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Shear-induced platelet margination in a microchannel
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The lateral migration of platelets in a microchannel is studied numerically where the hydrodynamic interactions
between red cells, platelets, and vessel walls are resolved by the Stokes flow boundary integral equations. The
simulations provide a clear physical description of the expulsion of the platelets by the velocity fluctuations in the
core cellular flow toward the cell-depleted layer near the wall. The lateral migration is shown to be diffusional,
and we further demonstrate, in agreement with previous experiments, that the diffusivity scales sublinearly with
the shear rate if the relevant capillary number, Ca < 1, as a result of its intrinsic dependence on the deformation

of red cells.
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I. INTRODUCTION

The preferential concentration of platelets near vessel
walls is critical for the formation of a hemostatic plug
and thrombosis. Note that the predominant nonliquid blood
constituent, erythrocytes [or red cells (RBCs)], occupy 36%—
53% of the blood volume [1]. The number density of platelets
is about 1/10 of RBCs, and their size (2-4 pum in diameter)
is significantly smaller than that of RBCs (about 8§ um
diameter). Hence the motion of platelets, in both axial and
lateral directions, is heavily influenced by the distribution
and kinematics of red cells. Known as the famous Fahraeus-
Lindquist effect [2], RBCs migrate toward the center of the
vessel, leaving a cell-free layer near the wall where the platelets
tend to concentrate.

The near-wall concentration of platelets and similar-sized
particles, as well as the necessary existence of RBCs for the
margination of platelets, has been confirmed in experiments
[3.4], though a detailed mechanism is still unavailable. From
their platelet adhesion experiments, Aarts et al. [5] fit the
effective platelet diffusivity to a power law with the wall
shear rate, and the exponent is found to depend strongly
on the hematocrit. The effective wall normal diffusivity of
platelet migration is several orders of magnitude higher than
their intrinsic Brownian diffusivity and is considered to be a
shear-induced diffusivity due to the hydrodynamic interactions
between the platelets and RBCs [3,4]. It is well known thatin a
rigid particle flow, the particle-particle collisions cause lateral
movements; the frequency and intensity of these collisions
determine the effective diffusivity of particles, which scales
linearly with the flow shear rate [6—8]. In blood flow, because
of the much lower number density of platelets as compared to
that of the red cells, the shear-induced diffusion of platelets
must be dominated by the hydrodynamic interaction between
the platelets and red cells. The situation is complicated by
the deformability of RBCs, which can be quantified by a
capillary number Ca = pu*y*a*/E%, where u* = 1.2 mPa - s
is the viscosity of blood plasma, y* is a characteristic flow
shear rate, a = 2.82 pum* is the equivalent radius of a typical
human erythrocyte based on its volume, and E§ = 6.8 £N/m
is the shear modulus of a normal RBC membrane [9]. As
a result, the platelet diffusivity, when nondimensionalized by

y*a*?, must depend on Ca, and this dependence is manifestin a
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nonlinear dependence of the (dimensional) platelet diffusivity
on the flow shear rate as observed in experiments [5].

Because of the dominant RBC volume fraction and their
larger size, the existence of platelets apparently does not
alter the overall flow characteristics in any significant way.
Moreover, the hydrodynamic interaction between the RBCs
and platelets is expected to be dominated by the former,
and the much smaller platelets mainly sample the velocity
fluctuations due to the interactions between red cells. These
ideas are examined in our present numerical simulation of a
pressure-driven blood flow between two flat plates, where the
hydrodynamic interactions between RBCs, platelets, and walls
are solved fully coupled by a Stokes flow boundary integral
equation method. Focusing on the physical mechanism of
platelet margination, we investigate the cellular flow’s velocity
fluctuations, the velocity autocorrelation, and the diffusive
spreading of passive non-Brownian tracers as well as platelets,
with particular emphasis on their dependence on the flow
capillary number.

II. NUMERICAL METHOD

Though the whole blood behaves as a non-Newtonian
complex fluid [10], the fluid phase of the blood is essentially
Newtonian. In small vessels, the flow is Stokesian due to
the nearly zero Reynolds number and can thus be calculated
using the boundary integral method [11]. Besides its supe-
rior accuracy, the boundary integral method is particularly
useful in this context since it obviates the need to mesh
the three-dimensional extracellular space, which has a very
complex geometry and is continuously deforming. Most of the
details of the formulation and numerical scheme used in the
present study have been discussed previously [12]. The RBC
membrane is modeled as a two-dimensional neo-Hookean
material with bending stiffness [13—16], and the surfaces are
discretized into piecewise linear triangular mesh elements. The
residual force due to deformation is directly calculated by
the virtual work principle as the first variation of the elastic
and bending energy. Because platelets are much stiffer than
RBCs, they are modeled as rigid discoids [17]. We assume that
the platelets are not activated and thus neglect their complex
surface features [17]. These platelets are free of external forces

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.83.061924

HONG ZHAO AND ERIC S. G. SHAQFEH

FIG. 1. Boundary integral equation simulation of red cells and
platelets in a channel flow.

and torques, and their rigid body motion is solved by a deflated
double-layer formulation [11].

The RBC surface velocity, the wall friction force, and
the double-layer density on the platelet surfaces are solved
fully coupled after the discretization of the boundary integral
equations, where the left-hand side matrix can be decomposed
into 3 x 3 submatrices that represent the hydrodynamic
interactions between the three subsystems. The resulting
linear equation is solved by a matrix-free GMRES solver
without explicitly forming the dense matrix. The matrix-vector
multiplication needed by the iterative solution is formed
implicitly via directly computing the surface integrals at
collocation points and is accelerated by the smooth particle
mesh Ewald sum method with O (N log N) computational cost,
where N is the total number of surface mesh points [12,18].

As shown in Fig. 1, the channel flow is between two infinite
flat plates with the wall normal direction along the z axis and
is periodic in the x and y directions. A background velocity
(u) is applied in the x direction to drive the flow, and it
is easy to show that (u) is the volume-averaged velocity in
the computation domain. This is equivalent to applying a
mean pressure gradient (dp/dx). The relation between (u)
and (dp/0x) in principle depends on the instantaneous flow
configuration; however, the fluctuations in (dp/dx) at constant
(u) always remain less than 1% in a stationary state.

All quantities are nondimensionalized by the RBC radius
a*, the plasma viscosity u*, and a characteristic shear rate
y* = 6(u)*/H™* that is the wall shear rate of the Poiseuille
flow in the same channel of height H*. Hence a unit capillary
number corresponds to a wall shear rate of approximate
2000 s~'. The membrane’s dilatational modulus E? is chosen
as a penalty parameter so that u*y*a*/E% = 1072, and the
change in the local RBC surface area (defined as AA/A, where
A is the area of an RBC surface mesh element) is less than
0.5% on average. Moreover, the local area change per element
is less than 3% for 90% of all elements over the entire range
of Ca investigated. The nondimensional membrane bending
stiffness is Ep = E;/(E§a*2) =3.3x 1073,

The computational domain has a length L = 16 in the
flow direction and a height H = 12. The spanwise size is
9, which is more than three times the RBC diameter, thus
allowing fully three-dimensional flow development. Although
the normal range of human body hematocrit is 40%-50%,
the local hematocrit drops significantly in small vessels and
is only about 40% of the body average at 30 pum vessel
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diameter [19,20]. Hence the mean hematocrit ( H,) in this study
is chosen to be 0.2. At Ca = O(1) and with an initial random
disposition of undeformed red cells, more than 50 flow-through
times (L /(u)) are typically necessary to establish a stationary
cellular distribution. This corresponds to a relaxation time of
about 400, which is of the same order as the relaxation time
scale (H /a)*a/(u) = 864 for rigid particulate flows [8].

III. RESULTS

The snapshots of the full system simulations at Ca = 0.25
and 2 are shown in Fig. 2. The cell-depleted Fahraeus-
Lindquist zone is clearly visible, and the RBCs immediately
next to the cell-free layer are aligned with flow. The width
of the cell-depleted layer is implicitly determined by the
balance between the wall lift velocity of the cells and the
intercell interactions. At Ca = 0.25, the cells exhibit strong
resemblance to the biconcave shapes in the stress-free state,
especially near the center line where the local shear rate is
the lowest. At Ca = 2, cells close to the wall are significantly
elongated and are more uniformly aligned with the flow; cells
near the center line have slipper-like shapes similar to those in
a capillary flow [21]. Because the cellular shapes change with
the capillary number, the flow characteristics must also depend
on Ca, which ultimately determines the Ca dependence of the
particle migration in the flow.

Figure 3 shows the dimensionless mean axial velocity
profile as well as the root mean square (RMS) of the wall
normal velocity fluctuations /{w?2), with both normalized
by ywa, where y,, is the wall shear rate and a =1 by
nondimensionalization. Inside the cell-depleted layer, the
mean velocity profiles collapse to the Poiseuille profile but
become blunt inside the cell-laden region. The flow is shear
thinning, as the deviation of the center-line velocity from that
of the Poiseuille flow is reduced with increasing Ca. With
respect to the reference shear rate y* = 6(u*)/H*, the wall
shear rate y,, decreases from 1.22 at Ca = 0.25, to 1.13 at
Ca = 2.0, meaning a reduction in the wall friction force and
equivalently a reduction in the apparent blood viscosity.

In the cell-depleted layer, the normal velocity fluctuations
are zero at the wall because of the no-slip boundary condition.
The fluctuations increase monotonically as the core cellular
region is approached and are maximal at z &~ 3, which, roughly
speaking, is the dividing plane between the first and second
layers of RBCs away from the Fahraeus-Lindquist zone. This
is also where the maximal local shear rate occurs inside the
cell-laden region. The value of y/(w?) then decreases further
as the channel center line is approached but remains nonzero

FIG. 2. The snapshots of the system at Ca = 0.25 and 2.
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FIG. 3. (Color online) The mean axial velocity (solid line) and
the RMS of wall normal velocity fluctuation (dashed lines), both
normalized by the wall velocity scale y,a.

even at z = H /2, where the local mean shear rate is zero. This
nonlocal effect certainly results from the fact that the RBC
radius is comparable to the channel height and is consistent
with previous findings of the nonzero center-line suspension
temperature in a channel flow of a suspension of rigid
spheres [8].

The wall normal velocity fluctuations are fully character-
ized by the autocorrelation of Lagrangian tracers, which are
placed randomly in the extracellular region and then passively
convected by the flow. The channel is divided equally into 12
intervals in the z direction; for spatial binning, the correlation
w(t)w(t + At) is assigned to the z interval within which the
tracer at time ¢ lies. The normalized autocorrelation curves at
z = 1 (inside the cell-free layer) and at z = 6 (at the center
line) are shown in Fig. 4. At z = 1, the curves of different
Ca overlap well when ¢ is scaled by the wall shear rate y,,.
At z = 6, we have found that these curves collapse reasonably
well, at least for the initial decay near t = 0, if the correlation is
plotted against Yeore? Where Yeore = (U|,—¢ — u|;=3)/3, which
is an empirically defined effective shear rate in the core flow
region.

The correlation curve in the core flow region is oscillatory,
indicating multiple encounters of a tracer particle with RBCs
as it is convected by the flow. The autocorrelation diminishes
faster with time at low Ca number, which is qualitatively
attributed to the more disordered RBC alignment and spatial
distribution (see Fig. 2). At the center line, the negative
autocorrelation at Yeore! & 2 becomes more significant as Ca
increases from 0.25 to 1. The relaxation time t, which is
the integral of autocorrelation, is thus significantly reduced
with increasing Ca, as shown in Fig. 4. Since the diffusion
coefficient is proportional to 27 or alternatively y2 .7, and
because t decreases faster than any inverse shear rate, the
nondimensional diffusivity decreases with increasing Ca. This
is equivalent to saying that the dimensional diffusivity scales
sublinearly with any characteristic shear rate in the system at
Ca < 1. This can be contrasted to the shear-induced diffusivity
in athermal sphere suspensions [8,22], which must be linear
with the flow shear rate on dimensional grounds. The reduction
in the relaxation time with increasing Ca stops at Ca > 1,
and Fig. 4 shows that there is little difference between the ©
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FIG. 4. Top and middle: The normal velocity autocorrelation of
Lagrangian tracers at z = 1 and 6. Bottom: The profiles of tracer
points’ relaxation time.

profiles between Ca = 1 and 2. Because of the membrane’s
incompressibility, the elongation of RBCs is saturated at high
enough shear rate. Hence 7, which is modulated by the RBC
deformation, also becomes insensitive to the capillary number.

Because of their small size, the introduction of platelets
does not change the mean axial velocity or the velocity
fluctuations significantly. Furthermore, the velocities of the
platelets themselves follow those of tracers. Figure 5 com-
pares the x velocities and RMS z velocities for tracers and
platelets at Ca = 1. There is no visual difference between
the two regarding their mean axial velocities, and their RMS
z velocities differ by less than 10%.

Figure 6 shows the mean-square displacement (Az?) =
([z(t) — z(0)]?) of tracers and platelets, where the slope
d(Az?)(t)/dt is twice the normal diffusivity D, . The curves
for platelets (plotted in dashed lines) are qualitatively similar
to those of tracers. During their spreading, tracer points sample
velocity fluctuations at different z planes; it follows that
the spread width is comparable to the channel height when
the asymptotic linear spreading rate is established. As a result,
we have found only minor variations of spreading speed in the
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FIG. 5. The mean axial velocities (solid lines) and RMS normal
velocities (dashed lines) of tracers and platelets. The lines with
symbols denote quantities for platelets.

core flow region. Only (Az?) averaged over the whole core
region is plotted for clear visualization. The D, of tracers
decreases by 30% as Ca increases from 0.25 to 1 but levels off
at higher Ca. The trend is consistent with the Ca dependence
of the relaxation time. The diffusivity of platelets is slightly
higher than that of the tracer points, but the Ca dependence
remains the same.

Figure 7 shows the platelet trajectories in the z direction.
The trajectories of those platelets that finally migrate into the
cell-free layer are plotted in blue. The margination appears
irreversible: Once the platelets are expelled into the cell-
depleted layer, the very small velocity fluctuations make it
difficult for the platelets to reenter the core region. The
platelet number density profile at# = 4600 is shown, where the
channel is divided into 24 slices in the z direction. Compared
with the density profile at an earlier time ¢ = 200, more
than half of the platelets have moved to the cell-free layer
and are trapped there. We note that the slightly asymmetric
concentration profile is caused by the bias in the initial platelet
distribution that is difficult to control precisely when they are
randomly placed near the center line at t = 0.

The time evolution of the RMS distance of platelets from the
center line is shown in Fig. 8. The time is scaled by the mean
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FIG. 6. (Color online) Top: Mean-square displacement in the wall
normal direction of tracers (solid lines) and platelets (dashed lines).
The statistics is taken for 3 < z <9 to exclude the cell-depleted
zone. Bottom: The nondimensional diffusivity of tracers (solid line)
and platelets (dashed lines).

velocity, and the figure indicates that the speed of the lateral
spreading is 0(1073) of the convection velocity. Therefore,
a platelet will on average travel O(10) mm in the streamwise
direction when it migrates from the center line to the wall. This
convection length is 20 times that of the average blood vessel
branch (about 500 wm) of 34 um diameter [23]. Therefore, the
vessel branches will play a role in determining the equilibrium
platelet concentration profile in the microvascular network.
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FIG. 7. (Color online) Left: Platelet trajectories in the wall normal direction. Right: The bar chart is the platelet density profile at = 4600;
for comparison the dashed line is the density profile at an earlier time t = 200, and the solid line is the RBC hematocrit profile. Ca = 1.0 and

(H,) =0.2.
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FIG. 8. (Color online) The RMS distance between platelets and
channel center line.

IV. DISCUSSION AND CONCLUSION

The incompressibility of an RBC’s membrane sets an upper
limit to its elongation. With the membrane constitutive model
used in this study, the shape elongation saturates when Ca
exceeds 1. This gives a qualitative explanation of why D, of
tracers and platelets reduces significantly when Ca increases
from 0.25 to 1, but almost remains constant with further
increase in Ca. The wall shear rate in a vessel of 34 pum
diameter is between 2500 s~! (for venules) and 5000 s~! (for
arterioles). Thus, the Ca number is greater than 1, and we
predict that the (dimensional) platelet diffusivity under such
physiological flow conditions should scale linearly with the
shear rate because the RBC deformation is saturated.

Experimentally, the diffusivity of platelets in blood has been
determined by measuring the adherence rate of platelets to the
subendothelial wall of a perfusion chamber. The diffusivity
is obtained by fitting the adhesion rate with the theoretical
predictions using a transport model of the boundary-layer type
[5,24]. The values of diffusivities obtained this way are usually
associated with large uncertainties. Turitto and Baumgartner
reported D* = 2.0 x 10~ 7cm?/s at y,, = 208 s~!, and D* =
3.4 x 107 7cm?/s at y,, = 832 s~ ! for an unknown hematocrit.
These translate to the nondimensional D = 1.2 x 1072 at
Ca=0.1, and D =5.1 x 1073 at Ca = 0.4, which are of
the same order of magnitude as our calculation (D ~ 2 x
1073 at Ca =0.25 for both platelets and tracers). Aarts
et al., however, obtained much lower platelet diffusivities
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from similar perfusion chamber experiments and the same
data-fitting procedure [5]. Using their empirical power law
of D* o pr0-34£003 3t 0.1 < Ca < 0.6 and H, = 20%, the
nondimensional diffusivity is D = 1.2 x 10~ at Ca = 0.1
and is 6.2 x 10~ at Ca = 0.4, which is about one-third of our
numerical result. We note that these experimental results are
for the diffusion in bulk shear flows, which are fundamentally
different from the microchannel flow environment considered
here.

Saadatmand et al. very recently measured the dispersion
of microbeads of 1 um diameter in a cylindrical tube of
50 pum diameter, with the hematocrit between 10% and
20% [25]. The geometry is thus quite similar to that in our
simulation, while the Ca in the experiment is less than 0.1.
The diffusivity of the beads is determined from the linear
temporal growth rate of their mean-square displacement in the
radial direction. The shear-induced diffusivity of the beads is
reported to scale linearly with the wall shear rate; thus the
nondimensional D = 3.6 x 1073 is independent of Ca, which
is, however, close to D = 3.0 x 1073 of platelets at the lowest
Ca = 0.25 in our simulation.

In summary, we have investigated the margination of
platelets in a microchannel by direct numerical simulations
that fully resolve the hydrodynamic interactions in the system.
Itis demonstrated that it is the wall normal velocity fluctuations
in the core flow region that expel the platelets toward the wall.
The migration is a shear-induced diffusional process where
the effective diffusivity, as modulated by the deformation
of the red cells, decreases with increasing capillary number
but becomes largely independent of Ca for Ca > 1. In the
future, the effect of red cell deformability on the diffusivity of
particles as well as the RBCs’ self-diffusivity warrants more
systematic study.
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