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Phase-locking behaviors in an ionic model of sinoatrial node cell and tissue
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Phase-locking behaviors in sinoatrial node (SAN) are closely related to cardiac arrhythmias. An ionic model
considering structural heterogeneity of SAN is numerically investigated. The bifurcations between phase-locking
zones are interpreted by the map derived from the phase resetting curve. Furthermore, the validity of the circle
map in describing phase locking of the actual SAN system is evaluated and explained. We reveal also how the
phase-locking behaviors in heterogeneous tissue depend on the location of stimulating site and the coupling
strength of the tissue. All these results may be of suggestive uses for understanding and controlling practical
SAN dynamics.
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I. INTRODUCTION

The sinoatrial node (SAN), which produces rhythmic beats,
is the normal pacemaker of the heart. The behaviors of SAN
are closely related to the arrhythmias resulting from abnormal
impulse initiations [1]. The beating rate of SAN is regulated
by multiple factors [2], such as noradrenaline released by
sympathetic nerve, acetylcholine released by vagal nerve,
and even some feedback from the atria and ventricles (e.g.,
spiral waves in atrium may be a possible source of external
stimulation). Therefore, the heart rate is the result of the
interactions between SAN cell dynamics and the stimulations
[3–5]. Investigation of the behaviors of periodically stimulated
SAN tissue is thus of great significance for understanding
arrhythmias and their treatments.

Mobitz [6] and van der Pol and van der Mark [7] were
the first to employ nonlinear models to investigate cardiac
behaviors. The development of nonlinear dynamics greatly
promoted the research of biological systems [8–12]. The
responses of the oscillators to stimulations are assumed to
be closely related to biological rhythm. Studying the dynamic
characteristics of periodically stimulated SAN model is the
object of the present paper.

Phase-locking behavior is an important nonlinear dynamic
feature in biological oscillators. It indicates the entrainment
between the system and the external stimulations, and deter-
mines the rhythm of the system [13–15]. In the theoretical
researches of phase-locking behaviors, a circle map has been
popularly used as a standard model [13,16], which predicts
various bifurcations leading to rich phase-locking states. Many
of these predictions are in accordance with the phenomena
observed in experiments [13,14]. The phase-resetting relation,
which depicts the interaction between the oscillation and
external stimulations, is an intrinsic property of biological
oscillators [17]. It is well known that a brief current pulse
applied to an oscillatory cell or model can shift the phase of
the oscillation in varieties of biological systems [15,18–22].
The magnitude and direction of the phase shift (i.e., phase
resetting) depend on the phase and amplitude of the stimulus
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applied. The relation between the phase of the stimulus and
the resulted phase shift is called the phase-resetting relation.
The phase-resetting relation has been used to interpret the
entrainment properties of SAN cells [14,23,24]. Based on the
relation, a circle map can be derived (some authors called it
phase resetting map [25] (PRM), which will be introduced
in the section of method). PRM is a well-defined technique
for investigating biological dynamics. The graphic approach
of PRM to investigate phase lockings was developed from the
research of simple oscillator models [26–28] and experimental
cardiac cell aggregates [15,18,29,30]. They revealed that
bifurcations and related phase lockings are determined by the
topology of PRM. In SAN systems, the PRM approach has
been used to investigate the entrainment of a stimulated single
SAN cell and ionic model [14,22].

The sinoatrial node is a typical oscillatory medium and
much effort has been done in understanding its behaviors
and the related arrhythmias (see review [2]). In the previous
studies, theoretical investigations describing the phase lock-
ings of SAN were carried out with some simplified and ideal
models, where actual physiological parameters were seldom
considered. On the other hand, experiments were done in
single cells or isolated pieces of tissue [14,31]. However,
SAN tissue consists of coupled cells which have different
dynamical properties and thus the tissue has a heterogeneous
structure [32]. The phase-locking structure of the heterogenous
SAN tissue has not yet been systematically investigated. The
PRM technique is applied to analyze phase lockings of the
present SAN model. We intend to shed light on the above
problems in the present work.

We numerically investigate phase-locking behaviors in
an ionic SAN model which considers the heterogeneity of
SAN [33]. The major results of our work are: (i) The phase-
locking structures of central and peripheral SAN cells are
elucidated. (ii) The graphic approach by PRM to describe
the phase-locking behaviors is discussed. Phase-resetting
maps are classified by the shape, which has been referred
to topological degree by Winfree and some other authors
[17,28], to identify phase-locking properties. (iii) The validity
and failure of the map description are evaluated. (iv) The
characteristics and the relevant factors of the phase-locking
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behaviors in heterogeneous tissue are revealed, which indicate
that the phase-locking behaviors depend on the locations of
stimulating site and the coupling strength as well as the
amplitude. As the model is regarded to be close to the practical
SAN situation, investigation of such a system in a large scale
of parameters may provide some instructive suggestions for
practical operations.

II. MODEL AND METHODS

In the present paper, we investigate phase-locking behaviors
of single cell and one-dimensional (1D) cable of a hetero-
geneous SAN model developed by Zhang et al. [33], and
interpret the results by a simplified 1D map derived from the
phase-resetting property (called phase-resetting map—PRM)
of the model. In this section, the model and derivation of
PRM will be introduced. All the equations of the model used
in our work are listed in the Appendix. The parameters used
in the present model are identical to that given by Ref. [33]
unless specified otherwise (see Appendix). The basic features
of the present model agree well with the previous experimental
and theoretical results [14,32,34]. Moreover, the characteristic
properties of the SAN system hold when the parameters are
changed in an appropriate range. Therefore, the numerical
results are robust.

A. The gradient model of SAN

Hitherto there are two popular viewpoints of the makeup
of SAN: the mosaic model [35] and the gradient model [33].
The mosaic model considers that the SAN tissue is a mixture
of automatic pacemaker cells and nonoscillatory atrial cells,
where the ratio of pacemaker cells is high in the center and
low in the periphery. On the other hand, in the gradient model,
the electrical property of SAN cell changes gradually from
center to periphery. Zhang et al. [36] compared the two
models and found that the gradient model coincides better
with experiment results. In the present study, we perform the
numerical simulations by using a gradient model proposed in
Ref. [33] to study the phase-locking problem of SAN cell and
tissue.

The differential equation for the dynamics of the cell’s
membrane potential V (mV) reads

Cm

dV

dt
= −Iion + Ist (t), (1)

where Cm is the membrane capacitance, which is 20 pF for
single central cell and 65 pF for single peripheral cell, Iion

(nA) is the total transmembrane ionic current, and Ist (nA)
is the stimulating current. The total ionic current Iion is the
summation of 13 individual ionic currents [33]:

Iion = INa + ICa,L + ICa,T + Ito + Isus + IK,r + IK,s + If

+ Ib,Na + Ib,Ca + Ib,K + INaCa + Ip. (2)

Each ionic current in Eq. (2) is usually expressed as

Iz = fz(y,V )gz(V − Ez). (3)

Iz represents any kind of ionic current, gz is the membrane
conductance of ion z, Ez is the equilibrium potential, and
fz(y,V ) is a function of V and the gating variables y with

y = (m,h1,h2,fL,dL,fT ,dT ,q,r,pa,f ,pa,s,pi,xs,y). Each gat-
ing variable evolves according to

dy

dt
= y∞ − y

τy

, (4)

where y represents any gating variable, τy and y∞ are the time
constant and the steady state of y, respectively. Specifically,
we replace some equations about τy and y∞ of Ref. [33] by
equations taken from another model [37], which is an extension
of Zhang’s SAN model. The integral list of all the equations
about Iz, τy , and y∞ used in the present work are given
in the Appendix. The differences of capacitance and ionic
conductance (see the Appendix for their values) between the
central and peripheral cells yield the heterogeneity of SAN
tissue.

The gradient 1D tissue model is represented by a partial
differential equation (PDE):

Cm(x)
∂V (x,t)

∂t
= −Iion + Icouple + Ist (x,t). (5)

In Fig. 1 the spatial structure of the SAN cable model is
illustrated. As indicated by Ref. [33], from a central cell (the
top cell labeled “c” in Fig. 1) to peripheral cell (the bottom
cell labeled “p” in Fig. 1), the capacitance changes from 20 pF
to 65 pF, and the ionic conductance of the membrane varies.

FIG. 1. Illustration of the heterogeneous SAN tissue. The black
disks on the left represent SAN cells in the tissue. From top to
bottom, the cells vary gradually from central cell to peripheral cell.
The coupling strength between neighboring cells (connected by solid
line) is Gcpl. In the case that Gcpl = 0, the action potentials of the
cells at central end, middle, and peripheral end of the cable is shown
on the right side. The action potentials of different cells are plotted
in the same time interval.
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The capacitance of the cell at distance x from the central end
is thus set by

Cm(x) = 20 + 1.07(x − 0.1)

L[1 + 0.7745e−(x−2.05)/0.295]
(65 − 20), (6)

and the conductance of each current reads

gz(x) = [65 − Cm(x)]gzc + [Cm(x) − 20]gzp

65 − 20
, (7)

where L is the total length of the tissue, gzc and gzp represent
conductances of the central end and peripheral end cell,
respectively. In Fig. 1 the action potentials of cells at different
sites in the tissue are shown, which are determined by the
gradient electrophysiology properties.

Equations (1) and (5) are integrated by the explicit Euler
method with time step �t = 0.02 ms. The gating variable
equation is solved by the method developed by Moore and
Ramon [38] and Rush and Larsen [39]. In simulations of SAN
tissue, space step �x = 0.1 mm is used, and the tissue length is
L = 3 mm (30 grid points). The discretization of time �t and
space �x are chosen on the same order of magnitude as those
previously used in Ref. [40]. A no-flux boundary condition is
used. Stimulation Ist (x,t) takes the form of pulsatile stimuli
with 2 ms duration and is applied at either end. Each grid point
in the cable evolves according to Eq. (5) and its capacitance and
conductance parameters are determined by Eqs. (6) and (7).
The coupling current is Icouple = Gcpl[V (i + 1) + V (i − 1)
− 2V (i)], where i represents the i th grid point in the cable and
Gcpl (nS) is the coupling conductance between neighboring
grid points. Gcpl is adjustable and set to be uniform along
the cable. The initial values for simulation are given in the
Appendix. For each step of simulation in both single cell and
cable, initial values are reset to these values. In every time
of simulation, transient states are discarded and the data are
recorded then.

The entrainment is evaluated by the following way: During
one time of oscillation of potential V , an action potential is
defined if the two conditions, the lowest value (the maximum
diastolic potential) is smaller than −40 mV and the highest
value (the overshoot potential) is larger than −10 mV, are both
satisfied. Otherwise the oscillation will be regarded as supra-
or infrathreshold responses (1:0 is an example of such a state).
We use the peak to position an action potential. The time
interval between the (i-1)th and ith peaks of action potential is
defined as Ti , and the stimulating period is Tsti . If the equation

NTsti =
M∑
i=1

Ti (8)

holds and N and M are integers, then ab N : M state is realized
(i.e., there are N input periods and M AP overshoots in a single
output phase-locking period). Otherwise, it is a quasiperiodic
or chaotic state. Such a way of evaluation is essentially the way
to calculate rotation number [26,28], which will be introduced
in Sec. II B.

B. Phase-resetting curve and phase-resetting map

A brief stimulus with a certain amplitude delivered to an
oscillatory cell may trigger phase shift of the oscillation, and
this phenomenon is called phase resetting [17]. Figure 2 is a

FIG. 2. (Color online) Phase resetting property of a SAN cell.
The dashed trace represents the free-running oscillation. The solid
trace represents the phase response to the application of S1. Ts

is the time applying a stimulus and �T0 is the time shift responding
to the stimulus. φ = Ts /T0 is the phase of the stimulus, and �φ =
�T0/T0 (mod 1), which is a function of φ and the amplitude of
stimulus, is the phase shift triggered by S1.

brief introduction of such a property. The stimulus applied at
phase φ shifts the phase of the oscillation by �φ (the solid trace
represents the shifted oscillation and the dashed one represents
the free-running case), where φ and �φ are expressed by the
following way: If the time interval between the stimulus and
the previous overshoot potential is defined to be Ts , and the
time interval between the shifted and the original overshoots
is defined to be �T0, then the ratio of Ts to the cycle length
T0 is φ (φ = Ts /T0) and the ratio of �T0 to T0 is �φ [�φ =
�T0/T0 (mod 1)]. So that the absolute value of any φ and �φ

is between 0 and 1. If we scan φ in the entire cycle and plot �φ

as a function of φ, the phase resetting curve (PRC) is derived.
Moreover, the stimulus amplitude can also change �φ and
PRC is thus a function of amplitude [22].

Based on the PRC, the so-called PRM is derived [18,26–
28], and PRM is significant for analyzing entrainment. To be
instructive, we introduce the deduction of PRM briefly. From
Fig. 2 we know that if another stimulus (S2) is delivered at time
interval Tsti relative to S1 stimulus, the phase of S2 relative to
the shifted oscillation (the solid configuration) is represented
by φS2 = φ − �φ + Tsti/T0 (mod 1). The operation mod 1 is
due to that the phase is expressed as the ratio of T0, which is the
time interval between successive action potential overshoots.
It is defined that g(φ) = φ − �φ (mod 1). A map based on the
phase resetting effect is finally derived as

φi+1 = g(φi) + Tsti

T0
(mod1), (9)

which is a circle map. Equation (9) is called the phase-resetting
map (PRM). It should be noted that �φ may be different if
it is measured by different action potentials after stimulation
[17,21]. In our work, we use the first action potential (shown
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by Fig. 1) to determine �φ. Based on Eq. (9), the rotation
number is defined as ρ = M

N
, where M and N satisfy

M =
N∑

i=1

g(φi) + Tsti

T0
− φi. (10)

If M is an integer, rational N : M phase locking holds. Other
wise, it is a quasiperiodic or chaotic state.

III. PHASE-LOCKING STRUCTURES OF THE SINGLE
CENTRAL AND PERIPHERAL CELLS

In the studies of circle map, Arnol’d tongue (AT) is the
typical structure representing phase locking behaviors [41].
The AT structure reveals that: As the driving amplitude is
increased, the phase-locking zones are enlarged, which look
like tongues growing from the bottom to the top in the “ω-A”
plane (ω on the abscissa represents the driving frequency and
A on the ordinate represents the driving amplitude). A number
of previous works analyzed the ATs of different oscillators, and
revealed the routes to phase locking, quasiperiodic, and chaotic
motions for various biological systems [8,13,16,25–28,42,43].
In this section, we perform direct simulations in the ionic SAN
model [Eq. (1)] and elucidate the ATs of such a single-cell
system.

It was experimentally found that the intrinsic oscillatory
frequencies of the central SAN cells are slower than those of
the peripheral ones, and the action potential configurations of
the two types of cells are different [32]. The intrinsic oscillation
periods of central and peripheral cells (the top and bottom
cell in Fig. 1, respectively) of the present model are 299 ms
and 236 ms, respectively. The action potential traces of the
central and peripheral cells are shown in Fig. 3(a). Figure 3(b)
shows the projections of the stable limit cycles of the two
instances in a phase plane constructed by membrane potential
V and the total ionic current Iion, which has been used by
Clay et al. [44] to analyze considerable amount of phase
resetting properties of self-oscillatory heart cell aggregates.
We numerically find that there is a stable focus (−33.1,0) for
central cell [Fig. 3(c)] as well as an unstable focus (−39.8,0)
for peripheral cell [Fig. 3(d)] in the phase plane. The stability
is verified by numerical computations of the eigenvalues of
the Jacobian matrix of the fixed points (see the Appendix). In
a central cell, there may be an unstable limit cycle separating
the stable focus and stable limit cycle. The unstable limit
cycle may yield a transition from a degree 1 PRM to a PRM
of undetermined type to a degree 0 PRM [45]. The central
stable focus has a narrow basin of attraction in phase space,
so that properly chosen initial values, or stimulus with proper
amplitude delivered at proper phases may bring the trajectory
into the basin of attraction, and annihilation occurs [34]. But
the oscillation of peripheral cell cannot be annihilated due to
the unstable focus. It should be noted that the basin structures
may be very complex in high-dimensional phase space for the
central cell. If the number of equilibrium point in phase space
is larger than one, more complex phenomena will occur [46].

Figures 4(a) and 4(b) show the ATs of the central and
peripheral cells, respectively. The characteristics of the phase-
locking behaviors can be summarized as: (i) At low amplitude
of stimulation, the N : M ATs normally grow, and the order

FIG. 3. (Color online) Automatic action potentials of central and
peripheral cells and attractors in phase plane. (a) Action potential
configurations. The central cell beats at a lower frequency, and its
AP has a lower overshoot, maximum diastolic potential, and diastolic
depolarization rate. The upstroke similar with that observed in atrial
cells is observed in peripheral SAN cell, which indicates that the
peripheral cells possess properties of the neighboring atrial cells.
(b) Projections of the limit cycles of both cells in phase plane.
The smaller cycle represents the central case while the larger cycle
represents the peripheral case. (c), (d) The nature of the attractors: a
stable limit cycle with a stable focus for central cell and a stable limit
cycle with an unstable focus for peripheral cell. The insets of (c) and
(d) are the enlargements of the fixed point vicinity. The arrows point
out the direction of movement of the state point along the limit cycle.

of the phase locking ratio follows the Farey’s tree sequence
[i.e., there is an (N1 + N2):(M1 + M2) AT between N1 : M1

and N2 : M2 ATs]. (ii) As amplitude is increased, only the
N : 1 (and 2N : 2, which occur from N : 1 via period doubling
bifurcation) ATs can develop and all other complex N : M

(M > 1) ATs become very narrow, and finally only some
simple phase-locking zones (e.g., 1:1, 2:2, and 2:1) remain for
sufficiently large amplitude. Specifically, if the cell oscillates at
a period identical to the stimulating period, and the stimulating
period is far below the real 1:1 region (a real 1:1 region should
locate around the intrinsic period of the cell), the phase locking
is determined as a 1:0 state. In this situation of very fast
stimulating, the cell oscillates periodically on a stable cycle,
which should be regarded as supra- or infrathreshold responses
rather than action potentials. Moreover, the 1:0 state can also
be predicted by PRM [Eq. (9)], which requires �φ = Tsti/T0.

The previous studies clearly revealed the very fine structures
of the ATs in diverse systems [13,26,27,30]. The also found
the multistability of the phase-locking states [28,42]. In the
present paper, we do not intend to depict such fine structures
of phase locking. Since that we reset the initial values for
each step of simulation as stated in Sec. II, multistability is not
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FIG. 4. (Color online) Phase-locking structures of single-central
and peripheral cells, which are illustrated by (a) and (b), respectively.
Capacitance is 20 pF for center cell and 65 pF for periphery cell.
Intrinsic period of the cells are 299 ms for center and 236 ms for
periphery. The abscissa is the ratio of the stimulating period to the
intrinsic period of the cell. The zones plotted are part of the overall
phase locking zones. The colors are for distinguishing the zones
from each other. At low amplitude, ATs following Farey’s tree can
be seen. At high amplitude, complex N : M (M > 1) ATs become
very narrow and simple K + N : 1 (and K + 2N : 2,K = 0,1. . .)
ATs remain eventually.

shown and discussed. The aim of Fig. 4 is to show the tendency
of the ATs and the comparison of phase locking behaviors
between central and peripheral cells. The consistency between
the previous works and the present work lends support to the
contention that the nature of the response is generic in varieties
of biological systems.

Intuitively speaking, the N : 1 phase lockings at high-
stimulation amplitude are significant for the function of
SAN. Simple N : 1 lockings can maintain regular beat-to-beat
interval and thus the heart rhythm is still regular. Contrarily,
quasiperiodic or complex N : M (M > 1) phase lockings may
yield arrhythmias due to the different beat to beat intervals in
a phase-locking period. Let us take 3:1 and 3:2 for example.
In Fig. 4(a) at A=4, at Tsti = 92 ms the rhythm is 3:1 and
at Tsti = 196 ms the rhythm is 3:2. The responding period
in 3:1 is regular 276 ms, and the beat-to-beat interval in
3:2 is 329.1 ms and 258.9 ms, alternatively. On the other
hand, the responses under intense stimulation are simple,
which make the heart-rate regulation easy. Therefore, one
may prefer high amplitude of stimulation in dealing with SAN
arrhythmias. The bifurcations at low and high amplitude are
very different, which have already been discussed by many
researches [26,27]. In the next section, we will apply PRM to
interpret the bifurcations.

IV. THE PRM APPROACH TO STUDY PHASE-LOCKING
BEHAVIORS

In the previous studies, phase response and the resulted
PRMs of cardiac systems were measured and extensively
used as powerful tools to analyze the bifurcation processes
[14,26–29]. It is useful that the simple 1D PRM describes
the bifurcations qualitatively and even can take the place
of the high-dimensional differential equations. It was well
elucidated that the types of bifurcation are closely related
to the topological degree of the PRM [15,26–30]. Keener
and Glass [27] gave a mathematical discussion in this aspect.

FIG. 5. (Color online) Phase-transition maps produced by vary-
ing stimulating period Tsti and amplitude A. Parameters are given in
each figure. Dashed vertical lines are used to connect the departed
sections which are continuous, where the discontinuities are due to
mod 1 operation. Solid vertical lines are used to connect discontinuous
sections. (a), (b) The effects of Tsti and A on the PRM of single-central
cell, respectively. (c), (d) The effects of Tsti and A on the PRM
of single peripheral cell, respectively. PRM is shifted upward and
downward by increasing and decreasing Tsti , while increase of the
amplitude flips the right branches upward and tend to make the curve
smooth. (e) The distortion of the trajectory in the vicinity of the
unstable cycle, which yields sections of slope < 0 on the left branch
of PRM. (f) Pseudo-isochrone distribution of the single peripheral
cell. The solid cycle is the unperturbed limit cycle and the dashed
ones are illustrations of the shifted cycles. The topology of PRM is
determined by the relative position between the shifted cycle and the
isochrones.

Tsalikakis et al. [34,40] measured the curve of g(φ) of Zhang’s
ionic SAN model. In this section, we aim at giving a description
of the PRM of the present model. The parameters influence on
PRM and the presentation of N : M on the curve are illustrated.

The PRMs of central and peripheral cells are measured to
qualitatively interpret the phase locking transitions of Fig. 4. It
is illustrated in Fig. 5 that increasing and decreasing the period
only shift the whole PRM upward and downward [Figs. 5(a)
and 5(c)] while varying the amplitude can dramatically change
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the shape of the curve [Figs. 5(b) and 5(d)]. Figures 5(a) and
5(c) show that in the 1:1 zone, the PRM and the straight
line φi+1 = φi intersect at a fixed point, which is a stable
solution because the absolute value of the slope of PRM at this
point is less than 1. As the period is reduced, the PRM shifts
downward and the fixed point is lost at a certain Tsti value,
then the iterated solution on PRM falls into a certain orbit
and complex N : M (M > 1) states occur. On the other hand,
Figs. 5(b) and 5(d) show the bifurcations induced by varying
amplitude: Increase of amplitude tends to tie the departed
branches together and reduce the slope of the branches. The
PRM thus tends to intersect the straight line φi+1 = φi at a
sufficiently large A value and 1:1 occurs and maintains. Further
increase of the amplitude will tie the PRM into a smooth curve
[blue (dark gray) lines in Figs. 5(b) and 5(d)]. The flips of
the right branches of Figs. 5(b) and 5(d) show the mechanism
underlying the transitions from complex N : M (M > 1) phase
lockings to simple N : 1 lockings by increasing A.

The effect of increasing amplitude on PRM has been well
studied by some authors [15,17,18,21,26–30]. By calculating
the average slope of the curve, they defined the change as
transition from topological degree 1 map to degree 0 map,
and declared that different bifurcations occur in the above
two cases. The present PRMs of SAN are similar to that
measured by Refs. [18,28,30] in experiments of spontaneously
beating embryonic chicken heart cell aggregates and that in
model SAN cells [22,34]. At high amplitude, a continuous
map (degree 0) is shown [blue (dark gray) line of Figs. 5(b)
and 5(d)]. At intermediate and low amplitude, discontinuous
maps are derived [green (light gray) and red (gray) lines of
Figs. 5(b) and 5(d)]. However, the topological degree of the
discontinuous map cannot be ascertained because the first
transient phase is used in the present work. Two kinds of factors
may contribute to the discontinuities. (i) The discontinuity
occurs in the first transient phase (the measurement we take
in the present work) and vanishes at the asymptotic phase (the
n th phase as n → ∞). This kind of discontinuity is regarded
as Kawato-type discontinuity [47]. The discontinuous site of
the red (gray) line labeled “K” in Fig. 5(b) is an example
of such discontinuity. (ii) The discontinuity is due to limited
calculation and experiment precision. In some cases, the
curve is likely continuous, but much more precise calculation
and special techniques are needed to reveal the underlying
continuity, as has been found by Krogh-Madsen et al. [48]
in a different SAN model. This kind of discontinuity is
regarded as effective discontinuity, which is labeled “E” on
the green (light gray) line in Fig. 5(b), serving as a possible
example. Detailed measurements of PRMs can be seen in
Refs. [21,47,48]. In the discontinuous map of central cell,
sections of slope < 0 apparently occur on the left branch of
PRM [e.g., the green (light gray) line in Fig. 5(b)]. The reason
may be that appropriate amplitude brings the trajectory to the
vicinity of the unstable limit cycle, where the orbit may rotate
[as shown in Fig. 5(e)], so that the time interval between the
stimulus and the action potential following is lengthened, and
the slope is changed.

As indicated by some previous works [17,21], the profound
reason that amplitude can change the topology of PRM is
related to the isochrones of the limit cycle in phase space.
Phase points on an identical isochron possess identical value

of g(φ). Figure 5(f) is an illustration of the theory. The flat
portion of g(φ) = 0.97 isochrone corresponds to the flat
section of PRM at large φ. It should be noted that the isochrone
here is a bit different to Winfree’s theory. Firstly, the first
transient phase is used here instead of the asymptotic phase
used by Winfree to measure isochrones. Secondly, the present
isochrones are plotted in Iion − V plane, which were analyzed
in the full phase space in Winfree’s theory. Therefore, we
call the isochrone in the present paper “pseudo-isochrone”
for distinction. The pseudo-isochrones are constructed by
the following way: At every state point on the unperturbed
limit cycle, single stimulus with amplitude ranged from −50
to 50 (minus amplitude means hyperpolarized stimulating
current) is applied directly to the membrane. Phase transition
is measured for each amplitude value. After scanning the
limit cycle, all state points giving a specific value of g(φ)
after stimulations construct the g(φ) pseudo-isochrone. Note
that when the stimulus is applied to the single equation about
V only, the isochrones in high-dimensional space (15D in
the present model) are 1D curves (which are a subset of the
14D isochronal hypersurfaces in phase space), and all the
1D isochrones together with the limit cycle locate on a 2D
hypersurface in phase space. Thus most of the topological
characteristics on the 2D hypersurface can be kept in projection
to the Iion − V phase plane. Therefore, we can discuss these
1D isochrones in the reduced two-variable phase plane.

A stimulus with a certain amplitude pulls the phase point
to a certain pseudo-isochrone. If we apply stimulus at every
point on the limit cycle with a certain fixed amplitude (this
operation is equivalently to scan φ in the entire cycle with a
fixed amplitude), all the phase points after stimulation make up
a cycle called shifted cycle. If the amplitude is small, it pulls
the cycle with a little deviation from the limit cycle and
the shifted cycle can intersect with all the pseudo-isochrones
[dashed cycle labeled 1 in Fig. 5(f)], so that monotonic PRM
can be measured (corresponding to degree 1 map). But high
amplitude may pull the cycle to a much larger distance so
that the shifted cycle may not intersect with certain pseudo-
isochrones [dashed cycle labeled 0 in Fig. 5(f)], and then the
PRM is nonmonotonic (corresponding to nonmonotonic de-
gree 1 or degree 0 map). The dashed curves in Fig. 5(f) are just
illustrations of how the isochrone concept works, which are not
produced by actual stimulations of certain given amplitudes.
Details of the theory can be seen in Refs. [17,21,47].

We further discuss the presentation of N : M phase locking
on PRM. The 3:2 phase locking is taken as an example, which
is shown in Fig. 6(a). In this case, any initial φ will fall into the
orbit indicated by the arrowed lines. There are three horizontal
arrowed lines and two downward vertical arrowed lines. There
is a simple and useful rule to identify most of the N : M phase
lockings on PRM: K + N : M (K = 0,1,2. . .) phase lockings
can be identified for any K value by counting the N horizontal
and M downward vertical lines, and if nT0 < Tsti < (n + 1)T0

(n = 0,1,2. . .) then K = n. If there is a stable intersected point
of the line and PRM, 1:1 is determined and K must be 0.
However, the 2N : 2 rhythm (e.g., 2:2, 4:2, and so on) zones
which are narrow (as indicated by Guevara and Shrier [29])
cannot be identified by such a method. Calculating the rotation
number is a much more precise method to identify 2N : 2 states
[Eq. (10)] [28]. Figure 6(b) shows the PRM of high amplitude
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FIG. 6. (Color online) Graphic study of phase locking behaviors.
(a) Orbit of 3:2 state on PRM. There are three horizontal arrowed
lines and two downward vertical lines, so that it should be K + 3 : 2
(K = 0,1. . .). (b) PRM at high amplitude. In this case, at most one
downward arrowed line can occur in the graphic solution so that only
ATs of K + N : 1 (K = 0,1. . .) exist.

and explains the reason why only N : 1 class of ATs can be
observed. In such a case, at most one downward line can occur
in the orbit and M must be 1. This is the mechanism for the
direct N : 1 transitions at high amplitude. Specifically, the orbit
shown in Fig. 6(b) is 2:1 rather than 2:2, which is calculated
by the rotation number [Eqs. (8) and (10)].

It is meaningful that the phase-locking properties can be
identified directly from the shape of the PRM (N : M class
refers to the K + N : M phase lockings for any K value):
(i) If the branches of the curve have average slope sufficiently
> 0 (the left branch may have a section of slope > 0 or slope
< 0), complex N : M may exist. (ii) If the right branches have
average slope ≈ 0, zones of N : M (M > 1) class become very
narrow (each N : M zone occupies smaller than 1 ms of Tsti in
the “Tsti-A” parameter plane), and zones of N : 1 class occupy
prevalently in parameter plane. (iii) If the slope of the right
branches is apparently < 0, only simple N : 1 (2N : 2) class
exist. (iv) Furthermore, if the curve is tied to be a smooth single
peak curve, only simple 1:1 (2:2) and 2:1 classes exist. Tangent
bifurcation occurs mainly in type (i) PRM [red (gray) line in
Fig. 5(a)] and period doubling bifurcation occur popularly in
type (iv) PRM [blue (dark gray) line in Fig. 5(a)]. Both tangent
and period doubling bifurcations may occur in type (ii) and
(iii) PRM.

V. THE MEMORY EFFECT ON PRM

The original model consists of a set of differential equations
(DEs) which construct a high-dimensional phase space (15D)
while PRM is a simple 1D map. It might be rather surprising as
well as interesting and useful if this much simplified map can
still catch the main essence of the original SAN DEs. Besides
the qualitative validity discussed in Sec. IV, the quantitative
validity of PRM in describing the bifurcations should be
discussed.

In order to evaluate the quantitative validity of the PRM
description on phase-locking transitions, we compare the
bifurcation diagrams derived from the PRM with those ob-
tained directly from numerical simulations of the original DEs.
The comparisons are done by single-central cell model with
rotation number [Eqs. (8) and (10)] (the situations are similar

FIG. 7. (Color online) Quantitative validity of PRM. The inves-
tigations are done by single-central cell. Parameters are shown in
figures. (a), (b) Comparison of the DE and PRM. Rotation number is
used. At A = 5 the staircases of DE and PRM fit well with each other.
At A = 10, obvious deviation between DE and PRM can be seen.
(c), (d) Different degrees of memory effect at A = 5 and A = 10.
(e) Representation of memory effect by two gating variables with
longer time constants. A = 10. The state takes more time to return to
the unperturbed cycle after faster stimulating. (f) APDs of periodic
stimulation at different amplitudes. Tsti = 250 ms. The memory effect
may be partly due to the APD rate dependence.

in peripheral cell). During the simulations, the initial value set
of the DEs is given in the Appendix, and the initial value of φ

is 0.5. The data are recorded after 200 000 simulation steps of
DEs and 50 000 iterating steps of PRM. Figure 7 shows that
at low amplitude, the bifurcation diagrams of both approaches
fit well with each other [Fig. 7(a)]; But at higher amplitude,
obvious difference between the two approaches appears [see
Fig. 7(b)]. Many factors attribute to this phenomenon. We
consider that the memory effect of DEs may play a role in
determining the bifurcation structure, while this memory effect
is completely neglected in PRM approach. However, it remains
to be determined that the memory effect is the major factor
accounting for the discrepancy seen in Figs. 7(a) and 7(b).

There are kinds of memory effect in biological systems.
Especially, memory effect in spontaneously beating cell
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systems were investigated in Ref. [49]. In the present work,
we focus on the memory of action potential duration (APD).
Generally the PRM is measured from initial condition of free
running state (i.e., no stimulus is applied and the system
oscillates at its intrinsic rhythm). But the shape and the
location of PRM should depend on the stimulating history,
which is termed as the memory effect. APD depends on
the stimulating period, which is an intrinsic property of
the cardiac cell [12]. The change of APD may influence
PRM. We measure both the PRMs from the initial condition
of free running state and from the initial condition after
100 stimulations. It is found that at low amplitude the
discrepancy is slight [Fig. 7(c)] while at higher amplitude
it becomes greater [Fig. 7(d)]. Figure 7(b) indicates that at
Tsti = 188 ms, the phase locking should be 1:1, but the
free running PRM [solid (gray) circles in Fig. 7(d)] has no
intersection point on the line so that complex entrainment
(N : M , M > 1) is anticipated. However, the PRM with
memory effect [empty (dark gray) circles in Fig. 7(d)], which is
measured after times of stimulation with period Tsti , intersects
with the line at a stable fixed point, which implies 1:1
entrainment. The result of the memory PRM coincides better
with the observation of the original DEs. In Fig. 7(e) the
two gate variables determining the dynamics of the rectified
potassium current IKr (activation gate pa and inactivation
gate pi), which is the major current during repolarizing and
diastolic depolarizing phase of the action potential, are chosen
to construct a phase plane to show memory effect after rapid
stimulating. The stimulation is stopped after hundreds of
times. Then the state will recover to the unperturbed cycle
(solid line). The variables have to take a longer time to
return after rapid stimulating (Tsti = 188 ms, dashed blue
line) than that after relatively slow stimulating (Tsti = 500 ms,
dashed red line). That means the system remembers the pacing
history to a larger extent at higher stimulating frequency. In
Fig. 7(f) it can be seen that at high amplitude, APD is changed
more dramatically by periodic stimulation, which contributes
more to the memory effect. It should be emphasized that
memory effect is due to stimulating rate rather than amplitude.
Amplitude influences the intensity of memory effect when
stimulating rate is changed.

Despite the quantitative deviation in describing the bifur-
cations for relatively higher amplitude, free running PRM is
still a convenient and satisfactory method for analyzing the
phase-locking behaviors. Firstly, it is time saving to measure
the free running PRM. Secondly, although at high amplitude
PRM cannot well predict phase lockings, the properties of
bifurcation can be well judged from PRM by its shape, as
is indicated by Figs. 6(a) and 6(b). At low amplitude, PRM
can even be used to substitute DEs. At high amplitude, since
that the memory effect partly comes from the APD rate
dependence, a more precise derivation of PRM considering
the APD restitution curve is waiting.

VI. PHASE-LOCKING STRUCTURES OF THE
HETEROGENOUS TISSUE

In the above sections we studied single-cell dynamics.
The behaviors of tissue show more complicated as well as
more interesting characteristics and they are significant for

FIG. 8. (Color online) Synchronization of the tissue. (a) The
maximum and minimum period in the cable depending on the
coupling strength Gcpl. The threshold for period synchronization of
the whole tissue is about 3.4 nS. (b) Gcpl = 20 nS. The spatiotemporal
pattern of synchronous oscillation. From left to right is center to
periphery.

understanding the phase-locking behaviors of the realistic
SAN. Cells in SAN are coupled by gap junctions, and synchro-
nization of these cells is extremely important for the functions
of SAN. The ability of synchronized pacemaking of the heart is
partly determined by the coupling conductance [24,31,50–52].
Previous experimental studies measured that about 0.2–0.5 nS
of the conductance is sufficient to synchronize the oscillations
between two isolated cells [52]. We measure the threshold for
synchronization of the present numerical model and find that
about 3.4 nS is needed to synchronize the whole tissue (0.07
nS is needed to entrain a pair of center and periphery cells,
larger coupling current is needed to entrain larger aggregate of
cells). Figure 8(a) shows the maximum and minimum period
in the cable as the coupling strength Gcpl is changed. When
Gcpl > 3.4 nS maximum and minimum period are nearly
identical and the cells in tissue oscillates at a common period.
Figure 8(b) is the synchronous spatiotemporal pattern. There
is a wave-like propagation through the tissue, where the phase
of the peripheral cell is advanced. As indicated by some
experiments, if a segment of atrial muscle is linked to the SAN
tissue, the phase leading site may be shifted by the coupling
strength from the atrium [53].

We stimulate either the center or periphery end of the same
tissue, and record the data of the cell 2 mm distant from
the stimulated end in each case. Figure 9 show the phase
locking structures under relatively low- and high-coupling
strength [20 nS for (a), (b) and 50 nS for (c) (d)]. Although
3.4 nS is sufficient for frequency synchronization, stronger
coupling is needed for emergence of certain locking zones in
distant sites, because at low coupling the propagation ability
is weak. It is interesting that the ATs of the center-stimulated
and periphery-stimulated cases are qualitatively different. In
center-stimulated tissue, as shown by Figs. 9(a) and 9(c), the
ATs obeying Farey’s tree grow well with the amplitude to
a very high level. However, in periphery-stimulated tissue
[Figs. 9(b) and 9(d)], the complex N : M (M > 1) ATs are
blocked (or they only occur in a very narrow range smaller than
1 ms) and N : 1 (2N : 2) ATs remain. Moreover, the 2N : 2
zones of periphery-stimulated tissue are gradually excluded as
the coupling is increased.

The PRMs of the stimulated central cell and stimulated
peripheral cell at different amplitudes are plotted in Figs. 10(a)
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FIG. 9. (Color online) Arnold tongues of the heterogeneous 1D
tissue. Data are recorded from the grid point 2 mm distant from the
stimulated site. The abscissa is the ratio of the stimulating period to the
common period of the tissue. (a), (b) The ATs of the center-stimulated
and the periphery-stimulated tissue at Gcpl = 20 nS. (c), (d) The ATs
at Gcpl = 50 nS. The phase-locking properties of either stimulated
case remain as Gcpl varies.

and 10(b). The phase response of the 1D tissue of Zhang’s
model have been measured by Tsalikakis et al. [40] by applying
stimulus to every cell instantaneously in the tissue. In the
present study, we only stimulate the cell at either end of the
tissue. For strong coupling, PRMs of the cell at stimulated end
can reveal the bifurcations of the tissue. Increasing amplitude
can easily flip the right part of the peripheral PRM while its
influence on the central PRM is much weaker. As discussed
in Sec. IV, at high amplitude, the central PRM corresponds to
shape (i) so that N : M (M > 1) states exist, and the peripheral
PRM shows shape (ii) so that mainly N : 1 (2N : 2) can be
seen. Figures 10(c) and 10(d) reveal the pseudo-isochrones
of the central end cell and peripheral end cell in tissue.
In order to distinguish them from each other we add the
Z axis of g(φ) so that each pseudo-isochrone locates at a
layer uniquely. The distributions are very different in the two
instances. In the central case, nearly all pseudo-isochrones
exist in the V > 0 half of the plane, but in the peripheral
case many pseudo-isochrones do not exist in the V > 0 half
of the plane. The external stimuli applied to the tissue are
injected inward current, which increases the V , so that the
shifted cycle in center stimulated case can intersect with all
the pseudo-isochrones in high-dimensional space but not in the
periphery stimulated case. This is the reason why a very large
amplitude maintains the topological degree of the central PRM
but a little larger amplitude change the shape of peripheral
PRM dramatically. Another factor that may influence the
phase locking structure is the change of capacitance along
the cable. Since the phase-locking data are collected from
the site distant to the stimulated end, the ability for the fast

FIG. 10. (Color online) PRMs and pseudo-isochrones of the stim-
ulated cell in center- and periphery-stimulated tissue. Gcpl = 20 nS.
Other parameters are shown in the figure. (a), (b) PRMs of stimulated
ends of center- and periphery-stimulated cases, respectively. Variation
of A changes the central PRM weakly while it changes that of
peripheral PRM dramatically. (c), (d) Pseudo-isochrone distributions
of stimulated central and peripheral cells. We plot the pseudo-
isochrones in a three dimensional space to distinguish them from
each other. At V > 0 half of the space, nearly all pseudo-isochrones
remain for central cell but many do not exist for peripheral cell.

stimulated end synchronizing the distant site should influence
phase locking. Even if larger capacitance cells (periphery)
impose a larger load to neighboring cells, they provide a
larger magnitude of current to the neighbors when excited.
So that it is relatively easier for the larger capacitance cells
stimulating the smaller capacitance cells than the reverse case.
Therefore we can observe larger phase-locking zones in the
peripheral-stimulated case.

Our results indicate that the phase locking behaviors of SAN
responding to the electrical perturbations closely relate to the
perturbing sites. The difference between center- and periphery-
stimulated phase lockings may provide ideas to control heart
rhythm by properly choosing the stimulating sites in tissue.

The influence of Gcpl on phase locking is also investigated
in the present work. Figure 11 shows the ATs of center-
and periphery-stimulated tissues in the “Tsti-Gcpl ” plane.
The stimulating amplitude is fixed and Gcpl is varied in the
range that synchronized pacing of the free running tissue is
realized. The data are recorded from the cell 2 mm distant
from the stimulated end. Interestingly, the growing trends
of the tongues in center-stimulated and periphery-stimulated
tissues are opposite. As Gcpl is increased, the phase-locking
ranges of the center-stimulated tissue are enlarged, while those
of the periphery-stimulated one are decreased. However, at
high amplitude of periphery-stimulated tissue, it seems that
the zones of 1:1, 2:1, etc., become large as Gcpl is increased
[Figs. 9(b) and 9(d)]. The reason is that the 2N : 2 zones
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FIG. 11. (Color online) Arnol’d tongues growing with the cou-
pling strength Gcpl. Data are recorded from the cell 2 mm distant from
the stimulated site. The abscissa is the ratio of the stimulating period
to the common period of the tissue of each Gcpl value. Parameters are
shown in the figures. (a) The ATs of the center-stimulated tissue. The
zones are enlarged as Gcpl is increased. (b) The inverse situation of
periphery-stimulated tissue.

shrinks as Gcpl is increased, and N : 1 zones take the place
of them. If we take each N : 1 and the corresponding 2N : 2
zone as one whole zone, the whole zone still shrinks as Gcpl is
increased.

We try to interpret the phenomenon intuitively via simple
analysis. Figures 12(a) and 12(b) are PRMs measured from
the central and peripheral end, which reveals the effect of
Gcpl on the PRMs. The amplitude for each case is fixed.
Change of Gcpl does not change the topological degree of
PRM. From this point of view, it is reasonable that low

FIG. 12. (Color online) PRMs and patterns responding to varia-
tion of Gcpl. Parameters are shown in the figures. (a) The effect of
Gcpl variation on central PRM. The PRM changes little. (b) Much
greater effect of Gcpl variation on peripheral PRM. (c) Pattern at
low Gcpl, which shows obvious phase difference along the medium.
(d) Pattern at high Gcpl. Strong coupling reduces the phase difference
along the tissue.

and high couplings retain the properties of phase locking in
center- and periphery-stimulated cases. However, Gcpl effect
on central PRM is much weaker than that on peripheral PRM.
We conjecture that the situation in center-stimulated case may
be due to phase difference along the medium, while that in
periphery-stimulated case is related to the excitation threshold
of the stimulated cell itself. Figures 12(c) and 12(d) are the
spatiotemporal patterns under low and high coupling. The
phase propagation speed of high coupling is faster than that
of low coupling. For center stimulus, at low coupling, it is
difficult for the phase resetting information propagating to the
distant end because it goes along in the converse direction of
the phase propagation (in the coupled tissue, phase shift of
one cell may trigger certain phase shift of its neighbor, we call
this chain activity phase resetting information propagation,
which is just an expression), while at high coupling, the phase
difference becomes smaller, and the propagation of the phase
resetting information becomes relatively easy. For periphery
stimulus, increase of the coupling may increase the excitation
threshold of the cell, so that the flat section of the right branch
on the PRM at low coupling becomes inclined when coupling
is increased. The effect of increasing Gcpl is similar to the
effect of decreasing amplitude A in the stimulated peripheral
end.

The Gcpl effect on the width of phase locking zones is
significant for modulating the heart rhythm. The change of
Gcpl may be realized by drug therapy or some experimental
techniques. It is expected that our results may provide ideas
for practical treatment. Moreover, experimental and theoretical
studies found that there is a spatial gradient of Gcpl in the
SAN tissue [54,55]. The effects of Gcpl heterogeneity on phase
locking need further investigations. The difference of phase
locking properties between center- and periphery-stimulated
cases reveals that the heterogeneity of the SAN tissue plays an
important role in determining the phase-locking structures.

VII. CONCLUSION

In the present work, we investigated the heterogeneous
gradient SAN model. The phase-locking structures of the
single central and peripheral cells of this model were elu-
cidated. In both single central and peripheral cells, it is
found that as the amplitude is increased, the complex phase
locking zones (N : M with M > 1) are blocked and the simple
locking behaviors (N : 1 and 2N : 2) are retained. As a much
simplified 1D map, PRM qualitatively explains and predicts
the phase locking behaviors. Furthermore, we evaluated the
quantitative validity of PRM in describing phase lockings of
the original SAN DEs. At low amplitude, PRM can take the
place of DEs with qualitative and quantitative precision; but at
relatively high amplitude, PRM shows quantitative deviation
which may be due to memory effect caused by APD rate
dependence. It is interesting that the phase-locking behaviors
are very different in the tissue when we stimulate the tissue
at central end and periphery end. All the ATs obeying Farey’s
tree grow well when the central cell is stimulated. On the other
hand, the N : M (M > 1) ATs shrink and only N : 1 (2N : 2)
ATs remain finally when we do the same at the peripheral end.
The phenomena are mainly due to the different distributions of
pseudo-isochrone. The coupling strength in tissue is another
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important parameter modulating phase lockings. We found
that the growing trends of the ATs in center-stimulated and
periphery-stimulated tissues are opposite, which were never
noticed and may be significant for medical care. The results
indicate that amplitude, stimulating site and coupling strength
are the three most important parameters influencing phase
locking behaviors in heterogenous SAN tissue.

The advantage of our results isthat the bifurcations and
phase-locking features are obtained in an ionic SAN model
where parameters represent practical SAN measurable quanti-
ties. Therefore, the phenomena revealed in the present work are
expected to be experimentally realizable, which may provide
suggestive instructions for practical treatment.
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APPENDIX: THE EQUATIONS IN THE MODEL AND
INITIAL VALUES FOR SIMULATION

In solving the gating variable equation dy

dt
= y∞−y

τy
, y∞ and

τy are constants determined by V . The equations used in our
work are

INa = gNam
3h[Na+]o

F 2

RT

e(V −ENa)F/RT − 1

eV F/RT − 1
V,

h = (1 − FNa)h1 + FNah2,

FNa = 9.52 × 10−2e−6.3×10−2(V +34.4)

1.0 + 1.66e−0.225(V +63.7)
+ 8.69 × 10−2,

m∞ =
(

1

1 + e− V
5.46

)1/3

,

τm = 0.6247

0.832e−0.335(V +56.7) + 0.627e0.082(V +65.01)
+ 4 × 10−2,

h1∞ = 1

1 + e
V +66.1

6.4

,

τh1 = 3.717 × 10−3e−0.2815(V +17.11)

1 + 3.732 × 10−3e−0.3426(V +37.76)
+ 5.977 × 10−1,

h2∞ = h1∞,

τh2 = 3.186 × 10−5e−0.6219(V +18.8)

1 + 7.189 × 10−5e−0.6683(V +34.07)
+ 3.556.

ICa,L = gCa,L

[
fLdL + 0.006

1.0 + e−(V +14.1)/6.0

]
(V − ECa,L),

dL∞ = 1

1 + e− V +23.1
6

, τdL
= 1

αdL
+ βdL

,

αdL
= −0.02839(V + 35)

e− V +35
2.5 − 1

− 0.0849V

e−0.208V − 1
,

βdL
= 0.01143(V − 5)

e0.4(V −5) − 1
,

fL∞ = 1

1 + e− V +45
5

,

τfL
= 257.1e

−
(

V +32.5
13.9

)2

+ 44.3,

ICa,T = gCa,TdT fT (V − ECa,T),

dT ∞ = 1

1 + e− V +37
6.8

, τdT
= 1

αdT
+ βdT

,

αdT
= 1.068e

V +26.3
30 , βdT

= 1.068e− V +26.3
30 ,

fT ∞ = 1

1 + e
V +71

9

, τfT
= 1

αfT
+ βfT

,

αfT
= 0.0153e− V +61.7

83.3 , βfT
= 0.015e

V +61.7
15.38 ,

Ito = gtoqr(V − EK), Isus = gsusr(V − EK),

q∞ = 1

1 + e
V +59.37

13.1

,

τq = 10.1 + 65.17

0.57e−0.08(V +49) + 0.024e0.1(V +50.93)
,

r∞ = 1

1 + e− V −10.93
19.7

,

τr = 2.98 + 15.9

1.037e0.09(V +30.61) + 0.369e−0.12(V +23.84)
,

IK,r = gK,rpapi(V − EK),

pa = (1 − FK,r)pa,f + FKrpa,s, FK,r = 0.4,

pa,f ∞ = 1

1 + e− V +23.2
10.6

,

τpa,f
= 1

37.2 × 10−3e
V −9
15.9 + 0.96 × 10−3e− V −9

22.5

,

pa,s∞ = 1

1 + e− V +23.2
10.6

,

τpa,s
= 1

4.2 × 10−3e
V −9

17 + 0.15 × 10−3e− V −9
21.6

,

pi∞ = 1

1 + e
V +18.6

10.1

, τpi
= 0.002,

IK,s = gK,sx
2
s (V − EK,s),

xs∞ = αxs

αxs
+ βxs

, τxs
= 1

αxs
+ βxs

,

αxs
= 14 × 10−3

1 + e− V −40
9

, βxs
= 1 × 10−3e− V

45 ,

If = gf,Nay(V − ENa) + gf,Ky(V − EK),

y∞ = 1

1 + e
V +64
13.5

, τy = 1

αy + βy

,
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TABLE I. Parameters for central cell and peripheral cell. “c”
means value for central cell and “p” means value for peripheral cell.
“c,p” means the value is identical in both types of cell.

c p c,p

Cm(pF) 20 65 dNaCa 0.0001

gNa(μS) 0 1.2 × 10−6 γNaCa 0.5

gCa,L(μS) 0.58 × 10−2 6.59 × 10−2 [Ca2+]o(mM) 2

gCa,T(μS) 0.43 × 10−2 1.39 × 10−2 [Ca2+]i(mM) 0.0001

gto(μS) 4.91 × 10−3 36.49 × 10−3 [K+]o(mM) 5.4

gsus(μS) 6.65 × 10−5 1.14 × 10−2 [K+]i(mM) 140

gK,r(μS) 7.97 × 10−4 1.6 × 10−2 Km,K 0.621

gK,s(μS) 5.18 × 10−4 1.04 × 10−2 Km,Na 5.64

gf,Na(μS) 5.48 × 10−4 0.69 × 10−2 [Na+]i(mM) 8

gf,K(μS) 5.48 × 10−4 0.69 × 10−2 [Na+]o(mM) 140

gb,Na(μS) 5.8 × 10−5 1.89 × 10−4 FKr 0.4

gb,Ca(μS) 1.32 × 10−5 4.3 × 10−5 F (C/mmol) 96.5

gb,K(μS) 2.52 × 10−5 8.19 × 10−5 R (J/mol· K) 8.314

kNaCa(nA) 0.27 × 10−5 0.88 × 10−5 T (K) 310

īp(nA) 4.78 × 10−2 0.16

αy = e− V +78.91
26.62 , βy = e

V +75.13
21.25 ,

Ib,Na = gb,Na(V − ENa), Ib,K = gb,K(V − EK),

Ib,Ca = gb,Ca(V − ECa),

INaCa = kNaCa[Na+]3
i [Ca2+]oe

0.03743V γNaCa

1 + dNaCa
(
[Ca2+]i[Na+]3

o + [Ca2+]o[Na+]3
i

)

− kNaCa[Na+]3
o[Ca2+]ie

0.0374V (γNaCa−1.0)

1 + dNaCa
(
[Ca2+]i[Na+]3

o + [Ca2+]o[Na+]3
i

) ,

Ip = īp

(
[Na+]i

Km,Na + [Na+]i

)3 (
[K+]o

Km,K + [K+]o

)2

× 1.6

1.5 + e−(V +60)/40
,

ENa = RT

F
ln

[Na+]o

[Na+]i
, ECa = RT

2F
ln

[Ca2+]o

[Ca2+]i
,

EK = RT

F
ln

[K+]o

[K+]i
, EK,s = RT

F
ln

[K+]o + 0.12[Na+]o

[K+]i + 0.12[Na+]i
,

ECa,T = 45 mV, ECa,L = 46.4 mV.

The parameters in the model are set by the values in Table I.
In addition, some authors (e.g., Garny et al. [56]) noted that
there are some incorrectly published equations in the initial
paper [33]. The correct equations of Zhang’s model can be
found at the COR (cellular open resource) website [57].

The initial values are:
Central cell: V = −51.44; m = 0.124; h1 = 0.595; h2 =

5.25 × 10−2; dL = 5.912 × 10−2; fL = 0.825; dT = 0.106;

fT = 0.119; y = 3.775 × 10−2; r = 3.924 × 10−2; q =
0.358; xs = 5.7 × 10−2; pa,f = 0.47; pa,s = 0.637; pi =
0.965.

Peripheral cell: V = −64.35; m = 0.124; h1 = 0.595;
h2 = 5.25 × 10−2; dL = 8.45 × 10−2; fL = 0.987; dT =
1.725 × 10−2; fT = 0.436; y = 5.28 × 10−2; r = 1.97 ×
10−2; q = 0.663; xs = 7.67 × 10−2; pa,f = 0.4; pa,s =
0.327; pi = 0.991.

In simulations of the cable, initial values of all grid points
are set uniformly by that identical to single-central cell.

The dynamics of a single cell is governed by a set of
15 ODEs. The local stability of a state point is determined
by the eigenvalues of the Jacobian matrix. At the stable and
unstable fixed points, we have values of V and gating variables
so that elements in the matrix can be calculated. At stable fixed
point the eigenvalues are (the first value is the real part and the
second is the imaginary part, and all real parts are negative):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−499.9646, 0
−7.3637, 0
−8.87, 0

−2.2003, 0
−0.7015, 0
−1.0732, 0
−0.1074, −1.5167 × 10−2

−0.1074, 1.5167 × 10−2

−2.237 × 10−2, 0
−1.8279 × 10−3, −1.062 × 10−2

−1.8279 × 10−3, 1.062 × 10−2

−4.3494 × 10−3, 0
−1.1259 × 10−3, 0
−2.0905 × 10−3, 0

−0.264, 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Eigenvalues of the unstable fixed point are (two of them have
positive real part):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−499.9838, 0
−5.416, 0
−2.3791, 0
−6.0138, 0
−0.7414, 0
−0.3563, 0
−0.1387, 0

−6.4994 × 10−2, 0
1.2848 × 10−2, −8.651 × 10−4

1.2848 × 10−2, 8.651 × 10−4

−1.5635 × 10−2, 0
−1.2571 × 10−3, 0
−4.9697 × 10−3, 0
−5.3391 × 10−2, 0
−2.4251 × 10−3, 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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