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Elastic instability in stratified core annular flow
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We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing
in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features
of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected
wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic—it
is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the
short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram.
Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low
velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer
solutions that are difficult to assess otherwise.
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Polymer solutions exhibit purely elastic flow instabilities
even in the absence of inertia [1]. The almost ubiquitous
ingredient of such an elastic instability is the curvature of
streamlines: polymers that have been extended along curved
streamlines are taken by fluctuations across shear rate gradients
in the unperturbed state which, in turn, couples the hoop
stresses acting along the curved streamlines to the radial and
axial flows and amplifies the perturbation [2,3]. Flat interfaces
between two fluids with different viscoelastic properties
can also become unstable [4–6] due to the normal stress
imbalance across the interface. These instabilities often occur
in coextrusion where different polymers are melted in separate
screw extruders and then allowed to flow simultaneously
in the extrusion nozzle. Undesirable wavy interfaces are
sometimes observed between the adjacent polymer layers both
during the flow and in the final product [7]. Since these
instabilities set severe limits to industrial processes such as
film or fiber fabrication, they have already been extensively
studied [7–9]. At this stage, previous experiments and theory
agree reasonably well. However, the spatial development of the
instability in the flow has to be taken into account in order to get
a comprehensive description of the process [9–11]. Following
this approach, we propose in this Rapid Communication a
quantitative explanation for various flow patterns observed
in purely elastic interfacial instabilities. We perform a set of
original experiments on a coflow of a polymer solution and
water and map the full flow diagram. In contrast to previous
experimental studies dealing with macroscopic flows of molten
polymers, we focus here on flows of dilute polymer solutions,
whose elastic properties are well described by theoretical
models and water in microfluidic devices, which offer simple
visualization of the flow.

We observe that, above some flow rate, the interface
between the polymer solution and water becomes wavy.
Surprisingly, for relatively low velocities, the instability is
convected downstream, while a stationary unstable flow is
observed at high velocities. This behavior is due to the
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interplay between advection by the mean flow and the
growth of a perturbation. The linear stability analysis of the
flow in the short-wave approximation supplemented with a
kinematic criterion captures quantitatively the flow diagram.
We demonstrate that it is also a new way to measure rheological
properties of weakly elastic polymer solutions with a precision
of ±15%, where very few techniques are available.

Our experiments are performed in a microfluidic device
made of nested glass capillaries: an inner capillary of square
cross section with a tapered nozzle (section � 300 μm) fits
nearly perfectly into a cylindrical capillary (Rc = 400 μm)
that carries the outer fluid; it offers a simple way to self-center
and align the capillaries [12,13]. The length between the nozzle
and the outlet of the device is set to L = 6 cm. The two
coflowing fluids are injected with precision syringe pumps
at flow rates Qi and Qe for the internal and external rates,
respectively. The microfluidic chip is positioned vertically
on a standard microscope (mounted accordingly) in order
to prevent the effect of gravity. The observations are carried
out with a fast camera (Miro Phantom). Our working fluid
is a solution of poly(vinylalcohol) (PVA) of molar mass
Mw = 196 000 g/mol in water at concentrations of 3.25%,
5%, 6%, and 7.5% wt/wt (for which c � c� ≈ 1% wt/wt). The
measured values of the shear viscosity of the solutions are
given in Table I and do not depend on the shear rate up to
102 s−1. The viscosity of water is taken to be ηi � 10−3 Pa s
at 20 ◦C.

We observe flow patterns that depend strongly on flow rates.
Figure 1 shows a typical flow diagram in the (Qi , Qe) plane
for water and the semidilute PVA solution as the inner and
outer fluids, respectively. For low flow rates, we find straight
jets (+) that extend up to the outlet of the device, while at
higher flow rates the interface between the two fluids becomes
unstable. At intermediate flow rates, jets are straight from
the inlet up to some distance downstream where varicose
undulations set in. We call them advected wavy jets (◦) and
note that this distance decreases with flow rate. At yet higher
flow rates, jets are wavy through the whole setup (•). In order to
rationalize these experimental data, we define an experimental
geometrical length Lc. A jet will be designed as an advected
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TABLE I. Comparison of the polymer relaxation time obtained
from the instability study (τ ), the drop detachment experiments
(τa), and shear rheometry done at γ̇ = 10 s−1 (τw) for several
concentrations of PVA (Mw = 196 000 g/mol).

wt% ηe( Pa s) τ (ms) τa (ms) τw (ms, γ̇ = 10 s−1)

7.5 0.65 120 ± 20 70 ± 20 100
6 0.25 60 ± 10 20 ± 10
5 0.1 9 ± 2 15 ± 10 12
3.25 0.04 7 ± 2 5 ± 3

jet if its straight part is longer than Lc and as a wavy jet if
its straight part is shorter than or equal to Lc. Note that Lc

is thus a geometrical parameter, with the same nature as the
radius of the capillary tube, Rc. As the straight part of the jet
decreases when the flow rates increase, various flow diagrams
with the same set of experimental data are thus obtained when
the definition of Lc is varied. In the following, we will try
to model the transition between these two states and, unless
mentioned otherwise, we set Lc = 10Rc.

In order to identify the origin of the instability, we first
calculate the laminar flow profile in the system. We neglect
both inertial effects and molecular diffusion processes since the
Reynolds number is small (Re ∼ 0.1) and the Péclet number is
large (Pe � 104) in our experiments. The two miscible fluids
thus flow side by side without mixing and exhibit a constant
effective surface tension [14]. The motion of water is then
described by the Stokes equation while the polymer solution
obeys the Oldroyd-B model [15]:

−�∇p + ηs��v + �∇ · � = 0, � + τ
∇
�= ηp( �∇�v + �∇�vT ),

(1)

where
∇
�= ∂t� + �v · �∇� − ( �∇�v)T · � − � · �∇�v is the upper-

convected derivative [15]. Here, �v is the velocity and p is
the pressure in the fluid, � is the polymer contribution to the
stress tensor; ηs is the viscosity of the solvent, and τ and
ηp are the Maxwell relaxation time of the polymer and the
increase of viscosity due to the polymer chains, respectively.
The total shear viscosity of the polymeric solution is thus
ηe = ηp + ηs . We enforce no-slip boundary conditions at the
solid-liquid interface and the continuity of the velocity and of
the tangential stress at the interface between the two fluids.
In the unidirectional laminar flow of Fig. 1, the pressure drop
�P between the nozzle and the outlet of the capillary is the
same in both fluids and is related by Eqs. (2) to the flow rates
and the relative position of the interface between the two fluids
x = Ri/Rc:

�P

L
= 8ηeQe

πR4
c (1 − x2)

, (2)

where x =
√

α−1
α−1+m

, α =
√

1 + m Qi

Qe
, and m = ηe/ηi is the

viscosity ratio.
In the left part of Fig. 2 we redraw our experimental data

in the (x,�P/L) plane and observe that stable flows occur at
low �P while unstable flows occur at high pressure drops.
This observation allows us to dismiss the Rayleigh-Plateau
mechanism as a possible origin of the instability that would
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FIG. 1. (Left) Experimental flow diagram of the 5% PVA polymer
solution (external fluid) and dyed water (internal fluid) as a function
of the respective flow rates. (Right) Flow patterns observed in the
microfluidic chip: stable straight jets (+), wavy jets (•), and advected
wavy jets (◦).

be triggered by the effective surface tension between the two
miscible fluids [14,16]. Indeed, this would be contradictory to
recent experimental and theoretical results [13] that explicitly
demonstrate that droplets and wavy jets (absolutely unstable
states) occur at low pressure drops while straight jets dominate
at high pressure drops.

We also exclude the viscosity stratification of the flow as
an origin of the instability [17,18]. We have repeated the same
experiment with a glycerin solution with ηe = 0.1 Ps s and we
have never observed unstable interfaces. Since the viscosity-
contrast-based instability is of inertial origin, it should develop
at higher Reynolds numbers. However, it does not play a role
at our flow conditions.

We are thus left with a purely elastic instability driven by
the contrast of the normal stresses across the interface [5].
This instability was studied analytically by Chen [4] and by
Chen and Joseph [19] assuming low Reynolds and high Péclet
numbers as in Eq. (2). They performed the linear stability
analysis of the flow with respect to small axisymmetric
perturbations ∝exp (ikz + ωt) with ω being the complex
growth rate and k setting the wavelength of the perturbation.
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FIG. 2. (Left) Flow diagram in the (x,�P/L) plane [same data
as in Fig. 1: stable straight jets (+), wavy jets (•), advected wavy jets
(◦)]. (Right) Same data compared with the kinetic criterion (4): jets
with a straight part longer (×) and shorter (•) than Lc = 4.8 mm.
The solid line is calculated from (4) with the polymer relaxation
time τ = 9 ms. The two dotted lines with τ = 7 ms and τ = 11 ms
bracket the uncertainty.
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FIG. 3. State diagrams for the 3.25% wt PVA polymer solution
determined for several reference distances Lc. A single value τ =
7 ms is used to fit all the state boundaries. The two dotted lines with
τ = 6 ms and τ = 8 ms bracket the uncertainty.

They found that long-wavelength perturbations are always
stable [4]. In the opposite limit k → ∞, the flow is always
unstable [19] and, for weak elasticity of the solution, the
dispersion relation can be approximated by

ω = m(m − 1)

(1 + m)2

(
�P

L

xRc

2ηe

)2

τ − ik
�P

L

R2
c

4ηe

(1 − x2). (3)

An important feature of this dispersion relation is that the real
part of the growth rate is independent of the wavelength. Full
numerical linear stability analysis (to be published elsewhere)
confirms that the dispersion curve is practically flat and
positive, only becoming negative for very small k. This implies
that almost all wavelengths become unstable with an identical
growth rate and the question of the wavelength selection cannot
be answered based on the linear theory. Intriguingly, the use of
a more complex rheological model would permit the resolution
of this degeneracy [7].

In order to describe the convective nature of the instability
we propose a simple kinematic criterion that captures most of
our experimental observations. We assume that the instability
sets in very close to the nozzle and is growing on the typical
timescale τr = 1/Re(ω) while being advected downstream
with the velocity of the interface U . The typical development
length of the instability is then L̃ = Uτr , and the boundary
between the advected wavy and wavy jets is given by L̃ = Lc.
In terms of the applied experimental parameters, this criterion
reads

f ≡ �P

L

Lcτ

ηe

(m − 1)m

(1 + m)2
= 1 − x2

x2
. (4)

This criterion offers a few interesting predictions. First, the de-
pendence upon the pressure drop is quite surprising. Equation
(4) implies that, for a given ratio of the flow rates (which is
independent of �P ), the advected wavy jets (L̃ > Lc) occur
at low pressure drops, while the wavy jets (L̃ < Lc) should
occur at high pressure drops, as observed experimentally. Since
the velocity of the interface scales linearly with the pressure
drop while the destabilizing forces due to the viscoelastic
normal stresses scale as �P 2 [15], the instability moves closer
to the inlet upon increase of the pressure drop. This is in
contrast with the Rayleigh-Plateau instability due to the surface
tension for which the opposite order of dynamical states is
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FIG. 4. Comparison between the experimental state diagram and
the stability criterion (4) (solid line) for several polymer solutions
(different concentrations). Solid symbols (•) correspond to unstable
flows and crosses (×) correspond to stable jets on the length Lc.

observed [13]. Moreover, the higher the pressure drop, the
smaller the polymer relaxation time must be to reach the
condition L̃ = Lc, which turns out to be a fruitful way to
measure τ , as we show below. We also note that this is a
purely elastic instability as it vanishes in the Newtonian limit
τ = 0. Finally, we observe that the criterion (4) is independent
of the size of the capillary, which suggests that this instability
will also exist in nanofluidic or macrofluidic devices, provided
the inertial forces are kept small.

We now compare this kinetic criterion to our experiments.
The only unknown quantity in (4) is the polymer relaxation
time τ and we first use it as a fitting parameter. The right
panel of Fig. 2 shows that the theory based on the single-
relaxation-time Oldroyd-B model agrees reasonably well with
the experiments. For the 5% solution we have extracted τ =
9 ± 2 ms. Some discrepancy, however, is apparent at small
radii of the Newtonian core x. One possible source of the
discrepancy is the approximate nature of the dispersion relation
(3). It is derived for short-wavelength perturbations while we
use it for disturbances of intermediate wavelength. This only
makes sense if the actual dispersion relation is flat for most of
the k’s. The full numerical linear stability analysis shows that,
for small x, the dispersion relation is less flat than for large
values of x, which possibly explains the discrepancy between
theory and experiment in Fig. 2. Another possibility is that, at
small x, we observe a decrease in the relaxation time with the
local shear rate (small x corresponds to large pressure drops
and thus high shear rates at the interface).

Next, we study the self-consistency of the model and
plot the stability diagram of the same system with various
references distances Lc. A single value of the polymer
relaxation time is able to reasonably fit most of the data even
though discrepancies are evidenced for small x. As noticed
above, the origin of these discrepancies is threefold. First, the
dispersive equation is not precise at small x, since it has been
obtained in the lubrication framework. Second, the dependence
of the relaxation time with shear rate is not taken into account
here. The last point is that there may be some experimental
inaccuracies in the determination of the exact threshold of the
instability.

The experimental results for several polymer solutions are
summarized on the master phase diagram in Fig. 4. Clearly,
the simple criterion (4) is remarkably successful in predicting
the transition between advected wavy and wavy jets. In Table I
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we provide the values of τ extracted for several concentrations
of the polymer. To check these values, independent measure-
ments of the polymer relaxation time have been performed.
First, we use a version of extensional rheometry described
by Amarouchene et al. [20]. When a drop of a polymer
solution detaches from a capillary tube, a long-lived cylindrical
neck is formed. Initially, it thins according to a power law
for all liquids, and then further, exponentially in time if
the liquid is viscoelastic. The decay time of the exponential
thinning is directly proportional to the characteristic time of the
polymer, τa . We have also performed conventional rheological
measurements of the polymer relaxation time. The data are
quite noisy since the solutions are not very viscous and only
weakly elastic. In Table I we report the values τw measured
at the shear rate of 10 s−1, which is similar to the shear rates
in our coflow experiments. These values are in a reasonable
agreement with the values of τ extracted from the onset of
wavy stationary jets. Conventional rheometry also shows that
the polymer relaxation time τw is a decreasing function of the
shear rate, which provides support for our explanation of the
discrepancies in Figs. 2 and 3.

First, in this Rapid Communication, we have demon-
strate that the purely elastic interfacial instability that exists

between two fluids with different viscoelastic properties can
be explained on a kinematic basis. Second, we have used
it to measure the polymer relaxation time in weakly elastic
polymer solutions assuming that they behave as Oldroyd-B
fluids [21]. These measurements are very difficult to obtain
otherwise. The results look promising. We get a precision
of ±15% on the measurements. Presently we are working
on the extension of the technique to more complicated
constitutive relations than Oldroyd B: it will allow us to
extract full nonlinear rheology even for very dilute polymer
solutions. Even though this setup does not constitute a
perfect rheometer, it could enhance the measurements field
performed by a microfluidic rheometer [22,23]. It offers a
new way to estimate the rheological properties of weakly
elastic polymer solutions where very few techniques are
available.
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