expression is very general and shows the respective
impact of distance and connectivity on the MFPT. In particular,
the MFPT is fully explicitly determined in the compact case.
The positive constants A and B depend on the network in
the case of non compact exploration. We comment that in
both cases the target connectivity k plays an important role at
short distances r . However, for large source-target distances
r , the k dependence is damped out in the compact case,
while it remains important in the non compact case. The r

dependence is found to be important in the compact case and
largely irrelevant in the non compact case in agreement with
previous results [26]. The question raised in the Introduction
can therefore be answered as follows: in the non compact case
connected targets are found the fastest almost independently
of their distance, while in the compact case close targets are
found the fastest almost independently of their connectivity.

We can conclude that for self-similar networks with short-
range degree correlations, the main criterion that governs

the behavior of T is the type (compact or non compact)
of the random walk. In particular, the existence of loops is
irrelevant. Further comments are in order. (i) As stressed above,
Eq. (19) is derived in the large r regime. Its applicability to
the small r regime relies on the assumption that the scaling
form of the propagator (6) holds for all values of r , which
is not always satisfied for real networks. In particular, when
degree correlations exist, the relation B = 1/〈k〉 obtained in
the compact case gives only a rough estimate and the result of
Eq. (19) is valid only for r larger than the correlation length.
(ii) Our results can be extended to the case of non-self-similar
networks, still under the assumption that degree correlations
are negligible. Following the method developed above, one
can infer that

TrT
(r) ∼ N〈k〉[A/k + g(r)], (20)

where g does not depend on k and satifies g(r → ∞) = C in
the transient case and g(r → ∞) = ∞ in the recurrent case.
The relative impact of connectivity and distance is therefore
qualitatively the same as in the case of self-similar networks
discussed above. (iii) Incidentally, our results straightfor-
wardly yield the k dependence of the MFPT averaged over
all source points (global MFPT). We find, in the large N limit,

{TrT
} ∼

⎧⎪⎨
⎪⎩

CNdw/df if dw > df ,

CN ln N if dw = df ,

CN/k if dw < df ,

(21)

which complements previous results obtained in [25]. This
expression, along with Eq. (17), yields as a by-product the
large N asymptotics of H (rT |rT ):

H (rT |rT ) ∼

⎧⎪⎨
⎪⎩

CkNdw/df −1 if dw > df ,

Ck ln N if dw = df ,

C if dw < df .

(22)

This k dependence of H (rT |rT ) is checked numerically in
Fig. 3 and directly validates the k dependence of the global
MFPT.
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FIG. 4. (Color online) Mean first passage time [〈TrT
(r)〉k] for

critical Erdos-Renyi networks, as a function of the source-target
distance r , for a various target connectivity k (k = 1, 2, and 3 from
top to bottom). Circles and triangles stand for simulation results, for
two sizes of the network (1000 and 2000 nodes); straight lines stand
for the zero-constant formula (〈k〉 = 2) of Eq. (19).
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VI. NUMERICAL SIMULATIONS

We have checked our main result (19) on various examples
of networks, corresponding to compact or non compact
random walks as detailed below. We stress that the zero
constant formula obtained in the compact case is in good
agreement with numerical simulations in all the examples that
we have considered. As explained in Sec. V, our results rely on
a scaling hypothesis of the propagator that is not fully satisfied
for small r; we therefore expect a good agreement only for r

large enough, as is indeed observed.
Erdos-Renyi networks. Erdos-Renyi networks can be de-

fined as a percolation cluster on a complete graph: for
every pair of nodes (i,j ), a link exists with probability
p. The network is then defined as the largest cluster. We
considered clusters at the percolation transition obtained for
p = 1/N , for which the estimated df is 1.9–2.0 [38]. We
computed numerically dw � 2.9, which shows that exploration
is compact. Numerical results of Fig. 4 are in very good
agreement with the scaling (19).
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FIG. 5. (Color online) Mean first passage time [〈TrT
(r)〉k] as

a function of the source-target distance r , for a various target
connectivity k. Top: (2,2) flowers (dw = df ). Circles and triangles
stand for simulation results, for two sizes of the network (genera-
tions 4 and 5); straight lines stand for the formula 1/k + B ln(r) of
Eq. (19), with B = 0.24. k = 2,4,8 from top to bottom. Bottom: ran-
dom (2,2) flowers (dw = 2.5 and df = 1.9). Circles stand for simula-
tion results; straight lines stand for 1/k + 1/〈k〉(rdw−df ) (〈k〉 = 3) of
Eq. (19). k = 2,3,4,5,6 from top to bottom.

(u,v) flowers. These networks are constructed recursively
as described in [32]: at each step, every link is substituted
by two paths of length u and v. We extended this definition
to (u,v,w) flowers, for which a third path is added. For
those networks, dw − df = − ln(1/u + 1/v + 1/w)/ ln(u) (if
1 < u � v � w). Figure 5 shows a very good agreement of
numerical simulations with Eq. (19), despite the small size of
the networks.

Random flowers. These networks are constructed recur-
sively as described in [39]: at each step, every link is substituted
by two paths of length u and v. df and dw are determined
numerically for those networks; in our example, (2,2)-random
flowers are compact networks (dw − df � 0.6). Figure 5
shows a good agreement of numerical simulations with
Eq. (19).

Networks of Kozma et al. These networks, defined in
[40], are simple Euclidian lattices in which long-range links
(“shortcuts”) are added. A shortcut starts from each node with
probability p and leads to a node at a distance r , where r is
distributed according to a power law of index α. We consider
here a one-dimensional (1D) Euclidian lattice. Exploration is
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FIG. 6. (Color online) Mean first passage time [〈TrT
(r)〉k] as

a function of the source-target distance r , for a various target
connectivity k. Top: non compact Kozma network of size X = 400,
α = 1.0. The inset shows a translation along the y axis of A/k with
A = 2.04 according to Eq. (20). As predicted, this quantity does not
depend on k. Here k = 6,7,8 from top to bottom. Bottom: compact
Kozma network of size X = 50, α = 2.5. The expected scaling is
in r0.5: circles stand for simulation results; straight lines stand for
1/k + 1/〈k〉(r0.5 − 1) (〈k〉 = 2.5) of Eq. (19). Here k = 3,4,5 from
top to bottom.
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FIG. 7. (Color online) Mean first passage time [〈TrT
(r)〉k] as

a function of the source-target distance r , for a various target
connectivity k, on a supercritical 3D percolation network (p = 0.8).
For this network, dw � 2 and df = 3, the exploration is non compact.
Circles stand for simulations results; straight lines stand for a fit by
A/k + Brdw−df , with A � 2.33 and B � 0.8. Here r denotes the
usual Euclidean distance and k = 4,5,6 from top to bottom.

then compact for α > 2 and non compact for α < 2. Again,
Fig. 6 shows a very good agreement of numerical simulations
with Eq. (19).

Percolation clusters. We consider percolation clusters in
the case of bond percolation in 3D cubic lattices. The critical
probability is pc = 0.2488 . . . and one has dw = 3.88 . . .

and df = 2.58 . . . at criticality. If p > pc, df = 3 (Euclidian

dimension) and dw = 2. Figure 7 shows a good agreement of
numerical simulations with Eq. (19).

VII. CONCLUSION

To conclude, we have proposed a general theoretical
framework that elucidates the connectivity and source-target
distance dependence of the MFPT for random walks on net-
works. This approach leads to explicit solutions for self-similar
networks and highlights two strongly different behaviors
depending on the type—compact or non compact—of the
random walk. In the case of non compact exploration, the
MFPT is found to scale as the inverse connectivity of the target,
and to be widely independent of the source-target distance. On
the contrary, in the compact case, the MFPT is controlled by the
source-target distance and we find that, unexpectedly, the target
connectivity is irrelevant for remote targets. The question
raised in the Introduction can therefore be answered as follows:
in the non compact case, connected targets are found the fastest
almost independently of their position, while in the compact
case close targets are found the fastest almost independently
of their connectivity. Last, we stress that, following [27],
this explicit determination of MFPTs can be straightforwardly
generalized to obtain other relevant first-passage observables,
such as splitting probabilities or occupation times.
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