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Optimal design of minimum-power stimuli for phase models of neuron oscillators
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In this paper, we study optimal control problems of spiking neurons whose dynamics are described by a phase
model. We design minimum-power current stimuli (controls) that lead to targeted spiking times. In particular,
we consider bounded control amplitude and characterize the range of possible spiking times determined by the
bound, which can be chosen sufficiently small within the range where the phase model is valid. We show that for
a given bound the corresponding feasible spiking times are optimally achieved by piecewise continuous controls.
We present analytic expressions with numerical simulations of the minimum-power stimuli for several phase
models. We demonstrate the applicability of our method with an experimentally determined phase response
curve.
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I. INTRODUCTION

Control of neurons and hence the nervous system by exter-
nal current stimuli (controls) has received increased scientific
attention in recent years for its wide range of applications from
deep brain stimulation to oscillatory neurocomputers [1–3].
Conventionally, neuron oscillators are represented by phase-
reduced models, which form a standard nonlinear system [4,5].
Intensive studies using phase models have been carried out,
for example, on the investigation of the patterns of synchrony
that result from the type and architecture of coupling [6,7]
and on the response of large groups of oscillators to external
stimuli [8,9], where the inputs to the neuron systems were
initially defined and the dynamics of neural populations were
analyzed in detail.

Recently, control theoretic approaches have been employed
to design external stimuli that drive neurons to behave in
a desired way. For example, a multilinear feedback control
technique has been used to control the individual phase relation
between coupled oscillators [10] and geometric control theory
has been adopted to study controllability and optimal control
of a network of neurons with different natural oscillation
frequencies [11]. There has been an increase in the demand
for controlling not only the collective behavior of a network of
oscillators but also the behavior of each individual oscillator. It
is feasible to change the spiking periods of oscillators or tune
the individual phase relationship between coupled oscillators
by the use of electric stimuli [10,12]. Minimum-power stimuli
that elicit spikes of a neuron at specified times close to the
natural spiking time were analyzed [8]. Optimal wave forms
for the entrainment of weakly forced oscillators that maximize
the locking range have been calculated, where first and second
harmonics were used to approximate the phase response curve
(PRC) [13]. These optimal controls were found mainly based
on the calculus of variations, which restricts the optimal
solutions to the class of smooth controls, and the bound of
the control amplitude was not taken into account.

In this paper, we apply techniques from optimal control
theory to derive minimum-power controls that spike a neuron
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at desired time instants. We consider bounded control am-
plitude and fully characterize the range of feasible spiking
times determined by the bound. In particular, our optimal
control strategies are general so that the bound can be chosen
sufficiently small within the range where the PRC is valid.
The design of such minimum-power stimuli to elicit spikes
of neuron oscillators is also of clinical importance, notably
in deep brain stimulation therapy for Parkinson’s disease and
essential tremor [14], where mild stimulations are required.
In addition, interest in reducing the energy consumption in
neurological implants such as cardiac pacemakers makes such
optimal designs imperative.

This paper is organized as follows. In Sec. II, we introduce
the phase model for spiking neurons and formulate the related
optimal control problem. In Sec. III, we derive minimum-
power controls associated with specified spiking times in
the absence and presence of control amplitude constraints,
in which various phase models, including the sinusoidal
PRC, SNIPER (saddle-node bifurcation of a fixed point on a
periodic orbit) PRC, and Morris-Lecar PRC, are considered. In
addition, we present examples and simulations to demonstrate
the resulting optimal control strategies.

II. OPTIMAL CONTROL OF SPIKING NEURON
OSCILLATORS

A periodically spiking or firing neuron can be considered
as a periodic oscillator governed by a nonlinear dynamical
equation of the form

dθ

dt
= f (θ ) + Z(θ )I (t), (1)

where θ is the phase of the oscillation, f (θ ) and Z(θ ) are real-
valued functions giving the neuron’s baseline dynamics and
its phase response, respectively, and I (t) is an external current
stimulus [4]. This nonlinear dynamical system described in
(1) is referred to as the phase model for the oscillation. The
assumptions that Z(θ ) vanishes only on isolated points and
that f (θ ) > 0 are made so that a full revolution of the phase is
possible. By convention, neuron spikes occur when θ = 2nπ ,
where n ∈ N, e.g., θ = 0 or 2π . In the absence of any input
I (t), the neuron spikes periodically at its natural frequency,
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while the spiking time can be advanced or delayed in a desired
manner by an appropriate choice of I (t).

In this paper, we study optimal design of neural inputs
that lead to the spiking of neurons at a specified time T1

after spiking at time t = 0. In particular, we find the bounded
stimulus that fires a neuron with minimum power, which is
formulated as the following optimal control problem:

min
I (t)

∫ T1

0
I (t)2 dt (2)

subject to θ̇ = f (θ ) + Z(θ )I (t),

θ (0) = 0, θ (T1) = 2π,

|I (t)| � M, ∀ t ∈ [0,T1],

where M > 0 is the amplitude bound of the current stimulus
I (t). Here, we consider both hyperpolarizing and depolarizing
inputs, i.e., I (t) can be positive or negative. Note that if T1

is equal to the natural spiking time, then no input is needed.
We first investigate the case when the control amplitude is
unbounded, upon which the optimal control with bounded
amplitude can be constructed.

III. MINIMUM-POWER STIMULUS FOR SPECIFIED
FIRING TIME

We consider the minimum-power optimal control problem
of spiking neurons as formulated in (2) for various phase
models including both models for type I and type II neurons.
Specifically, we examine the examples of the sinusoidal PRC,
SNIPER PRC, and Morris-Lecar PRC.

A. Sinusoidal PRC

Consider the following dynamical system with sinusoidal
PRC:

θ̇ = ω + zd (sin θ )I (t), (3)

where ω is the natural oscillation frequency of the neuron
and zd is a model-dependent constant. The neuron described
by this phase model spikes periodically with the period T =
2π/ω in the absence of any external input, i.e., I (t) = 0. Note
that this type of PRC with both positive and negative regions
can be obtained by periodic orbits near the supercritical Hopf
bifurcation [4]. This type of bifurcation occurs for type II
neuron models like the Fitzhugh-Nagumo model [15].

1. Spiking neurons with unbounded control

The optimal current profile can be derived by Pontryagin’s
maximum principle [16,17]. Given the optimal control prob-
lem as in (2), we form the control Hamiltonian

H = I 2 + λ[ω + zd (sin θ )I ], (4)

where λ is the Lagrange multiplier. The necessary optimality
conditions give

λ̇ = −∂H

∂θ
= −λzdI cos θ, (5)

and ∂H
∂I

= 2I + λzd sin θ = 0. Hence, the optimal current I

satisfies

I = −1

2
λzd sin θ. (6)

The optimal control problem is then transformed to a
boundary value problem, which characterizes the optimal
trajectories of θ (t) and λ(t),

θ̇ = ω − z2
dλ

2
sin2 θ, (7)

λ̇ = z2
dλ

2

2
sin θ cos θ, (8)

with boundary conditions θ (0) = 0 and θ (T1) = 2π while λ(0)
and λ(T1) are unspecified.

Additionally, since the Hamiltonian is not explicitly depen-
dent on time, the optimal triple (λ,θ,I ) satisfies H (λ,θ,I ) = c,
∀ 0 � t � T1, where c is a constant. Together with (6), this
yields

−z2
d

4
sin2 θλ2 + ωλ = c. (9)

Since θ (0) = 0, c = ωλ0, where λ0 = λ(0), which is undeter-
mined. The optimal multiplier can be found by solving the
above quadratic equation (9), which gives

λ =
2ω ± 2

√
ω2 − ωλ0z

2
d sin2 θ

z2
d sin2 θ

, (10)

and then, from (7), the optimal trajectory of θ follows

θ̇ = ∓
√

ω2 − ωλ0z
2
d sin2 θ. (11)

Integrating Eq. (11), we find the spiking time T1 in terms of
the initial condition λ0,

T1 =
∫ 2π

0

1√
ω2−ωλ0z

2
d sin2 θ

dθ. (12)

Note that we choose the positive sign in (11), which cor-
responds to forward phase evolution. Therefore, given a
desired spiking time T1 of the neuron, the initial value λ0

corresponding to the optimal trajectory of the multiplier can
be found via the one-to-one relation in (12). Consequently,
the optimal trajectories of θ and λ can be easily computed by
evolving (7) and (8) forward in time. Plugging (10) into (6),
we obtain the optimal feedback law for spiking the neuron at
time T1 of the form

I ∗ =
−ω +

√
ω2 − ωλ0z

2
d sin2 θ

zd sin θ
, (13)

where λ0 is to be calculated according to (12).
The feasibility of spiking the neuron at a desired time T1

largely depends on the initial value of the multiplier, λ0. It is
not feasible to have a 2π revolution if λ0 � ω/z2

d . This fact
can be seen from Fig. 1, where the system evolution defined by
(7) and (8) for zd = 1 rad/nC and ω = 1 rad/ms with respect
to different λ0 values (θ = 0 axis) is illustrated. When λ0 = 0,
the spiking period is equal to the natural spiking period 2π/ω,
and no external stimulus needs to be applied, i.e., I ∗(t) = 0,
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FIG. 1. (Color online) Extremals of sinusoidal PRC model with
zd = 1 rad/nC and ω = 1 rad/ms.

∀ t ∈ [0,2π/ω]. T1 is a monotonically increasing function of
λ0 for fixed ω and zd and the average phase velocity decreases
when λ0 increases, the spiking time T1 > 2π/ω for λ0 > 0 and
T1 < 2π/ω for λ0 < 0. Figure 2 shows variation of the spiking
time T1 with the λ0 corresponding to the optimal trajectories
for different ω values with zd = 1 rad/nC.

The relation between the spiking time T1 and required
minimum energy E = min

∫ T1

0 I 2(t)dt is evident via a simple
sensitivity analysis [18]. Since a small change in the initial
condition dθ and a small change in the initial time dt result in
a small change in power according to dE = λ(t)dθ − H (t)dt ,
it follows that − ∂E

∂t
= H = c = ωλ0 [18]. This implies that

E increases with initial time t for λ0 < 0 and decreases for
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FIG. 2. (Color online) Variation of the spiking time T1 with
respect to the initial multiplier value λ0 leading to optimal trajectories,
with different values of ω (rad/ms) and zd = 1 rad/nC for sinusoidal
PRC model.

λ0 > 0. Since the increment of the initial time is equivalent
to the decrement of spiking time T1, ∂E/∂T1 = ωλ0. Since
λ0 < 0 (λ0 > 0) corresponds to T1 < 2π/ω (T1 > 2π/ω), we
see that the required minimum energy increases if we move
away from the natural spiking time.

The minimum-power stimulus I ∗ as in (13) plotted with
respect to time and the phase for various spiking times
T1 = 3,5,10,12 ms with ω = 1 rad/ms and zd = 1 rad/nC
are shown in Figs. 3(a) and 3(b), respectively. The respective
optimal trajectories of λ(θ ) and θ (t) for these spiking times
are illustrated in Figs. 3(c) and 3(d).
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FIG. 3. (Color online) Optimal solutions for various spiking times T1 = 3,5,10,12 ms for sinusoidal PRC model with zd = 1 rad/nC and
ω = 1 rad/ms. (a) The minimum-power control I ∗. (b) Variation of I ∗ with phase θ . (c) Variation of the optimal multiplier λ with θ . (d)
Optimal phase trajectories following I ∗.
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FIG. 4. (Color online) Variation of the maximum value of I ∗ with
spiking time T1 for sinusoidal PRC model with ω = 1 rad/ms and
zd = 1 rad/nC.

2. Spiking neurons with bounded control

In practice, the amplitudes of stimuli in physical systems are
limited and phase models are valid for weak inputs; hence we
consider spiking the sinusoidal neuron with bounded control
amplitude, namely, in the optimal control problem (2), |I (t)| �
M < ∞ for all t ∈ [0,T1], where T1 is the desired spiking
time. In this case, there exists a range in which the neuron
can be spiked, depending on the value of M , in contrast to the
previous case where any desired spiking time is feasible. We
first observe that, given this bound M , the minimum time it
takes to spike a neuron can be achieved by choosing the control
that keeps the phase velocity θ̇ maximum over t ∈ [0,T1]. Such
a time-optimal control, for zd > 0, can be characterized by a
switching, i.e.,

I ∗
T min =

{
M for 0 � θ < π,

−M for π � θ < 2π.
(14)

Consequently, the spiking time with I ∗
T min for ω �= zdM can

be computed using (3) and (14), which yields

T M
min = 2π

√
1

−z2
dM2+ω2

− 4 tan−1
{

zdM/
√

−z2
dM2+ω2

}
√

−z2
dM2+ω2

. (15)

It follows that I ∗, given in (13), is the minimum-power
stimulus that spikes the neuron at a desired spiking time T1

if |I ∗| � M for all t ∈ [0,T1]. However, there exists a shortest
possible spiking time by I ∗ given the bound M , that is (see
Appendix A),

T I ∗
min =

∫ 2π

0

1√
ω2 + zdM(zdM + 2ω) sin2(θ )

dθ. (16)

Note that T M
min < T I ∗

min. According to (3) when M � ω/zd ,
arbitrarily large spiking times can be achieved by making θ̇

arbitrary close to zero. Therefore we consider two cases for
M � ω/zd and M < ω/zd .

Case I: M � ω/zd . Since |I ∗| < ω/zd � M for λ0 > 0,
I ∗ is the minimum-power control for any desired spiking
time T1 > 2π/ω, and hence for any spiking time T1 � T I ∗

min.
Variation of the maximum value of the control I ∗ with spiking
time T1 for ω = 1 rad/ms and zd = 1 rad/nC is depicted in
Fig. 4. Shorter spiking times T1 ∈ [T M

min,T
I ∗

min) are feasible but,
due to the bound M , cannot be achieved by I ∗ since it requires
a control with amplitude greater than M for some t ∈ [0,T1].
However, these spiking times can be optimally achieved by
applying controls switching between I ∗ and I ∗

T min.
The minimum-power optimal control that spikes the neuron

at T1 ∈ [T M
min,T

I ∗
min) is characterized by four switchings between

I ∗ and M , i.e.,

I ∗
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I ∗, 0 � θ < θ1,

M, θ1 � θ � θ2,

I ∗, θ2 < θ < θ3,

−M, θ3 � θ � θ4,

I ∗, θ4 < θ � 2π,

(17)

in which θ1 = sin−1[−2Mω/(zdM
2 + zdωλ0)] and θ2 = π −

θ1 are the phases where I ∗ meets the bound M , θ3 = π +
θ1, and θ4 = 2π − θ1. The initial value of the multiplier, λ0,
resulting in the optimal trajectory, can then be found according
to the desired T1 ∈ [T M

min,T
I ∗

min) through the relation

T1 =
∫ θ1

0

4√
ω2−ωλ0z

2
d sin2 θ

dθ +
∫ π/2

θ1

4

ω + zdM sin (θ )
dθ.

More detailed derivations of the optimal solutions can be
found in Appendix A. Figure 5(a) shows the relation between
λ0 and T1 by I ∗

1 for M = 2.5 μA, zd = 1 rad/nC, and ω = 1
rad/ms. From (15) the minimum possible spiking time with
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FIG. 5. (Color online) (a) Variation of the spiking time T1 ∈ [T M
min,T

I∗
min) for sinusoidal PRC model with respect to the initial multiplier value

λ0 for M = 2.5 μA. (b) Unbounded and bounded (M = 2.5 μA) minimum-power controls of sinusoidal PRC model for T1 = 2.8 ms, zd =
1 rad/nC, and ω = 1 rad/ms.
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10 ms, zd = 1 rad/nC, and ω = 1 rad/ms.

this control bound M = 2.5 μA is T M
min = 2.735 ms and from

(16) the minimum spiking time by I ∗ is T I ∗
min = 3.056 ms. Thus,

in this example, any desired spiking time T1 > 3.056 ms can
be optimally achieved by I ∗ whereas any T1 ∈ [2.735,3.056)
ms can be optimally obtained by I ∗

1 as in (17). Figure 5(b)
illustrates the bounded and unbounded optimal controls that
fire the neuron at T1 = 2.8 ms, where I ∗ is the minimum-power
stimulus when the control amplitude is not limited and I ∗

1 is
the minimum-power stimulus when the bound M = 2.5 μA.
I ∗ drives the neuron from θ (0) = 0 to θ (2.8) = 2π with
4.836 pW of power whereas I ∗

1 requires 5.046 pW.
Case II: M < ω/zd . In contrast with case I in the previous

section, achieving arbitrarily large spiking times is not feasible
with a bound M < ω/zd . In this case, the longest possible
spiking time is achieved by

I ∗
T max =

{−M for 0 � θ < π,

M for π � θ < 2π.

The spiking time of the neuron under this control is

T M
max = 2π

√
1

−z2
dM2+ω2

+ 4 tan−1
{

zdM/
√

−z2
dM2+ω2

}
√

−z2
dM2+ω2

, (18)

and the longest spiking time feasible with control I ∗ is given
by

T I ∗
max =

∫ 2π

0

1√
ω2 + zdM(zdM − 2ω) sin2(θ )

dθ. (19)

Then, by similar analysis as for case I, any spiking time
T1 ∈ [T M

min,T
I ∗

min) for a given M < ω/zd can be achieved
with the minimum-power control I ∗

1 as given in (17), any
T1 ∈ [T I ∗

min,T
I ∗

max] can be achieved with minimum power by I ∗
in (13), and moreover any T1 ∈ (T I ∗

max,T
M

max] can be obtained
by switching between I ∗ and I ∗

max. The corresponding switch-
ing angles are θ5 = sin−1[2Mω/(zdM

2 + zdωλ0)], θ6 = π −

θ5, θ7 = π + θ5, and θ8 = 2π − θ5, and the minimum-power
optimal control for T1 ∈ (T I ∗

max,T
M

max] is characterized by

I ∗
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I ∗, 0 � θ < θ5,

−M, θ5 � θ � θ6,

I ∗, θ6 < θ < θ7,

M, θ7 � θ � θ8,

I ∗, θ8 < θ � 2π.

The λ0 resulting in the optimal trajectory by I ∗
2 can be

calculated according to the given T1 ∈ (T I ∗
max,T

M
max] via the

relation

T1 =
∫ θ5

0

4√
ω2−ωλ0z

2
d sin2 θ

dθ +
∫ π/2

θ5

4

ω − zdM sin θ
dθ.

Figure 6(a) shows the relation between λ0 and T1 by I ∗
2

for M = 0.55 μA, zd = 1 rad/nC, and ω = 1 rad/ms. From
(18) the maximum possible spiking time with M = 0.55 μA
is T M

max = 10.312 ms and from (19) the maximum spiking
time feasible by I ∗ is T I ∗

max = 9.006 ms. Therefore, in this
example, any desired spiking time T1 ∈ (9.006,10.312] ms
can be obtained with minimum power by the use of I ∗

2 .
Figure 6(b) illustrates the bounded and unbounded optimal
controls that spike the neuron at T1 = 10 ms, where I ∗ is the
minimum-power stimulus when the control amplitude is not
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FIG. 7. (Color online) A summary of the optimal control
strategies for the sinusoidal PRC model for (a) M � ω/zd and
(b) M < ω/zd .
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FIG. 8. (Color online) Optimal solutions for various spiking times T1 = 3,5,10,12 ms for SNIPER PRC model with zd = 1 rad/nC and
ω = 1 rad/ms. (a) The minimum-power control I ∗. (b) Variation of I ∗ with phase θ . (c) Variation of the optimal multiplier, λ, with θ .
(d) Optimal phase trajectories following I ∗.

limited and I ∗
2 is the minimum-power stimulus when M =

0.55 μA. I ∗ drives the neuron from θ (0) = 0 to θ (10) = 2π

with 0.219 pW of power whereas I ∗
2 requires 0.233 pW.

A summary of the optimal (minimum-power) spiking
scenarios for a prescribed spiking time of the neuron governed
by the sinusoidal phase model (3) is illustrated in Fig. 7. Note
that repeated application of optimal controls with period T1,
as in (13), (17), and (20), leads to 1:1 phase locking.

B. SNIPER PRC

We now consider the SNIPER PRC model in which f (θ ) =
ω and Z(θ ) = zd (1 − cos θ ), where zd > 0 and ω > 0. That
is,

θ̇ = ω + zd (1 − cos θ )I (t). (20)

The SNIPER PRC is derived for neuron models near a SNIPER
bifurcation (i.e., a saddle-node bifurcation of a fixed point on
a periodic orbit) which is found for type I neurons [19] like the
Hindmarsh-Rose model [20]. The minimum-power stimuli for
spiking neurons modeled by this phase model can be easily
derived with analysis analogous to those described previously
in Secs. III A 1 and III A 2.

1. Spiking neurons with unbounded control

Employing the maximum principle as in Sec. III A 1, the
minimum-power stimulus that spikes the SNIPER neuron at a

desired time T1 can be derived and given by

I ∗ =
−ω +

√
ω2 − ωλ0z

2
d (1 − cos θ )2

zd (1 − cos θ )
, (21)

where λ0 corresponding to the optimal trajectory is determined
through the integral relation with T1,

T1 =
∫ 2π

0

1√
ω2 − ωλ0z

2
d (1 − cos θ )2

dθ.

The minimum-power stimuli I ∗ plotted with respect to time
and phase for various spiking times T1 = 3,5,10,12 ms with
parameter values zd = 1 rad/nC and ω = 1 rad/ms are illus-
trated in Figs. 8(a) and 8(b), respectively. The corresponding
optimal trajectories of λ(θ ) and θ (t) for these spiking times
are displayed in Figs. 8(c) and 8(d).

2. Spiking neurons with bounded control

When the amplitude of the available stimulus is limited,
i.e., |I (t)| � M , the control that achieves the shortest spiking
time for the SNIPER phase model is given by I ∗

T min = M > 0
for 0 � θ � 2π , since 1 − cos θ � 0 for all θ ∈ [0,2π ]. As
a result, the shortest possible spiking time with this control
is T M

min = 2π/
√

ω2 + 2zdωM . Also, the shortest spiking time
achieved by the control I ∗ in (21) given the bound M is given
by

T I ∗
min =

∫ 2π

0

1√
ω2 + zdM(zdM + ω)(1 − cos θ )2

dθ. (22)
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FIG. 9. (Color online) (a) Variation of the spiking time T1 ∈ [T M
min,T

I∗
min) with respect to the initial multiplier value λ0 for SNIPER PRC

model when M = 2.0 μA. (b) Unbounded and bounded (M = 2.0 μA) minimum-power controls for SNIPER PRC model with T1 = 3.0 ms,
zd = 1 rad/nC, and ω = 1 rad/ms.

Similarly to the sinusoidal PRC case, the longest possible
spiking time of the neuron varies with the control bound M . If
M � ω/(2zd ), an arbitrarily large spiking time is achievable;
however, if M < ω/(2zd ) there exists a maximum spiking
time.

Case I: M � ω/(2zd ). Any spiking time T1 ∈ [T I ∗
min,∞)

is possible with control I ∗ but a shorter spiking time T1 ∈
[T M

min,T
I ∗

min) requires switching between I ∗ and I ∗
T min, which is

characterized by two switchings,

I ∗
1 =

⎧⎨
⎩

I ∗, 0 � θ < θ1,

M, θ1 � θ � 2π − θ1,

I ∗, 2π − θ1 < θ � 2π,

(23)

where θ1 = cos−1
[
1 + 2ωM/(zdM

2 + zdωλ0)
]
. The initial

value λ0 that results in the optimal trajectory is given by

T1 =
∫ θ1

0

2√
ω2 − ωλ0z

2
d (1 − cos θ )2

dθ

+
∫ π

θ1

2

ω + zdM(1 − cos θ )
dθ.

Figure 9(a) illustrates the relation between λ0 and T1 ∈
[T M

min,T
I ∗

min) by I ∗
1 for M = 2.0 μA, zd = 1 rad/nC, and ω =

1 rad/ms. In this case, the shortest feasible spiking time is
T M

min = 2.09 ms and the shortest with the control I ∗ is T I ∗
min =

3.18 ms. Any spiking time in the interval [2.09,3.18) ms is
achievable by I ∗

1 in (23) with minimum power. Figure 9(b)
illustrates the unbounded and bounded, with M = 2.0 μA,
optimal stimuli that fire the neuron at T1 = 3 ms with minimum
power.

Case II: M < ω/(2zd ). In this case there exists a longest
possible spiking time (i.e., T M

max) which is achieved by I ∗
max =

−M for all θ ∈ [0,2π ]. T M
max is given by 2π/

√
ω2 − 2zdωM .

The longest spiking time feasible with the control I ∗ as in (21)
is given by

T I ∗
max =

∫ 2π

0

1√
ω2 + zdM(zdM − 2ω)(1 − cos θ )2

dθ.

Therefore, any spiking time T1 ∈ [T M
min,T

I ∗
min) for a given M <

ω/(2zd ) can be achieved with the minimum-power control
I ∗

1 as given in (23), any T1 ∈ [T I ∗
min,T

I ∗
max] can be achieved

with minimum power by I ∗ in (21), and moreover any
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FIG. 10. (Color online) (a) Variation of the spiking time T1 ∈ (T I∗
max,T

M
max] with respect to the initial multiplier value λ0 for SNIPER PRC

model when M = 0.3 μA. (b) Unbounded and bounded (M = 0.3 μA) minimum-power controls for SNIPER PRC model with T1 = 9.8 ms,
zd = 1 rad/nC, and ω = 1 rad/ms.
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FIG. 11. (Color online) Morris-Lecar PRC.

T1 ∈ (T I ∗
max,T

M
max] can be obtained by switching between I ∗

and I ∗
max, that is,

I ∗
2 =

⎧⎨
⎩

I ∗, 0 � θ < θ2,

−M, θ2 � θ � 2π − θ2,

I ∗, 2π − θ2 < θ < 2π,

where θ2 = cos−1
[
1 − 2ωM/(zdM

2 + zdωλ0)
]
. The λ0 asso-

ciated with the optimal trajectory is determined via the relation
with the desired spiking time T1,

T1 =
∫ θ1

0

2√
ω2 − ωλ0z

2
d (1 − cos θ )2

dθ

+
∫ π

θ1

2

ω − zdM(1 − cos θ )
dθ.

Figure 10(a) illustrates the relation between λ0 and T1 ∈
(T I ∗

max,T
M

max] by I ∗
2 for M = 0.3 μA, zd = 1 rad/nC, and ω = 1

rad/ms. In this case, the longest feasible spiking time is
T M

max = 9.935 ms and the longest with the control I ∗ is T I ∗
max =

8.596 ms. The unbounded and bounded, with M = 0.3 μA,
optimal stimuli that fire the neuron at T1 = 9.8 ms with
minimum power are illustrated in Fig. 10(b).

A summary of the optimal (minimum-power) spiking sce-
narios for a prescribed spiking time of the neuron governed by
the SNIPER PRC model in (20) can be illustrated analogously
to Figs. 7(a) and 7(b) for M � ω/(2zd ) and M < ω/(2zd ),
respectively.
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FIG. 13. (Color online) Variation of the minimum and maximum
spiking times with respect to the control amplitude for Morris-Lecar
PRC.

Many of the experimentally determined PRCs for real
neurons are not of sinusoidal or SNIPER type, which are
approximations arising from the study of mathematical models
of neuron oscillators close to certain bifurcations. In the
following, we apply the derived optimal control strategies
to the Morris-Lecar PRC. Previous work has shown that the
PRC for an Aplysia motoneuron, which can be experimentally
observed, is extremely similar to that of a Morris-Lecar
neuron [21]. As a result, we find minimum-power stimuli for
the Morris-Lecar PRC to demonstrate the applicability and
generality of our analytic method to practical PRCs.

C. Morris-Lecar PRC

The phase model of the Morris-Lecar neuron [22] is
given by θ̇ = ω + Z(θ )I (t), where the PRC, Z(θ ), for the
system and parameters described in Appendix B is shown in
Fig. 11, calculated by XPP [23]. It has the period T =
22.211 ms and natural frequency ω = 0.283 rad/ms. We
can calculate the optimal controls for different spiking times
following the same procedure as we explained for sinusoidal
PRCs. Figure 12 shows the optimal current stimuli without
an amplitude constraint and the corresponding trajectories for
various desired spiking times that are shorter than, close to,
and longer than the natural spiking time.
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FIG. 12. (Color online) (a) Optimal currents for various spiking times T1 = 17,22,27 ms for the Morris-Lecar PRC. (b) Phase trajectories
under the optimal current stimuli.
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FIG. 14. (Color online) Unbounded and bounded minimum-power controls for the Morris-Lecar PRC for (a) T1 = 20.0 ms and (b) T1 =
25.5 ms, where M = 0.01μA.

With a bounded control amplitude, the feasible range
of spiking times is limited, which is illustrated in
Fig. 13. The spiking range with the bound M = 0.01 μA
is [19.623,26.268] ms. Figures 14(a) and 14(b) illustrate
the unbound and bounded minimum-power controls for the
spiking times T1 = 20 ms and 25.5 ms that are shorter and
longer than the natural spiking time, respectively.

IV. CONCLUSION AND DISCUSSION

In this paper, we studied various phase-reduced models
that describe the dynamics of neuron systems. We con-
sidered the design of minimum-power stimuli for spiking
a neuron at a specified time instant that is different from
the natural spiking time. We formulated this as an optimal
control problem and investigated both cases when the control
amplitude is unbounded and bounded, for which we found
analytic expressions of optimal feedback control laws. In
particular for the bounded control case, we characterized
the range of possible spiking times in terms of the control
amplitude bound. The bound can be chosen sufficiently
small within the range where the PRC of a neuron is valid.
We illustrated that our method can be applied not only to
ideal mathematical models of neuron oscillators but also to
experimentally observed PRCs, such as that of an Aplysia
motoneuron.

Moreover, minimum-power stimuli for steering any nonlin-
ear oscillators of the form as in (1) between desired initial and
target states can be derived following the steps presented in
this paper. In addition, the charge-balanced constraint can be
readily incorporated into this framework, which is of clinical
importance as in deep brain stimulations for Parkinson’s
disease [24].

The optimal control of a single neuron system investigated
in this work illustrates the fundamental limit of spiking a neu-
ron with external stimuli and provides a benchmark structure
that enables us to study optimal control of spiking neuron pop-
ulations. Our recent work showed that simultaneous spiking
of a network of neurons with weak forcing is possible [11];
however, many of the related optimal control problems such
as minimum-power or time-optimal controls for firing a neural
network have not been studied. Although one-dimensional

phase models are reasonably accurate to describe the dynamics
of neurons, study of higher-dimensional models is essential for
more accurate computation of optimal neural inputs.

APPENDIX A: SPIKING SINUSOIDAL NEURONS WITH
BOUNDED CONTROL

Simple first- and second-order optimality conditions ap-
plied to (13) show that the maximum value of I ∗ occurs at
θ = π/2 for λ0 < 0 and at θ = 3π/2 for λ0 > 0. Therefore,
the λ0 for the shortest spiking time with control I ∗ satisfying
|I ∗(t)| � M can be calculated by substituting I ∗ = M and
θ = π/2 into Eq. (13), and then from (12) we obtain this
shortest spiking period in (16).

Since I ∗ takes the maximum value at θ = 3π/2 for
λ0 > 0, we have |I ∗| � (ω − √

ω2 − ωλ0z2
d )/zd , which leads

to |I ∗| < ω/zd � M for λ0 > 0. This implies that I ∗ is
the minimum-power control for any desired spiking time
T1 > 2π/ω when M � ω/zd , and hence for any spiking time
T1 � T I ∗

min. Shorter spiking times T1 ∈ [T M
min,T

I ∗
min) are feasible

but cannot be achieved by I ∗. Let T1 ∈ [T M
min,T

I ∗
min); then

there exist two angles θ1 = sin−1[−2Mω/(zdM
2 + zdωλ0)]

and θ2 = π − θ1 where I ∗ meets the bound M . When θ ∈
(θ1,θ2), I ∗ > M and we take I (θ ) = M for θ ∈ [θ1,θ2]. The
Hamiltonian of the system when θ ∈ [θ1,θ2] is, from (4), H =
M2 + λ(ω + zd sin θ M). If the triple (λ,θ,M) is optimal, then
H is a constant, which gives λ = (H − M2)/(ω + zdM sin θ ).
This multiplier satisfies the adjoint equation (5), and therefore
I (θ ) = M is optimal for θ ∈ [θ1,θ2]. Similarly, by symmetry,
I ∗ < −M when θ ∈ [θ3,θ4], where θ3 = π + θ1 and θ4 =
2π − θ1, if the desired spiking time T ∈ [T M

min,T
I ∗

min). It can be
easily shown in the same fashion that I (θ ) = −M is optimal
in the interval θ ∈ [θ3,θ4]. Therefore, the minimum-power
optimal control that spikes the neuron at T1 ∈ [T M

min,T
I ∗

min) can
be characterized by four switchings between I ∗ and M as
shown in (17).

APPENDIX B: DYNAMICS OF THE MORRIS-LECAR
NEURON

The dynamics of the Morris-Lecar neuron is
described by CV̇ − (I b + I ) = gCam∞(VCa − V ) +

061916-9



ISURU DASANAYAKE AND JR-SHIN LI PHYSICAL REVIEW E 83, 061916 (2011)

gkw(Vk − V ) + gL(VL − V ) and ẇ = φ(ω∞ − w)/τw(V ),
where m∞ = 0.5{1 + tanh[(V − V1)/V2]}, ω∞ = 0.5
{1 + tanh[(V − V3)/V4]}, τω = 1/ cosh[(V − V3)/(2V4)]. We
consider the following parameter values with the channel size
of 1 cm2,

φ = 0.5, I b = 0.09 μA/cm2, V1 = −0.01 mV,

V2 = 0.15 mV, V3 = 0.1 mV, V4 = 0.145 mV,

gCa = 1 mS/cm2, Vk = −0.7 mV, VL = −0.5 mV,

gk = 2 mS/cm2, gL = 0.5 mS/cm2, C = 1 μF/cm2,

VCa = 1mV.
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