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Nonergodic solutions of the generalized Langevin equation
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It is known that in the regime of superlinear diffusion, characterized by zero integral friction (vanishing integral
of the memory function), the generalized Langevin equation may have nonergodic solutions that do not relax
to equilibrium values. It is shown that the equation may have nonergodic (nonstationary) solutions even if the
integral of the memory function is finite and diffusion is normal.
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There is hardly anything more important to say about a
statistical mechanical system than whether it is ergodic or not.
In general the question is notoriously difficult, yet for certain
classes of stochastic systems the criteria of ergodicity breaking
may be remarkably simple [1–5]. This is so, or so it would
appear, for stochastic dynamics described by the generalized
Langevin equation (GLE)

dA(t)

dt
= −

∫ t

0
dτ M(t − τ ) A(τ ) + F (t), (1)

which governs a dynamical variable A of a classical system
coupled to a thermal bath with many degrees of freedom in
the absence of external forces [6]. The “random” force F (t) is
zero centered 〈F (t)〉 = 0, not correlated with the initial value
of A:

〈A(0)F (t)〉 = 0, (2)

and related with the dissipative memory function M(t) through
the fluctuation-dissipation theorem

〈F (0)F (t)〉 = 〈A2〉M(t). (3)

We shall also assume the asymptotic vanishing of correlations
of the random force

lim
t→∞〈F (0)F (t)〉 = lim

t→∞ M(t) = 0, (4)

which is typical for irreversible stochastic processes. It appears
to be a common belief that, given conditions (3) and (4),
solutions of the GLE (1) describe ergodic relaxation to thermal
equilibrium, unless the Laplace transform of the memory
function M̃(s) = ∫ ∞

0 dt e−stM(t) has a specific asymptotic
behavior. Namely, it was shown in Refs. [3–5] that the
condition of ergodicity breaking for GLE systems has the form

M̃(s) ∼ sδ, δ � 1, as s → 0. (5)

This condition implies the vanishing integral of the memory
function ∫ ∞

0
dt M(t) = M̃(0) = 0. (6)

If the targeted variable A is the velocity of a Brownian particle,
condition (6) corresponds to anomalous diffusion when the
mean-square displacement 〈x2(t)〉 of the particle increases
with time as tα with α > 1 (superdiffusion) [8,9]. The relation
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(6) is not very common, but not unrealistic. For instance, it
was found to hold for a particle interacting with longitudinal
phonons in liquids in the limit of zero temperature [10]. It
should perhaps be noted that while the condition of ergodicity
breaking (5) invariably implies superdiffusion, the converse
is not true: For M̃(s) ∼ sδ with 0 < δ < 1 the condition of
superdiffusion (6) is satisfied, yet solutions of the GLE (1) are
ergodic [3]; see also Eq. (12) below.

The purpose of this paper is to show that the condition of
ergodicity breaking in the form (5) is too restrictive. It will
be demonstrated that the GLE may have nonergodic solutions
even if the memory function does not follow the asymptotic
form (5), M̃(0) = ∫ ∞

0 M(t) dt is finite, and diffusion is normal.
We begin by briefly recapitulating the derivation of condi-

tion (5), which may differ depending on a type of averaging
〈. . .〉 in relations (2) and (3). When the GLE is derived with
the Mori’s projection operator technique [6], the system is
usually assumed to be in thermal equilibrium with the bath,
and the averaging in Eqs. (2) and (3) is over the ensemble of
initial conditions for the composition of the system and the
bath in mutual thermal equilibrium. In this case it is natural to
use the GLE to evaluate the equilibrium correlation function
〈A(0)A(t)〉. Its normalized form

C(t) = 〈A(0)A(t)〉
〈A2(0)〉 (7)

satisfies the equation

dC(t)

dt
= −

∫ t

0
dτ M(t − τ ) C(τ ) (8)

with the initial condition C(0) = 1 and has a Laplace transform

C̃(s) = 1

s + M̃(s)
. (9)

The connection to ergodic properties is given by Khinchin’s
theorem [7] (see also Ref. [2]), which states that the stationary
process A(t) is ergodic if the correlation function factorizes
and, for a zero-centered process, vanishes in the long-time
limit

lim
t→∞ C(t) = 〈A(0)〉〈A(t)〉

〈A2(0)〉 = 0. (10)

Although in Mori’s GLE the random force F (t), and therefore
A(t), are not necessarily stationary and zero centered, we shall
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assume that these properties do hold. Then Eqs. (9), (10), and
the limit value theorem

lim
t→∞ C(t) = lim

s→0
s C̃(s) (11)

give the condition of ergodicity breaking in the following form:

lim
s→0

s

s + M̃(s)
�= 0, (12)

which leads to condition (5).
A slightly different approach is to apply for a particular

and very popular class of models where the random force F (t)
does not depend on A. This is the case, for instance, when
A is the momentum of a Brownian particle that is bilinearly
coupled to the bath comprising harmonic oscillators [6]. For
this problem, often referred to as the Caldeira-Leggett model,
relation (2) is satisfied trivially, the random force is stationary
(for the infinite bath), and the fluctuation dissipation theorem
takes the form

〈F (0)F (t)〉0 = 〈A2〉M(t), (13)

where the the average 〈. . .〉0 is taken over bath variables only.
The latter allows one to use the GLE to evaluate not only the
equilibrium correlation function but also the second moment
〈A2(t)〉0, which characterizes the process of thermalization
of the system, which at the moment t = 0 is put in contact with
the equilibrium thermal bath. Compared to Mori’s approach,
this is a more general problem since the initial equilibrium of
the system and the bath is not assumed. One can show that the
system does not thermalize,

lim
t→∞〈A2(t)〉0 �= 〈A2〉, (14)

under the same condition as that for ergodicity breaking
discussed above. Indeed, using a Laplace transformation the
solution of the GLE (1) can be written in the form

A(t) = A(0) C(t) +
∫ t

0
dτ C(t − τ ) F (τ ), (15)

where the response function C(t) has the transform given by
Eq. (9) and therefore coincides with the correlation function for
Mori’s GLE and satisfies Eq. (8). By squaring and averaging
solution (15) over bath variables, and also using stationarity
of F (t) and the fluctuation-dissipation relation (13)

〈F (t1)F (t2)〉0 = 〈A2〉M(|t1 − t2|), (16)

one gets

〈A2(t)〉0 = A2(0) C2(t)

+ 2〈A2〉
∫ t

0
dτ1C(τ1)

∫ τ1

0
dτ2 C(τ2)M(τ1−τ2).

(17)

Using (8), this equation can be written as

〈A2(t)〉0 = A2(0) C2(t) − 2 〈A2〉
∫ t

0
dτ1C(τ1) Ċ(τ1),

and eventually one obtains [11]

〈A2(t)〉0 = A2(0) C2(t) + 〈A2〉 [1 − C2(t)]. (18)

The system does not thermalize if the response function does
not vanish in the long time limit, limt→∞ C(t) �= 0, which
again gives the conditions (12) and (5).

The above reasoning was based on the limit value theorem
(11) which is only valid if the system reaches a stationary
state and the long time limit for C(t) does exist. One might
suggest that this is always the case provided the random
force is irreversible in the sense that the correlation function
〈F (0)F (t)〉 and the memory kernel M(t) vanish as t → ∞.
Let us show that this assumption is incorrect: It is possible to
construct memory functions M(t) that vanish at long times,
but the corresponding functions C(t), related to M(t) by
Eq. (8) or (9), do not have a long time limit. The condition
of superdiffusion

∫ ∞
0 M(t) dt = 0 is not required.

As an example, let us consider a class of memory functions
with the Laplace transform

M̃(s) = −s + s2 + ω2

f (s)
, (19)

where ω is real and f (s) is an analytic function at s = ±iω.
The corresponding transform for the correlation or response
function C(t), given by (9), is

C̃(s) = f (s)

s2 + ω2
. (20)

It has simple poles at s = ±iω on the imaginary axis, and
therefore the original C(t) contains terms oscillating with
frequency ω and does not reach a stationary value as t → ∞. It
is not immediately obvious, however, whether it is possible to
construct a function f (s) that ensures that the memory kernel
behaves in a physically reasonable way. There are several
conditions to satisfy. First, as a Laplace transform must vanish
in the limit s → ∞, we must require, in view of (19), that

f (s) ∼ s, as s → ∞. (21)

The second condition is the asymptotic vanishing of correla-
tions (4),

lim
t→∞ M(t) = lim

s→0
s M̃(s) = 0, (22)

which leads to the asymptotic constraint

f (s) ∼ sr , r < 1 as s → 0. (23)

The third condition, which is more difficult to handle than the
other two, is that the memory function must not exceed its
initial value,

|M(t)| � M(0), for t > 0. (24)

This is because M(t) is essentially the correlation function
of the stationary stochastic process F (t), which satisfies the
inequality

〈[F (0) − F (t)]2〉 = 2〈F 2(0)〉 − 2〈F (0)F (t)〉 � 0.

Condition (24) cannot be formulated as that for the Laplace
transform M̃(s), which makes the choice of f (s) in Eq. (19)
not quite straightforward. It turns out that the simplest function
f (s) that can be made consistent with all three conditions (21),
(23), and (24) is

f (s) = s2 + as + b

s + c
, (25)
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with certain restrictions on the real constants a,b, and c. In
this case

C̃(s) = s2 + as + b

(s + c)(s2 + ω2)
, (26)

while the transform of the the memory function (19) can be
written in the form

M̃(s) = α + βs + γ

s2 + as + b
, (27)

where

α = c − a,

β = ω2 − b − a(c − a),
γ = ω2c − b(c − a).

(28)

The inverse Laplace transformation L−1 of (27) gives the
memory function as a sum of the Dirac delta function and
a nonsingular part,

M(t) = α δ(t) + m(t). (29)

Conditions (22) and (24) are satisfied if the singular part is
positive (α > 0), and the nonsingular function

m(t) = L−1

{
βs + γ

s2 + as + b

}
(30)

vanishes as t → ∞. This sets the constraints

c > a > 0, b �= 0, (31)

while ω is still an arbitrary parameter.
As an illustration consider the set of parameters a = b = 1,

c = 2, and ω2 = 2. Then Eqs. (28) give α = 1, β = 0, γ = 3,
and transforms (26) and (27) read

M̃(s) = 1 + 3

s2 + s + 1
,

C̃(s) = s2 + s + 1

(s2 + 2)(s + 2)
.

(32)

Respectively, in this case the memory function is

M(t) = δ(t) + 2
√

3 e−t/2 sin

(√
3

2
t

)
(33)

and satisfies both conditions (22) and (24), while the correla-
tion or response function

C(t) = 1

2
e−2t + 1

2
cos(

√
2 t) (34)

does not reach a long time limit. Observe that the nonsingular
part of the memory function m(t) increases at t = 0. As one can
check, for the given class of memory functions (19), and under
restriction (4), the property m′(0) > 0 is generic. Therefore the
presence of a singular term in M(t) is essential: If the delta
function is absent in (29) (α = 0), then the condition (24)
cannot be met.

Needless to say, the condition of superdiffusion∫ ∞
0 dt M(t) = M̃(0) = 0 is not implied in our construction. It

follows from (27) that M̃(0) = ω2c/b, and so, unless ω = 0,
M̃(0) is finite and diffusion is normal. Since b �= 0 due to
(31), the regime of subdiffusion lims→0 M̃(s) = ∞ [8] does
not occur for memory functions of type (27).

Summarizing, it is shown that stochastic dynamics gov-
erned by the generalized Langevin equation may be nondis-
sipative in the regime of normal diffusion, and thus superdif-
fusion is not a necessary condition for ergodicity breaking,
as often assumed in literature. In our showcase example
the memory function consists of a delta peak and a long,
generally nonmonotonic tail. A possibility of nonergodic
dynamics generated by a noise with physically more realistic
nonsingular correlations remains to be examined. In this case
the time-reversal symmetry requires that the exact memory and
autocorrelation functions must be even in time [12]. Neither
this additional constraint nor the condition of subdiffusion
[divergence of M̃(s) as s → 0] can be met by the simple class
of memory functions considered in this paper.
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