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Simple model for temperature control of glycolytic oscillations
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We introduce the temperature-dependent autocatalytic coefficient into the Merkin-Needham-Scott version of
the Selkov system and consider the resulting equations as a model for temperature-controlled, self-sustained
glycolytic oscillations in a closed reactor. It has been shown that this simple model reproduces key features
observed in the experiments with temperature growth: (i) exponentially decreasing period of oscillations;
(ii) reversal of relative duration leading and tail fronts. The applied model also reproduces the modulations
of oscillations induced by the periodic temperature change.
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I. INTRODUCTION

Glycolysis is one of the most important metabolic processes
and a typical example of biochemical oscillations. It is
argued [1] that oscillating behavior can have benefits over
steady states in the sense of efficiency of glucose utilization
and cell’s energy charge. At the same time, the glycolysis is
discussed as a promising way of biofuel production; see, for
example, the Ref. [2]. This induces the question about external
regulation of oscillating glycolytic reaction.

The usual method of regulation is a temperature control
due to the well-known Arrhenius law for rate constant of
chemical reaction. Actually, the temperature dependence for
a period of glycolytic oscillations was detected in the first
experimental studies of them [3,4]. The interplay of tempera-
ture variation as well as other regulators was also investigated
experimentally [5]. However, the most detailed experimental
study was evaluated relatively recently [6,7]. The experiments
were performed with cell-free yeast extract in a closed reactor,
and the following has been obtained: (i) detailed tracing of
the dependence “period versus temperature,” demonstrating
its Arrhenius character and (ii) the significant temperature
influence on a shape of oscillations.

There are several theoretical attempts to take into account
the mentioned temperature dependence. The model [8] has
considered the set of eight rate equations for the key processes
of glycolytic path. A correspondence to the early experimental
estimations [3,4] was found. Note that these works, as
well as the further detailed study [6], deal principally with
oscillations connected with the activity of a key enzyme,
phosphofructokinase (PFK). For this reason, current theoreti-
cal research [9] operates with the allosteric Goldbeter-Lefever
model [10], describing the conversion of substrate [adenosine-
5’-triphosphate (ATP)] into product [adenosine diphosphate
(ADP)] in the presence of PFK. The authors of Ref. [9]
have obtained the plot “period vs. temperature” satisfactory,
corresponding to the experiment in Ref. [6].

But two considered models are quite complex. This makes
difficult an analytical estimation of period as a function of
temperature, as well as an explanation of phenomena founded
experimentally in Refs. [6,7]. From this point of view, the
more simple approach based on the Selkov model [11] looks
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more promising. This model recently showed its power as an
explanation of phase reversal [12] and spatial modulations [13]
of glycolytic traveling waves in yeast extract filling an open
spatial reactor with inhomogeneous influx.

Thus, the main goal of this work is to incorporate the
temperature dependence into the Selkov-based mathematical
model of glycolytic oscillations in the form of the generalized
Rayleigh equation and to apply the obtained system for
reproducing experimental dependences described in Ref. [6].

II. MODEL

The original Selkov model [11] describing the autocatalytic
conversion of substrate (ATP) x into product (ADP) y reads in
dimensionless form as

dx

dt
= ν − xy2, (1)

dy

dt
= −wy + xy2, (2)

where substrate influx ν and product outflow w into the sphere
of reaction are considered constant parameters.

In the case of a closed vessel, as has been shown in
Ref. [14], ν actually means the initial quantity of substrate
taking place within a vessel. Therefore, it can be considered
only as an “influx” into the reaction not in the vessel.
In other words, it is a source of the substrate. Thus, its
value unidirectionally decreases with time. But this leads to
divergence of the solutions of Eqs. (1)–(2), conversely to the
experimentally detected decay of oscillations. To correct this,
Merkin-Needham-Scott proposed to incorporate into Eqs. (1)–
(2) terms linearly depended on substrate concentration.

Additionally, we need to consider the incorporating of
temperature dependence into these two reaction terms. There is
experimental evidence (e.g., Ref. [15]) that enzyme-catalyzed
(via PFK) autocatalytic Selkov’s term xy2 actually has this
dependence governed by the Arrhenius equation:

β(T ) = β0 exp(−k/T ). (3)

On the other hand, the Merkin-Needham-Scott term, αx,
corresponds to extremely slow catalyzing process. Moreover,
the authors of Ref. [14] refer to it as “uncatalized term.”
Biochemically, it can correspond to a number of additional
reactions proceeding in parallel with the PFK-catalyzed
autocatalytic reaction (qubic term). However, in the sense of
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a Selkov-like equation, they simply mean small additional
influx/outflow in the sphere of reaction like −wy term; see
also the discussion in Ref. [16]. Therefore, their temperature
dependence can be neglected. Thus, α is a constant. Summa-
rizing these assumptions, we get the system:

dx

dt
= ν − αx − β(T )xy2, (4)

dy

dt
= −wy + αx + β(T )xy2, (5)

dν

dt
= −εν, (6)

where Eq. (6) describes the substrate consumption of a closed
reactor. It is separated from Eqs. (4)–(5) and can be solved
explicitly:

ν(t) = ν0 exp(−εt). (7)

Therefore, the substitution of Eq. (7) into Eq. (4) leads to the
system of two differential equations.

For theoretical analysis, it is convenient to represent the
system of Eqs. (4)–(6) with the coefficients of Eqs. (3)–(7) in
the form of a generalized Rayleigh equation, introduced for the
Selkov system and discussed in recent works (Refs. [12,17]).
Following the strategy described in the cited works, we
introduce new variable ξ in such a way that

x = z0w − ν + wξ + ξ̇

w
, y = ν − ξ̇

w
,

and

z0 = w3v + βν3 + ανw2

βν2w + αw3

is an equilibrium full concentration of reagents. As a result,
we finally get the single second-order differential equation:

ξ̈ + λξ̇ + λ′′ξ̇ 2 + λ′ξ̇ 3 + [αw + β�2(1 − ν−1ξ̇ )2]ξ = 0,

(8)

where the coefficients are λ = [3ν2β + w2(w + α) −
2βνwz0]/w2, λ′ = β/w2, λ′′ = β(z0w − 3ν)/w2, � =
ν/

√
w.

III. RESULTS

The form of the generalized Rayleigh equation allows to
analysis of basic properties of self-sustained oscillation in
the most direct way. First of all, the range of their existence
is determined by a value of the coefficient λ. The equality
λ = 0 corresponds to the Hopf bifurcation. It can be shown
that there exist two roots ν1,2 corresponding to the equation
λ(ν) = 0, which is a biquadratic equation relatively to ν, and
the oscillations are observed within the interval bounded by
its two roots. As a result, when ν decreases because Eq. (7)
is smaller than the smallest value of ν1,2, the oscillations will
decay. As well, the change of β value also effects the speed
of approaching the lower Hopf bifurcation point. Therefore,
colder reactor medium corresponds to smaller number of
realized oscillations. Additionally, the decay of substrate
source in a closed vessel leads to the decrease of mean product
concentration with a time: all plots in Fig. 1 have negative mean
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FIG. 1. Examples of decaying oscillations corresponding to
various temperatures: (a) 290 K (β = 0.26); (b) 295 K (β = 0.45);
(c) 305 K (β = 1). Parameter determining substrate decay: ε = 0.009.

slope. Both these effects have been found experimentally [7].
The illustration of the calculated numerical solutions of (8)
for three various temperatures is presented in the Fig. 1. The
set of dimensionless parameters used for this and all other
figures: k = 4.73 × 103, β0 = 5.53 × 106, w = 2, ν0 = 2.23,
α = 0.24. The initial values are ξ (0) = 0.3, ξ̇ (0) = 0.1.

The factor at the last term in (8) plays a role of a squared
variable frequency:

ω2 = αw + β�2(1 − ν−1ξ̇ )2. (9)

However, it should be pointed out that the presence of small
variable term ν−1ξ̇ does not affect sufficiently the value of
weak nonlinear oscillations; see the discussion in Ref. [12].
Therefore, the frequency is principally determined by the
temperature [Eq. (3)] and the substrate depletion [Eq. (7)]. The
latter effect is visible in the Fig. 1: the period of oscillations is
larger near the stop of oscillations. The first effect is more
specific in the considered case of oscillations in a closed
vessel. Figure 2 demonstrates frequency of oscillations on
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FIG. 2. The dependence of oscillations’ frequency on tempera-
ture in semilogarithmic co-ordinates. Here, ε = 0 is taken, with the
goal of period stability during the oscillations.
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the inverse temperature, i.e., the semilogarithmic Arrhenius
plot. Its behavior corresponds to Fig. 2(b) in Ref. [6], where
frequency-temperature dependence is approximated by the
Arrhenius law. At the same time, it could be pointed out that
the presense of the constant term α in Eq. (9) slightly differs
from the actual frequency-temperature dependence from a pure
Arrhenius exponential case for small inverse temperatures.
Deviations of experimental results from the fitting line are
detected in this region in Fig. 2(b) in Ref. [6]. However, one
needs to take into account an experimental error. Thus, the
detailed experimental test of this could be stated as a problem
for future experiments.

The next significant property of glycolytic oscillations,
which was first found in the experiment of Ref. [6], is
the change of individual oscillation shape. It has been
observed that low-temperature relaxation oscillations grow
from the magnitude’s minimum to the maximum steeper
than decay from maximum to minimum and visa versa for
high-temperature oscillations. In general, the lines presenting
the lengths of the first and second phases cross around 292 K
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FIG. 3. Temperature dependence for the leading edge and tail of
an individual oscillation: (A) 280 K (β = 0.26); (B) 305 K (β = 1)
(time scales are different for A and B); (C) evolution of the times for
the first (t2 defined as the time interval from the minimal magnitude,
solid line) and second (t1, from the maximum to the minimum,
dashed line) phases of oscillations as a function of temperature.
Here, ε = 0 is taken, with the goal of period stability during the
oscillations.

(19◦ C) (see Fig. 3). Our numerical solution of Eqs. (4)–(5)
demonstrates a similar picture; see Fig. 3. It is natural that
the simple model of the individual oscillation (see inset in
Fig. 3, Ref. [6]). However, it reproduces its crucial feature:
temperature-dependent ratio of the leading edge and tail, see
Figs. 3(a) and 3B. Moreover, the tracing of this ratio with
the temperature change [see Fig. 3(c)] clearly demonstrate
the desired cross-section of phase lengths around the same
temperature as in the experiment. Note that the emergence of
cross-section is mainly based on the tail’s prolongation.

Finally, let us consider the influence of periodic temperature
variations. Figure 4 represents three examples of modulated
shapes of ADP oscillations emerging due to temperature
oscillations of media (compare with Fig. 5 in Ref. [6]). For
simplicity of consideration, we modulate directly β, since it
is a reciprocated function of temperature. Naturally, as it was
discussed above, the simple model (4)–(5) cannot reproduce
the exact shape of experimental curves, but we can reveal the
key mechanism of such a behavior. The periodic difference
between heights of concentration peaks is connected with
the fact that these oscillations take place around one of Hopf
bifurcation points. When the value of temperature corresponds
to λ > 0, the oscillations decay, and visa versa, temperatures
corresponding to λ < 0 leads to the sustained oscillations.
This process repeats periodically. The relation of time-length
for these two phases determines the position of curve’s depth
and the shape of resulting oscillations: from alternation of high
and low individual peaks [Fig. 4(a)] through the cavity within
an individual peak [Fig. 4(b)] to a sequence of wave trains
[Fig. 4(c)].

IV. SUMMARY AND DISCUSSION

We have considered the temperature control of glycolytic
self-sustained oscillations via incorporation of the Arrhenius
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FIG. 4. Modulations of oscillations (solid line) induced by peri-
odic temperature variations (dashed line): (A) β = β0 + 0.3 sin(2t),
(B) β = β0 + 0.3 sin(3t), (C) β is a piecewise-constant function with
the period 10 with the mean β0 and lower and higher values 0.55
and 1.33, correspondingly. The common parameters for all cases:
β0 = 0.7, ν0 = 2.85, w = 2, α = 0.05, ε = 0. The corresponding
value of bifurcation point (larger of two) is ν2 = 3.246, and the period
of oscillations corresponding to the constant β0 is 6.7.
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factor into the autocatalytic term of the Merkin-Needham-
Scott version of the Selkov system. To the analysis of control
parameter influence, we reduced the considered system to the
generalized Rayleigh equation. Such a form has allowed us
to argue that the frequency of oscillation decreasing with the
temperature growth is mainly determined by the autocatalytic
term. This representation could be used also for further analysis
of stages in complicated cascades of chemical and biochemical
reactions, where a temperature compensation is detected
[9,18]. Furthermore, the mathematical form can allow to plan
experiments on nontemperature, say, chemical, regulation of
enzyme activity [19] and to explain their results.

At the same time, the slow catalyzed Merkin-Needham-
Scott term could by considered as a constant and provides two

main features: (i) the damping of oscillations via the Hopf
bifurcation and (ii) the deviation from Arrhenius law in the
range of high temperatures. The presence of two Hopf bifur-
cation points in this dynamical system provides the explanation
of the shape of experimentally found [6] oscillations. They are
determined as a result of sequential crossing of bifurcation
point that leads to decaying and sustained oscillations. The
second effect has partial confirmation in Ref. [6] but needs
more detailed further experiments with reduced error of curve
determination.
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