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Radiation-induced mechanical property changes in filled rubber
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In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its
cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83,
031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation
while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening
representative of the Mullins effect, and materials hardening due to radiation. The net magnitude of the elastic
modulus depends upon the radiation dosage, strain level, and strain-cycling history of the material. Using the
framework of Tobolsky’s two-stage independent network theory we develop a model that can quantitatively
interpret the observed elastic modulus and its radiation and strain dependence.
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I. INTRODUCTION

Filled and cross-linked elastomeric rubber and foam
are versatile network materials with a multitude of
applications ranging from artificial organs and biomedical
devices to cushions, coatings, adhesives, interconnects, and
seismic-isolation-, thermal-, and electrical barriers [1–3].
However, upon long-term or repeated exposure to external
factors like mechanical stress, temperature fluctuations, or
radiation [4], such materials can undergo chemical changes,
including [5–7] (1) creation of new cross links, (2) breaking
(scission) of covalent bonds, and (3) modification of the
polymer-filler interface.

In a recent paper [8] we examined the effect of radiation on
the molecular weight distribution (MWD) of a filled networked
elastomer. However, one important aspect that was not ana-
lyzed was the stress-strain response of samples irradiated under
a finite strain. Assuming that the cross-link density is affected
by radiation only and not by strain, one expects (see Sec. IV)
that the elastic modulus (1) should increase as a function of
the radiation dosage, and (2) should increase as a function of
the strain at which the rubber material is being irradiated.
However, very recent mechanical measurements show that
although trend (1) generally holds true in all cases, trend (2) has
a strong dependence on the stress-strain history of the sample.
In this paper we discuss these recent measurements, and
develop a model for quantitative interpretation of the observed
modulus as a function of radiation dosage and strain level.

II. MECHANICAL MEASUREMENTS

As in the previous work [8], all experiments were performed
on the commercial silicone elastomer TR-55 from Dow
Corning. Thin rectangular samples were stretched to specific
strain levels and exposed to controlled dosages of γ radiation
from a Co-60 source (1.4 MeV, ∼0.1 Mrad/h dose rate)
in a nonreactive nitrogen atmosphere. Seven different strain
levels were studied, corresponding to stretch ratios λ1 = 1.20,
1.47, 1.67, 1.84, 2.00, 2.33, and 2.67. Following exposure to
controlled duration (and therefore dosages) of radiation, each
sample was removed from the irradiation chamber, released
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from the λ1 strain, and allowed to relax at ambient conditions
for 24 h. The relaxed samples were then subjected to measure-
ment of the new equilibrium length, called the recovered length
λs . After several weeks of further equilibration, stress-strain
analysis was carried out for five load-unload cycles at strains of
up to 50% elongation. The stress-strain analysis was performed
on rectangular specimens (width ∼3 mm and thickness 0.6–0.9
mm) using an Instron 5565 dual-column electromechanical
test system with an initial grip separation of ∼20 mm and a
stretching rate of 20 mm/min.

Figure 1 plots the measured recovered length (λs) as a
function of radiation dosage D for the different values of
λ1. Error bars indicate sample-to-sample variation in cases
where multisample measurements were performed. A subset
of these results was already reported in Ref. [8]. These results
can be quantitatively interpreted using Tobolsky’s two-stage
independent network model [9,10], as discussed in Sec. III.

Figure 2 plots a typical stress-strain response of such
samples (only the loading curves are shown and the unloading
curves hidden for clarity). The main feature is that there
is strong dependence on the cycle number. In particular,
in cycle 1 the response is much steeper, corresponding to
a significantly higher elastic modulus, while the response
becomes progressively softer in subsequent cycles, but with
a much smaller dropoff than between cycle 1 and cycle 2. This
type of softening has long been known to occur in filled rubber
materials and is generally known as the Mullins effect [11].
At the end of cycle 1 a small permanent stretch (∼2%) is
also incurred, which is smaller than typical permanent sets
reported in Fig. 1. It is important to note here that the recovered
length in Fig. 1 was obtained prior to subjecting the samples
to the stress-strain cycles as in Fig. 2.

Next, the Young’s modulus (E) was extracted from the
stress-strain slope at small deformation (corresponding to
strain levels of 5% or less) for various cycles and various
values of λ1 and D. Figure 3 displays the results for E in cycles
1 and 5. We observe the following trends: (1) For all values
of λ1 the modulus increases as a function of D within each
cycle. For λ1 = 1 and cycle 1 this increase is nearly linear,
as observed previously [8]. (2) For all values of λ1 and D the
modulus significantly decreases from cycle 1 to cycle 5, similar
to the softening behavior seen in Fig. 2. The modulus softening
is the largest for λ1 = 1 and gets progressively smaller for
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FIG. 1. Recovered length (λs) as a function of radiation dosage
for different values of tensile stretch ratios (λ1) at which the material
is subjected to radiation. The symbols denote experimental measure-
ments while the lines (solid, dashed, and dotted) are theoretical results
using λ1-independent feff (see Sec. III). The λ1 values are indicated
by each curve.

increasing values of λ1. (3) As a function of λ1 the modulus
displays complex behavior that can be increasing, decreasing,
or nonmonotonic depending upon the cycle and the radiation
dosage D. In particular, in cycle 1 the modulus E shows an
overall decreasing trend as a function of increasing λ1, with
the rate of decrease of |∂E/∂λ1| getting smaller with increasing
λ1 and increasing D. In cycle 5, on the other hand, E shows
more complex behavior as a function of λ1, decreasing at
D = 5 Mrad, increasing at D = 17 Mrad, and nonmonotonic
at intermediate values (10 Mrad). This behavior of E can be
traced to a combination of (i) material softening due to the
Mullins effect, and (ii) radiation hardening due to the creation
of a net number of new cross links [8]. Below we analyze the
above results within the framework of Tobolsky’s two-stage
network theory [9,10].

FIG. 2. Typical stress-strain response of a radiation-exposed TR-
55 sample through the first five cycles. The data shown correspond
to a sample that was exposed to 17 Mrad of radiation (under λ1 = 1)
and then stretched to a maximum of 50% of its original length during
each cycle.

FIG. 3. Young’s modulus obtained from the small-deformation
slope of experimental stress-strain data for various values of λ1,
three different radiation levels, and two cycles (cycle 1 and cycle 5).
Depending on the cycle and the radiation level the elastic modulus
displays increasing, decreasing, and nonmonotonic behavior as a
function of λ1.

III. CONSTITUTIVE MODELING

To analyze the experimental data on recovered length
λs (Fig. 1) and Young’s modulus E (Fig. 3) we adopted
the Neohookean stress response model [12] defined by the
function σ (λ) = G(λ2 − 1/λ), where σ is the (true) stress
under a uniaxial stretch ratio λ (λ= 1 corresponds to a state
of no deformation), and G is the shear modulus that depends
on the cross-link density in the material. Before deriving a
general formula for the Young’s modulus E (see Sec. IV) we
note that for the special case λ1 = 1 the Young’s modulus
is simply three times the shear modulus, i.e., E = 3G. Thus
the near-linear increase of E with D for λ1 = 1 in cycle 1
[see Fig. 3 (top)] can be expressed as G = G0(1 + C0D),
where G0∼1.5 MPa is the shear modulus of the pristine
material, D the radiation dosage in Mrad, and C0 is a constant
∼0.05 Mrad−1. This change in modulus results from a net
increase in the number of cross links in the system induced by
radiation.

For the case λ1 > 1 the radiation-induced cross links give
rise to two independent networks: (1) the original one created
in the unstrained state, a fraction of which gets modified
during exposure to radiation, and (2) the new cross links
created at strain state λ1. At the length scale of our mesoscale
junction model [8,13] all network junctions, original and
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radiation-induced, are assumed to be homogeneously dis-
tributed throughout the bulk elastomer. In the presence of these
two networks the stress response function becomes

σ (λ) = G0

{
(1 − f ′

mod)

(
λ2 − 1

λ

)
+ f ′

xl

(
λ2

λ2
1

− λ1

λ

)}
.

(1)

In Eq. (1) f ′
mod and f ′

xl are, respectively, the amounts of
pristine cross links that are modified and the amount of new
cross links created by radiation, both expressed as a fraction of
the pristine cross-link density [8], taking into account subtle
feedback effects [14] that are present for λ1 > 1. The net
increase in cross-link density in cycle 1 as a function of the
radiation dosage D can be expressed through the relation [8]:

�fxl = f ′
xl − f ′

mod = C0D. (2)

For the data in Fig. 1 the recovered length λs can be modeled
by solving Eq. (1) for σ (λs) = 0, which yields

λs =
{

1 + feffλ1

1 + feff/λ
2
1

}
, (3)

where feff = f ′
xl/

(
1 − f ′

mod

)
. When Eq. (3) is inverted to solve

for feff for all experimental value of λs in Fig. 1, one obtains
the expression:

feff = λ2
1

(
λ3

s − 1
)

(
λ3

1 − λ3
s

) (for λ1 > 1). (4)

When the experimental values of λs and λ1 (from Fig. 1)
are used in Eq. (4) we find that feff is a function of D only, and
nearly independent of λ1. The values of feff (averaged over λ1)
as a function of D is plotted in Fig. 4, with the behavior well
described by the exponential fit (solid line):

feff = exp(α1D − α2D
2) − 1, (5)

where constants α1∼0.165 Mrad−1 and α2∼0.003 Mrad−2,
respectively.

FIG. 4. The quantity feff (see text) as a function of radiation
dosage D: The points correspond to (λ1-averaged) values obtained by
inserting experimental recovered lengths (λs) into Eq. (4), while the
solid line corresponds to an exponential fit given by Eq. (5).

FIG. 5. Young’s modulus (E) as predicted from Eq. (7) with a
constant G0 (=1.5 MPa) independent of stress-strain cycling.

IV. ANALYSIS OF YOUNG’S MODULUS (E)

The main motivation for the current paper was to ana-
lyze and understand the complex behavior of the Young’s
modulus E as seen experimentally (Fig. 3). The modulus E,
defined as the small-deformation stress-strain slope about the
altered equilibrium (λs) is given by

E = lim
ε→0

σ [λs(1 + ε)] − σ (λs)

ε
=

(
∂σ

∂λ

)
λs

λs, (6)

where ε is the uniaxial deformation strain. Equations (1)–(3)
and (6) yield (after some algebraic manipulation) the following
expression for E:

E = G0
(1 + C0D)

1 + feff

[(
2λ2

s + 1

λs

)
+ feff

(
2
λ2

s

λ2
1

+ λ1

λs

)]
.

(7)

For λ1 = 1 there is no permanent set, i.e., λs = 1 [as also
follows from Eq. (3)], which substituted in Eq. (7) yields the
relation E = 3G0(1 + C0D) = 3G, as mentioned in Sec. III.
Assuming a constant G0∼1.5 MPa in Eq. (7) one obtains an
increasing E as a function of increasing λ1 as shown in Fig. 5, a
behavior in clear disagreement with the experimental pattern of
Fig. 3.

The behavior in Fig. 5 arises under the assumption that G0

is constant and independent of the cycle number, λ1, and D.
This is equivalent to the assumption that the rubber network
does not have any hysteresis effects, i.e., no Mullins effect.
This assumption is clearly not correct for the experimental
TR-55 samples as evidenced from the softening in Fig. 2
with strain cycling. In fact, Figs. 2 and 3 indicate two
different stages at which the material softening takes place:
(1) during the several-week-long annealing period following
the λs measurements. This softening happens only for λs > 1,
with the amount of softening increasing with increasing λs (and
therefore increasing λ1); (2) during the first stress-strain cycle
following the annealing period. The amount of this softening
decreases with increasing λ1. The first type of softening leads
to the behavior of E as seen in Fig. 3 (top), while the second
type of softening causes the change from the behavior in Fig. 3
(top) to that in Fig. 3 (bottom). We elaborate on this point in
the following discussion.
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FIG. 6. Young’s modulus (E) in cycle 1 as predicted from
Eq. (7) by rescaling the pristine shear modulus G0 (=1.5 MPa) with
a multiplicative factor [1–α(λs–1)]. This factor represents a simple
model that illustrates the effect of λs and radiation dosage D on the
cycle 1 response. See text.

Although the Mullins effect has been known for several
decades, the underlying microscopic driving force is still
unclear [15]. Suggestions range from the cleavage of chemical
bonds between rubber and filler, slipping and disentanglement
of chains, rupture of filler clusters, and so on. The true
mechanism notwithstanding, it is clear that any of these
processes will lead to a decrease in the overall cross-link
density. In addition, the propensity for each of these processes
is expected to (1) increase with the stress level the material
is subjected to, and (2) decrease with increasing radiation
dosage. The latter creates additional cross links that reduce
the average stress levels per cross link for a given strain level.
As a simple model illustrating these two effects on the cycle 1
response we have explored the behavior of E when the pristine
shear modulus G0 in Eq. (7) is rescaled by a multiplicative
factor, i.e.,

G0 → G0[1 − α(λs − 1)], (8)

where α is a decreasing function of the radiation dosage D.
Figure 6 plots the resulting values of E for the parameter
values of α = 0.95, 0.48, and 0.19 for D = 5, 10, and 17 Mrad,
respectively. This behavior is quantitatively consistent with
Fig. 3 (top).

Finally, the behavior of E in cycle 5 [Fig. 3 (bottom)]
can be interpreted as follows. With repeated cycling further
loss in cross links continues to occur until all the loose links
(weak chemical bonds to fillers or physical entanglements) are
removed from the system. For larger values of λ1 (and resulting
larger λs) a larger fraction of these links are removed during
the several-week-long annealing period (i.e., before the first
stress-strain cycle), which is consistent with a higher degree of
softening and a decreasing E with increasing λ1 in cycle 1. As
a consequence, any additional softening in subsequent cycles
is higher for smaller values of λ1. This effect, in conjunction
with a decreasing |∂E/∂λ1| with increasing D in cycle 1 [see
Fig. 3 (top) or Fig. 6] leads to less negative values of ∂E/∂λ1 in
cycle 5 (as compared to cycle 1), which can even become pos-
itive for large D [as seen in Fig. 3 (bottom)] for D = 17 Mrad).

V. SUMMARY

In summary, as a follow-up to our recent work we have
carried out mechanical stress-strain measurements on an
elastomeric rubber material subjected to controlled radiation
dosages under finite strain. Interesting trends in the measured
Young’s modulus is observed as a function of radiation
dosage and the strain at which the radiation exposure is
performed. More specifically, at lower radiation dosages and
earlier stress-strain cycles the modulus is found to decrease
with increasing strain of exposure, while the trend gets
reversed at higher dosages and later cycles. We show that
this behavior arises due to the interplay of two opposing
effects, i.e., materials softening due to the Mullins effect and
radiation hardening due to the creation of new cross links.
Using the framework of Tobolsky’s two-stage independent
network theory we develop a phenomenological model that can
quantitatively interpret the experimentally observed modulus
as a function of radiation dosage and strain history. For future
work it might be interesting to analyze stress-strain behavior in
a direction orthogonal to the strain under which the radiation
is applied.
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