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Anisotropic surface tension of buckled fluid membranes
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Thin solid sheets and fluid membranes exhibit buckling under lateral compression. Here it is revealed that
buckled fluid membranes have anisotropic mechanical surface tension contrary to solid sheets. Surprisingly, the
surface tension perpendicular to the buckling direction shows stronger dependence on the projected area than
that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane
model. This anisotropic tension can be used to measure the membrane bending rigidity. It is also found that phase
synchronization occurs between multilayered buckled membranes.
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I. INTRODUCTION

Buckling and crumpling of thin solid sheets and strips [1,2]
are commonly seen in our daily life (e.g., for fruits [3],
paper [4,5], and polyester film [6]) as well as on the molecular
scale (e.g., for viruses [7] and atomistic graphene sheets [8]).
The shapes produced by the buckling of elastic sheets have
fascinated many physicists. In 1691, J. Bernoulli proposed the
problem of a simple bent beam or rod “elastica,” which led to
the development of the calculus of variation and the elliptic
function [9]. The curve on a plane for minimum bending
energy

∫ L
c2ds with constant total length L is expressed by

elliptic functions, where c is the curvature and s is the arc
length. The theory of elastica was recently extended to twisted
rods to describe the shape of supercoiled DNAs [10] and
it has been employed to draw smooth surfaces in computer
graphics [11].

The buckling has been intensively investigated for Lang-
muir monolayers on air-water interface [12–17]. The buckling
develops to collapse or fold of the monolayers into water. For
a fluid membrane, the balance between gravity and membrane
bending energy determines the buckling wavelength [12].
Recently, buckling transition was also observed in a fluid
bilayer membrane in simulations [18–20]. For the bilayer
membrane, the effects of gravitation and membrane dissolution
to the supporting water are negligible. Thus, the bilayer
membrane is a simpler system so it is suitable to study the
buckling of fluid membranes in details.

Recently, the stress and torque tensors in fluid membranes
were derived [21,22]. When the membrane is curved, the
mechanical surface tension is anisotropic and deviated from
the thermodynamic surface tension (energy to create a unit
membrane area). For a tubular membrane, the axial stress is
finite while the azimuth stress is zero.

In this paper, we report on the shape and surface
tension of buckled fluid membranes using an analytical
theory and numerical simulation. Since the shape of buck-
led membrane can be analytically derived, the anisotropy
of the mechanical tensions can be investigated in details.
Buckling is one of the triggers for breaking membranes.
For example, under shear flow, the formation of multil-
amellar vesicles [23,24] is considered to be induced by
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buckling instability [25]. Shear suppression of the thermal
undulations of the membrane and the resulting reduction of
the excess area induces buckling. Our study revealed that
buckling produces large anisotropy in the mechanical surface
tension. This anisotropy may play a role in the membrane
stability.

II. SIMULATION METHOD

We employ a solvent-free meshless membrane model
[20,26] to simulate buckling. The fluid membrane is rep-
resented by a self-assembled one-layer sheet of particles.
The particles interact with each other via the potential U =
ε(Urep + Uatt) + kαUα , which consists of a repulsive soft-core
potential Urep with a diameter σ , an attractive potential Uatt,
and a curvature potential Uα . The details of the model are given
in the Appendix.

We simulate single- and multilayer fluid membranes by
Brownian dynamics in the NV T ensemble with periodic
boundary conditions in a rectangular box with side lengths
Lx , Ly , and Lz. The buckling is chosen in the x direction.
The buckling occurs in the longest wavelength Lx in the
x direction. When Lx is gradually reduced, the buckled
membrane with large amplitude keeps its direction along
x axis even at Lx < Ly . The bending rigidity κcv of the
membrane shows a linear dependence on the parameter kα .
We calculate κcv from the thermal undulations of the planar
membrane [27]. Three typical bending rigidities are chosen
for the simulations: κcv/kBT = 9 ± 0.2, 21 ± 0.5, and 44 ± 1
for kα/kBT = 5, 10, and 20, respectively, where kBT is the
thermal energy. The surface tensions are calculated using
γx = −PxxLz and γy = −PyyLz, with the diagonal compo-
nents of the pressure tensor Pαα = (NkBT − ∑

i αi
∂U
∂αi

)/V

for α ∈ {x,y,z}, since Pzz � 0 for solvent-free models. The
numerical errors are estimated from three or more independent
runs.

III. SINGLE BUCKLED MEMBRANE

First, we consider the buckling of an isolated planar
membrane. Figure 1 shows buckled membranes at small
projected areas Axy = LxLy . When the thermal undulations
are neglected, the shape of the membrane is given by the
energy minimum of the bending energy Fcv of the membrane
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FIG. 1. (Color online) Sliced shape of buckled fluid membranes
at Lx = 35σ and κcv = 21kBT . (a) Axy/A = 0.75, Ly = 24σ , and
N = 800. (c) Axy/A = 0.375, Ly = 48σ , and N = 3200. The solid
curves are given by Eqs. (4) and (5). The closed symbols (•,�,�)
represent membrane particles in the simulation for three sequential
sliced snapshots with time interval 2000τ . The curve and points
are shifted in the x direction to overlap at (x,z) = (0.25Lx,0).
(b) The 3D image of the simulated membrane shown with solid circles
in (a).

with area constraints. For the buckled membrane, it is given
by

Fcv = Ly

∫ L

0

κcv

2

(
dθ

ds

)2

ds, (1)

with constant intrinsic area A = LLy , where s and θ are the arc
length and the tangential angle on xz plane, respectively. When
we consider the membrane compressed by a constant force
λLy in the x direction, it is an elastica problem to minimize
Ftotal = Fcv + λLxLy . Also, the force λLy can be considered
as a Lagrange multiplier to fix the length Lx . Euler’s equation
gives the shape equation

b2

2

(
dθ

ds

)2

= cos(θ ) − cos(θmax), (2)

where the characteristic length b = √
κcv/λ and θmax is the

maximum tangential angle [9,10,28]. Then, the arc length s

is written as s = b F (ϕ,k), with k = sin(θmax/2) and
sin(θ/2) = k sin(ϕ), where F (ϕ,k) is the elliptic integral of
the first kind with the elliptic modulus 0 � k � 1 [29].
The modulus k is determined by the total arc length L

from

L

4b
= K(k), (3)

where K(k) = F (π/2,k) is the complete elliptic integral of the
first kind. The shape of the buckled membrane is expressed
by

x = 2b E[am(s/b,k),k] − s, (4)

z = 2kb cn(s/b,k), (5)

where E(a,k), am(a,k), and cn(a,k) are the elliptic integral
of the second kind, Jacobi amplitude, and Jacobi elliptic
function, respectively [29]. Equations (4) and (5) reproduce
the buckled shape of the simulation very well (see Fig. 1). The
thermal fluctuations give small undulations of the simulated
membrane around the energy minimum shape (solid curve).
Strongly buckled membrane with θmax > π/2 (k2 > 1/2) has
a  shape as shown in Fig. 1(c). It is called class 4 of Euler’s
elastica [9].

Next, we derive the surface tension for fixed Lx and Ly

using elliptic functions. We only consider the mechanical
surface tension here. The modulus k is determined from the
length ratio,

Lx

L
= 2E(k)

K(k)
− 1. (6)

The stress λ is a variable given by λ = 16κcv[K(k)/L]2. The
bending energy of the buckled membrane is given by

Fcv = λ{(2k2 − 1)L + Lx}
= 32κcvLy

L
{(k2 − 1)K(k)2 − E(k)K(k)}. (7)

The surface tensions in the x and y directions are given by

γx = ∂Fcv

Ly∂Lx

∣∣∣
Ly

= −λ, (8)

γy = ∂Fcv

Lx∂Ly

∣∣∣
Lx

= −λ + 2Fcv

LxLy

, (9)

respectively. The surface tension γx is balanced by the
compressed stress λ as expected. However, the surface tension
γy has the additional term 2Fcv/LxLy . This anisotropy can also
be derived from the stress tensor derived in Refs. [21,22]. In
contrast, solid sheets show much weaker correlation between
the x and y directions because of the shear elasticity.

The buckling transition points are obtained from the condi-
tion required to satisfy Eq. (3). Since K(k) > K(0) = π/2, it is
written as λ > λ0 = (2π/L)2κcv [9,28]. Therefore, the planar
membrane becomes unstable at γ = −(2π/Lx)2κcv. This
result is in agreement with that estimated from the instability of
the lowest Fourier mode of the thermal undulations [12,19,20].
This coincidence is not surprising because the elliptic function
reduces to a trigonometric function at k = 0.

Figure 2 shows the surface tension dependence on Axy

for constant Ly . At Axy < Ac
xy = 1.4Nσ 2, the membrane

is buckled, and then the two surface tensions γx and γy

show different values. As Axy decreases, it is found that γy

increases, while γx shows a gradual decrease. Interestingly,
the area decrease generates reduction of the counterstress
in the y direction. It is surprising that γy becomes positive
at Axy/Nσ 2 < 0.9 so that the buckled membrane prefers
to shrink in the y direction. The average surface tension
γav = (γx + γy)/2 also increases. These simulation results are
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FIG. 2. (Color online) Area Axy dependence of the surface
tension for κcv = 21kBT and Ly = 24σ (N = 800) or Ly = 48σ

(N = 3200). The symbols (◦,�) and (�, ∇) represent the surface
tension γx and γy in the simulation, respectively. The solid lines are
given by Eqs. (8) and (9).

in good agreement with our theoretical prediction given by
Eqs. (8) and (9) with the area A = Ac

xy . The larger membrane
starts buckling at smaller λ = −γ , and it has smaller Axy

dependence of γx and γy , since λ0 ∝ L−2
x (compare data for

N = 800 and 3200 in Fig. 2).
When the aspect ratio Ly/Lx is fixed, the surface tensions

show a different type of Axy dependence (see Fig. 3). With
decreasing Axy , γx gradually increases, in contrast to its
behavior for constant Ly , and the tension difference γy − γx

increases weakly. These effects are due to an increase in the arc
length L = A/Ly for the fixed aspect ratio. Thus, the surface
tensions are dependent on the projected area as well as the
aspect ratio.

When the aspect ratio Ly/Lx is allowed to change freely for
a fixed projected area Axy = LxLy , the membrane elongates
in the x direction (Lx → ∞) in order to reduce the membrane
bending energy [Ly/L → 0 with constant k in Eq. (7)];
that is, mechanically, the membrane pushes the wall in the
buckled direction more than that in the other direction. This
is a qualitative explanation of the anisotropic surface tension.
Thus, the buckling gives the effective shear elasticity to the
membrane.

For small buckling amplitude at 1 − Axy/A
c
xy 
 1, the

surface tensions can be expressed by polynomials. Equation (6)
can be expanded to Lx/L = 1 − k2 − k4/8 + o(k6) for small
k. From this relation and the expansions of Eqs. (8) and (9),
the surface tensions are expressed as

γx = −π2κcv

4L2

(
5 − Lx

L

)2

, (10)

γy − γx = 8π2κcv

LxL

(
1 − Lx

L

)
. (11)

The area dependence can be clearly captured by these equa-
tions. The surface tensions are determined by three quantities,
Lx/L = Axy/A

c
xy , Ac

xy , and κcv. These equations give a good
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FIG. 3. (Color online) Area Axy dependence of the surface tension
for κcv/kBT = 9, 21, or 44 and N = 800. The length Lx is varied with
constant Ly = 24σ (×, ◦ ,�) or constant ratio Ly = Lx/2 (�,�,∇).
The solid lines are given by Eqs. (8) and (9). The dashed lines are
given by the approximation, Eqs. (10) and (11).

approximation for Lx/L � 0.6 (compare solid and dashed
lines in Fig. 3).

Anisotropic surface tensions are also generated in a tubular
membrane [30–32]. The surface tension in the axial direction is
given by γax = κcv/R

2, where R is the radius of the membrane
tube; while the surface tension is zero in the azimuth direction.
(The average surface tension γav = γax/2.) The bending
rigidity κcv of the membrane has been measured using this axial
tension in experiments [30] and simulations [31]. Similarly,
κcv can be measured from the surface tension of the buckled
membrane. We fit the curves in Fig. 3(b) by Eq. (11) with the
fit parameters κcv and Ac

xy for 0.05 < (Ac
xy − Axy)/Nσ 2 <

0.3. This gives κcv/kBT = 9.4 ± 0.3 (9.3 ± 0.3), 22.3 ± 0.1
(22.9 ± 0.2), and 47.4 ± 0.1 (48.4 ± 0.2) for constant Ly

(constant ratio Ly/Lx) at kα/kBT = 5, 10, and 20, respec-
tively. These values are in reasonable agreement with the
bending rigidities estimated from the thermal undulations of
the planar membranes. Compared to the tubular membrane,
this simulation method is easy to apply to explicit solvent
systems and bilayer membranes with low flip-flop frequency.
In the buckling, the area difference between the upper and the
lower leaflets of bilayers are not changed, since the membrane
deformation is symmetric. The solvent is not enclosed by
the membrane, so the solvent volume is conserved when the
volume of the simulation box is fixed. In contrast, a radius
variation of the tubular membrane accompanies changes in the
tube volume and the area difference between the two leaflets.
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FIG. 4. (Color online) Time development of the aspect ratio hasp

of the buckled amplitude for Axy/Nσ 2 = 1.2 and 1.3 at κcv/kBT =
21, Lx = Ly , and N = 1600.

Therefore, it has to take the Laplace pressure into account or
requires an additional numerical technique to exchange the
solvent particles or lipids between the upper and the lower
sides of the bilayers. The new buckling method is suitable for
measuring the bending rigidity of these membranes.

We neglect the effects of thermal fluctuations in our
analysis. The excess area induced by the thermal undulations
shows a slight increase with deceasing area in the buckling
simulation. However, this does not have a large effect on the
surface tensions. For a squared membrane Lx = Ly , the
thermal fluctuations can induce a flip between the buckling
in the x and y directions slightly below the buckling transition
point. In the meshless membrane at Lx = Ly and N = 1600,

FIG. 5. (Color online) Snapshots of multiple buckled membranes
at N = 6400, Nmb = 8, Ly/σ = 24, κcv/kBT = 21, and dm/σ = 10.
Left and right panels show the membranes with complete and partial
phase synchronization at AxyNmb/Nσ 2 = 1.1 and 1.25, respectively.

this flip is observed for Axy/Nσ 2 � 1.3. Figure 4 shows the
time development of the aspect ratio of the buckled amplitude,

hasp = |h(qx1)|2 − |h(qy1)|2
|h(qx1)|2 + |h(qy1)|2 , (12)

where h(qx1) = ∑
j zj exp(−2πixj/Lx) and h(qy1) =∑

j zj exp(−2πiyj/Ly). The membrane changes the buckling
direction at Axy/Nσ 2 = 1.3, while not at Axy/Nσ 2 = 1.2.

IV. MULTIPLE BUCKLED MEMBRANES

The membrane thermal undulations generate entropic re-
pulsive force f ∝ d−3 between tensionless fluid membranes
with neighboring membrane distance d [33]. Here we consider
the interactions between the buckled membranes. Since the
buckled membranes have greater height amplitudes than the
tensionless membrane, the membranes have stronger short-
range repulsion with decreasing area Axy (see Fig. 5). Then, the
fluctuation amplitude of the neighboring membrane distance
〈(d/dm − 1)2〉 decreases for the fixed mean distance dm =
LZ/Nmb, where Nmb is the number of the membranes [see the
dashed line in Fig. 6(a)].

Along with this reduction in the distance fluctuation, it
is found that the buckling of the neighboring membrane
becomes synchronized in phase. The phase φ is calculated
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FIG. 6. (Color online) Phase synchronization of buckled mem-
branes at N = 6400, Nmb = 8, Ly/σ = 24, and κcv/kBT = 21.
(a) The area Axy dependence of the fluctuation amplitudes of the
distance 〈(d/dm − 1)2〉 (�) and the phase difference 〈φ2

nb〉 (◦) between
neighboring membranes at dm/σ = 10. (b) The phase difference
〈φ2

nb〉 dependence on the mean distance dm between neighboring
membranes at AxyNmb/Nσ 2 = 1.1 (�) and 1.2 (◦).
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from the lowest Fourier mode of the membrane height,
h(qx1) = ham exp(−iφ) = ∑

j zj exp(−2πixj/Lx), for each
membrane. The phase difference φnb between neighboring
membranes approaches zero as Axy decreases. The phase
deviation of the neighboring membrane 〈φ2

nb〉/φ2
ran is shown

as a solid line in Fig. 6(a), where φ2
nb is normalized by the

average for the random distribution, 〈φ2
nb〉 = φ2

ran = π2/3.
Thus, the translational order of the buckled shape appears in
the z direction. This ordering is not a discrete transition but a
gradual change, since it is a quasi-one-dimensional system.
As Axy decreases, clusters of the synchronized membrane
appear, and then all of membranes are synchronized at
AxyNmb/Nσ 2 � 1.1. (see the snapshots in Fig. 5 and movies
in the supplemental material [34]). The interactions between
the membranes little change their surface tension in the
simulated area range. As the mean distance dm increases,
the synchronization requires smaller Axy [see Fig. 6(b)].
This synchronized buckling may act as a nucleus to form
multilamellar vesicles in shear flow.

V. SUMMARY

We studied the elastica of fluid membrane. The buckled
shape and surface tension parallel to the buckling (x) direction
are expressed by the formula used for the elastica of solid
sheets. However, unlike the solid sheets, the surface tension of
the fluid membranes in the perpendicular (y) direction shows
large increases for decreasing projected area Axy . Additionally,
multilamellar buckled membranes were found to have phase
synchronization.

The anisotropic surface tension would also appear for the
buckled Langmuir monolayers in the fluid phase. It can be
experimentally checked, if one separately measures the stress
in two lateral directions. The anisotropy and synchronization
may play a role in the breakup of the membrane under external
fields. Recent experiments show that collagen-containing
tubular vesicles exhibit elastica shape under magnetic field
[35]. It will be interesting to investigate the coupling of
mechanical and external-field induced bucklings.
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APPENDIX: DETAILS OF SIMULATION
MODEL AND METHOD

A membrane consists of N particles, which possess no
internal degrees of freedom. The particles interact with each
other via a potential

U = ε(Urep + Uatt) + kαUα, (A1)

which consists of a repulsive soft-core potential Urep with
a diameter σ , an attractive potential Uatt, and a curvature
potential Uα . All three potentials only depend on the positions
ri of the particles. In this paper, we employ the curvature
potential based on the first-order moving least-squares (MLS)

method (model II in Ref. [20]). We briefly outline here the
simulation technique, since the membrane model is explained
in more detail in Ref. [20].

1. Curvature potential

A Gaussian function with C∞ cutoff [20] is employed as a
weight function

wmls(ri,j ) =
{

exp
( (ri,j /rga)2

(ri,j /rcc)n−1

)
(ri,j < rcc),

0 (ri,j � rcc),
(A2)

where ri,j is the distance between particles i and j . This
function is smoothly cut off at ri,j = rcc. We use here the
parameters n = 12, rcc = 3σ , and rga = 1.5σ .

The degree of deviation from a plane, “aplanarity” is defined
as

αpl = 9Dw

TwMw
= 9λ1λ2λ3

(λ1 + λ2 + λ3)(λ1λ2 + λ2λ3 + λ3λ1)
,

(A3)

where λ1, λ2, and λ3 are the eigenvalues of the weighted gy-
ration tensor, aαβ = ∑

j (αj − αG)(βj − βG)wmls(ri,j ), where
α,β = x,y,z and rG = ∑

j rjwmls(ri,j )/
∑

j wmls(ri,j ). The
aplanarity can be calculated from three invariants of the tensor:
Dw and Tw are determinant and trace, respectively, and Mw is
the sum of its three minors, Mw = axxayy + ayyazz + azzaxx −
a2

xy − a2
yz − a2

zx .
The aplanarity αpl takes values in the interval [0,1] and

represents the degree of deviation from a plane. This quantity
acts like λ1 for λ1 
 λ2,λ3, since αpl � 9λ1/(λ2 + λ3) in this
limit. Therefore, we employ the curvature potential

Uα =
∑

i

αpl(ri), (A4)

where αpl(ri) = 0 when the ith particle has two or less particles
within the cutoff distance ri,j < rcc. This potential increases
with increasing deviation of the shape of the neighborhood of
a particle from a plane and favors the formation of quasi-two-
dimensional membrane aggregates.

2. Attractive and repulsive potentials

The particles interact with each other in the quasi-two-
dimensional membrane surface via the potentials Urep and
Uatt. The particles have an excluded-volume interaction via
the repulsive potential

Urep =
∑
i<j

exp[−20(ri,j /σ − 1) + B]fcut(ri,j /σ ), (A5)

with B = 0.126, and a C∞-cutoff function [20]

fcut(s) =
{

exp
{
A

(
1 + 1

(|s|/scut)n−1

)}
(s < scut),

0 (s � scut),
(A6)

is employed. All orders of derivatives of fcut(s) are continuous
at the cutoff. In Eq. (A5), we use the parameters n = 12,
A = 1, and scut = 1.2.
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A solvent-free membrane requires an attractive interaction
which mimics the “hydrophobic” interaction. We employ a
potential Uatt of the local density of particles,

ρi =
∑
j �=i

fcut(ri,j /σ ), (A7)

with the parameters n = 12, shalf = 1.8, and scut = 2.1. The
factor A in Eq. (A7) is determined such that fcut(shalf) = 0.5,
which implies A = ln(2){(scut/shalf)n − 1}. Here ρi is the
number of particles in a sphere whose radius is approximately
ratt = shalfσ . The potential Uatt is given by

Uatt =
∑

i

0.25 ln[1 + exp{−4(ρi − ρ∗)}] − C, (A8)

where C = 0.25 ln{1 + exp(4ρ∗)}. For ρi < ρ∗, the potential
is approximately Uatt � −ρi and therefore acts like a pair
potential with Uatt � −∑

i<j 2fcut(ri,j /σ ). For ρi > ρ∗, this
function saturates to the constant −C. Thus, it is a pairwise

potential with cutoff at densities higher than ρi > ρ∗. In this
paper, we use ε/kBT = 4 and ρ∗ = 6.

3. Dynamics

The buckling of the membrane is simulated by Brownian
dynamics (molecular dynamics with Langevin thermostat).
The motion of particles is determined by the underdamped
Langevin equations

m
d2ri

dt2
= −∂U

∂ri

− ζ
dri

dt
+ gi(t), (A9)

where m is the mass of a particle and ζ the friction
constant. gi(t) is a Gaussian white noise which obeys the
fluctuation-dissipation theorem. We employ the time unit
τ = ζσ 2/kBT with m = ζ τ . The Langevin equations are
integrated by the leapfrog algorithm [36,37] with a time step of
�t = 0.005τ .
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