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Hysteresis in the gait transition of a quadruped investigated using simple body
mechanical and oscillator network models
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We investigated the dynamics of quadrupedal locomotion by constructing a simple quadruped model that
consists of a body mechanical model and an oscillator network model. The quadruped model has front and
rear bodies connected by a waist joint with a torsional spring and damper system and four limbs controlled by
command signals from the oscillator network model. The simulation results reveal that the quadruped model
produces various gait patterns through dynamic interactions among the body mechanical system, the oscillator
network system, and the environment. They also show that it undergoes a gait transition induced by changes in
the waist joint stiffness and the walking speed. In addition, the gait pattern transition exhibits a hysteresis similar
to that observed in human and animal locomotion. We examined the hysteresis mechanism from a dynamic
viewpoint.
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I. INTRODUCTION

Humans and animals perform adaptive walking in diverse
environments by cooperatively and skillfully manipulating
their complicated and redundant musculoskeletal systems. A
characteristic of adaptive walking is that the gait pattern varies
depending on the locomotion speed (e.g., humans walk and
run, and quadrupeds walk, trot, and gallop). Experimental
studies have revealed that there is a hysteresis associated
with changes in the gait pattern; in other words, the gait
transition occurs at different locomotion speeds depending
on the speed change direction [1–8]. Gait transitions have
been investigated from mechanical, energetic, kinematic, and
kinetic viewpoints [2,6,8–10]; however, it is still unclear what
determines gait transitions.

The ability of animals to perform adaptive movements
has been investigated by examining the configurations and
activities of neural systems. For example, neurophysiological
studies using lampreys and decerebrate cats have greatly
contributed to elucidating locomotor mechanisms in animals
[11–14]. Various neural network models have been developed
that represent gait patterns in terms of the phase relationship
between the limb movements [15–19]. However, it is difficult
to fully analyze locomotion mechanisms solely in terms of
the nervous system because locomotion is a well-organized
motion generated through dynamic interactions among the
body, the nervous system, and the environment. In addition
to analyzing the nervous system, it is crucial to elucidate the
inherent dynamic characteristics of the body. Studies of the
nervous and musculoskeletal systems must complement each
other in order to clarify locomotion mechanisms.

To investigate the dynamic characteristics of the body
mechanical system and the functional roles of the nervous
system, various simple models have recently been developed
by extracting the fundamentals of locomotion dynamics for
humans [20–28] and animals [29–35]. In the present study
we constructed a simple quadruped model by employing a

body mechanical model for the musculoskeletal system and
an oscillator network model for the nervous system to emulate
dynamic locomotion of quadrupeds. We performed numerical
simulations and examined the dynamic characteristics of
quadrupedal locomotion. We particularly focused on the effect
of locomotion speed and waist joint stiffness on gait patterns.
The simulation results reveal that the quadruped model creates
various gait patterns through dynamic interactions among the
body dynamics, the oscillator dynamics, and the environment.
They also show that gait transitions occur due to changes
in the locomotion speed and the waist joint stiffness of
the quadruped. In addition, gait transitions in the model
exhibit a hysteresis similar to that observed in humans and
animals. We investigated the dynamic characteristics of this
hysteresis.

II. METHODS

A. Body mechanical model

Figure 1 shows the body mechanical model of our
quadruped model, which consists of two rigid bodies and
four limbs. Each limb consists of two rigid links connected
by pitch joints. The two rigid bodies are connected to each
other by a roll joint (waist joint). Limb joint movements are
actively generated by motor commands, whereas the waist
joint moves passively through an inherent torsional spring
and damper system. Ankles are neglected and no torque is
generated between the limb tips and the ground.

The limbs are enumerated limbs 1 to 4, and the limb joints
are numbered joints 1 and 2. To describe the configuration of
this model, we describe the position of the center of mass of the
front body by x1, x2, and x3, and the Euler angles that express
the posture of the front body by θ1, θ2, and θ3. We denote the
rotation angle of joint j of limb i by θ i

j (i = 1, . . . ,4, j = 1,2)
and the waist joint angle by θw.
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FIG. 1. (Color online) Body mechanical model of quadruped
model consisting of two bodies and four limbs.

For the state variable q = [ xi θi θw θ
j

k ]T ∈ R15 (i = 1,2,3,
j = 1, . . . ,4, k = 1,2), the equation of motion of this body
mechanical model is expressed by Lagrangian equations as

K(q)q̈ + h(q,q̇) = ν(q) + u(q,q̇) + λ(q,q̇), (1)

where K(q) ∈R15×15 is the inertia matrix, h(q,q̇) ∈ R15 is the
nonlinear term that includes Coriolis and centrifugal forces,
ν(q) ∈ R15 is the gravity term, u(q,q̇) ∈ R15 is the joint torque
term, and λ(q,q̇) ∈ R15 is the reaction force from the ground
(see Appendix). We used viscoelastic elements to model the
contact between the limb tips and the ground. The limb tips
rarely slip since we employed large values for the viscoelastic
parameters. We performed forward dynamic simulations by
solving the equation of motion using the fourth-order Runge–
Kutta method with a step size of 0.1 ms. Table I shows the
physical parameters of the quadruped model; the two bodies
had the same parameter values as each other, and the four
limbs also had the same parameter values as each other.

B. Oscillator network model

In humans and animals, motor commands are generated by
integrating input from higher centers and afferent feedback in
the spinal cord. These commands produce muscle activity that
moves the skeletal system. Physiological studies suggest that
central pattern generators (CPGs) in the spinal cord strongly
contribute to rhythmic limb movement such as locomotion
[11,13,14]. The organization of CPGs remains unclear. Various
CPG models have been proposed, such as the half-center
model and the unit burst generator model [36,37]. However,
recent neurophysiological findings suggest that CPGs consist
of hierarchical networks that include rhythm generator (RG)

TABLE I. Physical parameters of the quadruped model

Link Parameter Value

Body Mass [kg] 1.0
Length [cm] 10.0
Width [cm] 10.0

Upper limb Mass [kg] 0.1
Length [cm] 8.0

Lower limb Mass [kg] 0.1
Length [cm] 8.0

Tactile sensor Tactile sensor

Tactile sensor Tactile sensor

Limb 1 Limb 2

Limb 3
oscillator

Limb 4
oscillator

oscillator oscillator

φ1 φ2

φ3 φ4

Δ13 Δ24

Δ12

Δ34
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θ 3

θ 2

θ 4

Limb 1 Limb 2

Limb 3 Limb 4

Walking direction

Δ14 Δ23

1,2

1,2

1,2

1,2
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FIG. 2. (Color online) Oscillator network model with four oscil-
lators. Solid blue arrows indicate interactions among the oscillators
based on the phase relationship �ij . The oscillator phases are
modulated by tactile sensor information (dotted green arrows). The
oscillator phases determine the limb joint kinematics (dashed black
arrows).

and pattern formation (PF) networks [38–41]. The RG network
generates the basic rhythm and modifies it by producing phase
shifts and rhythm resetting in response to sensory afferents
and perturbations (phase resetting). The PF network shapes
the rhythm into spatiotemporal patterns of muscle activation.
CPGs control the locomotor rhythm in the RG network and
the muscle activation pattern in the PF network independently.

In this paper we constructed an oscillator network model us-
ing four oscillators based on a two-layer hierarchical network
model (Fig. 2). In this model the RG model produces rhythm
information for locomotor behavior and regulates it in response
to tactile sensory information based on a phase resetting
mechanism. The PF model generates motor commands based
on the rhythm information from the RG model to produce the
limb movements. The following sections explain the details of
the model.

1. Rhythm generator model

The RG model produces rhythm information for the
locomotor behavior through interactions among the body
mechanical system, the oscillator network system, and the
environment. For the RG model, we used four simple phase
oscillators (limb 1 . . . 4 oscillators), each of which generates
a basic rhythm and phase information for the corresponding
limb. We defined φi (i = 1, . . . ,4) as the phase of the limb i

oscillator (0 � φi � 2π ) and employed the following phase
dynamics:

φ̇i = ω + g1i + g2i , i = 1, . . . ,4, (2)

where ω is the basic oscillator frequency, which has the same
value for all four oscillators, g1i (i = 1, . . . ,4) is the function
for the gait pattern (see Sec. II B 3), and g2i (i = 1, . . . ,4) is the
function arising from the phase and rhythm modulation based
on phase resetting in response to tactile sensory information
(see Sec. II B 4).
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FIG. 3. (Color online) Limb joint kinematics composed of swing
and stance phases, which were determined from the length and
orientation of the limb axis. The kinematics changes from the swing
to stance phase when the limb tip contacts the ground. When the limb
tip reaches the PEP, it moves into swing phase.

2. Pattern formation model

The PF model generates motor commands based on the
oscillator phase φi from the RG model to produce limb
movement. Recent neurophysiological studies have revealed
that spinocerebellar neurons receive sensory signals from
proprioceptors and cutaneous receptors and encode the global
parameters of the limb kinematics (namely, the length and
orientation of the limb axis, which represents the position of
the foot relative to the hip) [42–44]. In this study we used
the PF model to generate motor commands to determine these
global parameters of the limb kinematics.

Human and animal locomotion involves moving the center
of mass forward without falling over. To achieve this, the
swing limb is advanced. When the swing limb touches the
ground, it supports the body and generates a propulsive force
from the ground. For simplicity, in our model we used limb
kinematics composed of swing and stance phases in the pitch
plane relative to the body, which are determined by the length
and orientation of the limb axis (Fig. 3). During the swing
phase, the limb tip follows a simple closed curve that includes
the anterior extreme position (AEP) and the posterior extreme
position (PEP). This curve starts from the PEP and continues
until the limb tip touches the ground. During the stance phase,
the limb tip traces out a straight line from the landing position
(LP) to the PEP. During this phase, the limb tip moves in the
opposite direction to the body. The body travels in the walking
direction while the limb tips are in contact with the ground.

For this limb movement, we used D to denote the distance
between the AEP and the PEP. We defined the swing and stance
phase durations as Tsw and Tst, respectively, for the case when
the limb tip contacts the ground at the AEP (LP = AEP). The
duty factor β (i.e., the ratio between the stance phase and the
step cycle duration), the basic frequency ω in (2), the stride
length S, and the locomotion speed v are then respectively
given by

β = Tst

Tsw + Tst

ω = 2π

Tsw + Tst

S = Tsw + Tst

Tst
D

v = D

Tst
. (3)

These values are satisfied regardless of the gait pattern. We
used the same values of these parameters for the limbs, which
allows the quadruped model to walk in a straight line and
produce a single periodic gait. In the present study we used
D = 5.6 cm and Tsw = 0.1 s, and we varied the locomotion
speed v by changing the stance phase duration Tst in the same
manner as humans and animals [45,46].

These two trajectories of the limb tip are given as functions
of the corresponding oscillator phase, where we used φi = 0
(= 2π ) at the PEP and φi = φAEP[= 2π (1 − β)] at the AEP.
Consequently, the desired joint kinematics θ i∗

j (i = 1, . . . ,4,
j = 1,2) for joint j of limb i is given as a function of
the phase φi of the limb i oscillator and each limb joint is
controlled by the joint torque based on proportional-derivative
(PD) feedback control to produce the desired kinematics by

ui
j = −κi

j

(
θ i
j − θ i∗

j (φi)
) − σ i

j θ̇
i
j , i = 1, . . . ,4,j = 1,2, (4)

where ui
j (i = 1, . . . ,4, j = 1,2) is the torque at joint j of limb

i and κi
j and σ i

j (i = 1, . . . ,4, j = 1,2) are the gain constants.

3. Gait pattern

Since the limb kinematics is produced by the corresponding
oscillator phase, the gait pattern is determined by the phase
difference between the oscillators, which is given by the matrix
�ij (0 � �ij � 2π ) as follows:

�ij = φi − φj , i,j = 1, . . . ,4. (5)

For the phase difference, �ij = −�ji , �ij = �ik + �kj , and
�ii = 0 (i,j,k = 1, . . . ,4) are satisfied, and the gait pattern is
determined by three state variables, such as [ �12 �13 �34 ].
For example, [ �12 �13 �34 ] = [ π π/2 π ] is satisfied for the
walk pattern, in which the four limbs are not synchronized,
[ �12 �13 �34 ] = [ π π π ] is satisfied for the trot pattern,
in which the right and left limbs move out of phase and a
forelimb and the contralateral hindlimb move in phase, and
[ �12 �13 �34 ] = [ π 0 π ] is satisfied for the pace pattern,
in which the right and left limbs move out of phase and the
ipsilateral limbs move in phase (Fig. 4).

Function g1i in the phase dynamics (2) manipulates the
phase difference between the oscillators for the gait pattern. It
is given by

g1i = −
4∑

j=1

Kij sin
(
φi − φj − �∗

ij

)
, i = 1, . . . ,4, (6)

where �∗
ij is the desired phase difference and Kij (i,j =

1, . . . ,4) is the gain constant (Kij � 0). This type of function is
widely employed for interactions in oscillator network systems
[19,47–55]. When a large value is used for Kij , φi − φj = �∗

ij

(�ij = �∗
ij ) is satisfied. The solid blue arrows in Fig. 2 indicate

these interactions among the oscillators.
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FIG. 4. (Color online) Footprint diagrams for walk, trot, and pace
patterns in which the right and left limbs move out of phase [red:
forelimbs (limbs 1 and 2); blue: hindlimbs (limbs 3 and 4)].

4. Phase resetting

The CPGs can produce oscillatory behaviors even in
the absence of rhythmic input and proprioceptive feedback.
However, they have to employ sensory feedback to produce
adaptive and effective locomotor behavior. Physiological
findings suggest that the locomotor rhythm generated by the
CPGs is modulated by phase resetting in response to sensory
afferent or perturbations [39,40,56,57]. The functional roles
of phase resetting in the generation of adaptive walking have
been investigated using neuromusculoskeletal models [21,58].
To create adaptive locomotor behavior of our quadruped model
through dynamic interactions among the body mechanical
system, the oscillator network system, and the environment, we
modulated the locomotor phase and rhythm by phase resetting
in response to tactile sensory information.

Function g2i in (2) corresponds to this modulation due to
phase resetting. When the tip of limb i lands on the ground,
the phase φi of the limb i oscillator is reset to φAEP from
φi

land at the landing (i = 1, . . . ,4). Therefore, function g2i is
written as

g2i = (
φAEP − φi

land

)
δ
(
t − t iland

)
, i = 1, . . . ,4 (7)

where t iland is the time when the tip of limb i contacts the ground
(i = 1, . . . ,4) and δ(·) denotes Dirac’s δ function. Note that
tactile sensor signals not only modulate the locomotion phase
and rhythm, but also change the limb movements from the
swing to the stance phase, as described in Sec. II B 2.

C. Waist joint stiffness

In our model the waist joint moves passively based on a
torsional spring and damper system (unlike the limb joints that
actively move in response to motor commands). We denote
the spring constant as κw and the damping constant as σw

(see Appendix). In animal locomotion, the gait transition is

affected by not only locomotion speed but also by physical
conditions (e.g., carrying a weight) [10]. In this study, in
addition to the walking speed, we examined the role of the
waist joint stiffness on the locomotion of our quadruped
model. We changed constants κw and σw using parameter f as
follows:

κw = κ0(2πf )2, σw = 2κ0ζ0(2πf ), (8)

where κ0 and ζ0 are constants, and we used ζ0 = 1.0 to provide
adequate damping for the change in the waist joint stiffness by
parameter f [59].

D. Constraints for gait pattern

During locomotion, the gait pattern is determined by the
phase relationship between the oscillators, which is produced
by interactions among the oscillators (6) and phase regulation
by phase resetting (7). When we use neither (6) nor (7),
the phase relationship remains that of the initial state and
the gait pattern does not change. When all the elements
of the desired phase relationship �∗

ij are given based on
the desired gait pattern and large gain constants Kij are
used in (6), the quadruped model produces the desired gait
pattern when the gait pattern is stable. In contrast, when
small gain constants Kij are used, the quadruped model may
produce a different gait pattern from the desired one due to
phase regulation by phase resetting (7) through locomotion
dynamics.

We focused on the gait pattern in which the right and left
limbs in each body move out of phase with each other. That is,
we used

�∗
12 = �∗

34 = π (9)

and large gain constants K12, K21, K34, and K43. Therefore,
�12 = �34 = π is generally satisfied, meaning that there
are two constraints on the gait pattern. In contrast, we set
the other gain constants Kij to zero, so that the phase
relationship between the forelimbs and hindlimbs, such as
�13, had no constraint and were solely determined by
the locomotion dynamics. Under these conditions, the gait
pattern is determined by a single phase relationship, such as
�13, which will be obtained through dynamic interactions
among the body mechanical system, the oscillator network
system, and the environment. For example, the quadruped
model performs the walk pattern when �13 = π/2, the trot
pattern when �13 = π , and the pace pattern when �13 = 0
(Fig. 4).

III. RESULTS

A. Emergence of hysteresis in gait transition

1. Hysteresis by varying the waist joint stiffness

To investigate the effects of the waist joint stiffness on
locomotor behavior, we conducted numerical simulations
based on parameter f in (8). Specifically, we slowly increased
the stride length from 0 (standing posture) to S to establish
stable locomotion and used various initial values for the phase
difference �13 with f = 2.0 or f = 3.2. After the quadruped
model established a steady gait pattern, we slowly increased f
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FIG. 5. (Color online) Gait transition induced by varying the waist joint stiffness using the parameter f . (a) The phase difference �13

plotted at foot contact of the right hindlimb. The quadruped model adopted the walk, trot, or pace pattern depending on f and the initial state.
A gait transition occurs between the walk and trot patterns at different joint stiffnesses depending on the direction of the stiffness change. The
pace pattern did not change greatly with f . (b) The footprint diagram for the gait transition from the trot to walk pattern.

from 2.0 or reduced f from 3.2. We examined what gait pattern
(represented by �13) emerges and how the gait pattern changes
with locomotion dynamics.

Figure 5 shows the result obtained when we used the fol-
lowing parameters: Tst = 0.3 s (β = 0.75), and K12 = K21 =
K34 = K43 = 10. Figure 5(a) displays the phase difference
�13 when the right hindlimb contacts the ground. When we
used a low joint stiffness (f = 2.0), the phase difference �13

converges to a value close to 3.1 or 0.6 rad from various initial
values; this implies that trot and pace patterns are respectively
produced. On the other hand, when we used a high joint
stiffness (f = 3.2), the phase difference �13 converges to
a value close to 2.7 or 0.6 rad; this indicates that walk and
pace patterns, respectively, are created. (Although �13 = 2.7
is also close to π , we considered it to indicate the walk pattern
to distinguish it from the trot pattern of �13 = 3.1.)

When we changed the joint stiffness by varying the
parameter f , the pace pattern (�13 = 0.6) did not change
greatly, whereas the phase difference �13 varied from 2.7 to
3.1 rad or from 3.1 to 2.7 rad, indicating that the gait pattern
changes between the walk and trot patterns. In particular,
when we increased the joint stiffness, the trot pattern changed
to the walk pattern around f = 3.0 (Fig. 5(b) shows the
footprint diagram during this gait transition). In contrast to
when the joint stiffness was increased, when we reduced the
joint stiffness, the walk pattern changed to the trot pattern
at about f = 2.3. These results reveal that the gait transition

between the walk and trot patterns occurs at different joint
stiffnesses depending on the direction of the stiffness change;
that is, the gait pattern transition exhibits hysteresis.

2. Hysteresis by varying the walking speed

In addition to varying the waist joint stiffness, we investi-
gated the effects of varying the walking speed on quadrupedal
locomotion dynamics by changing the duty factor β (stance
phase duration Tst). We used various initial values for the
phase difference �13 with β = 0.745 or β = 0.756. After the
quadruped model established a steady gait pattern, we slowly
increased β from 0.745 or reduced β from 0.756.

Figure 6 shows the result obtained for f = 2.6. At a high
speed (β = 0.745), the phase difference �13 converges to
a value close to 3.1 or 0.6 rad from various initial values;
this implies that the trot and pace patterns are respectively
established. On the other hand, for a low speed (β = 0.756),
the phase difference �13 converges to a value close to 2.7
or 0.6 rad, indicating that the walk and pace patterns are
respectively generated. When we changed the walking speed
using the duty factor β, the pace pattern (�13 = 0.6) did not
change greatly, whereas the phase difference �13 varied from
2.7 to 3.1 rad or from 3.1 to 2.7 rad, implying that the gait
pattern changes between the walk and trot patterns. In addition,
the gait transition between the walk and trot patterns occurs
at different walking speeds depending on the direction of
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FIG. 6. (Color online) Gait transition induced by changing the
walking speed using the duty factor β. This shows the phase
relationship between the right forelimb and the right hindlimb �13,
plotted at the foot contact of the right hindlimb, where the gait
transition occurs between the walk and trot patterns at different
walking speeds depending on the direction of the speed change.

the speed change; in other words, the gait pattern exhibits
hysteresis, similar to when the waist joint stiffness is varied.

B. Stability characteristics of the hysteresis

The hysteresis in the gait transition between the walk and
trot patterns obtained in the previous sections suggests the
coexistence of different gait patterns over a range of waist
joint stiffnesses and walking speeds. That is, some conditions
give rise to more than one attractor. To examine this, we
investigated the dynamic characteristics in the hysteresis in
the gait transition between the walk and trot patterns when the
waist joint stiffness was varied.

Since the gait pattern was determined by one state variable,
such as �13, as explained in Sec. II D, stability analysis
related to �13 reveals the existence of attractors. Therefore,
we used various values of the parameter f and obtained a
one-dimensional first return map of the phase difference �13

for each f by plotting the relationship between the phase
difference �13n for the nth step and the phase difference
�13n+1 for the next step during locomotion [54,60–62]. We can
determine possible gait patterns and their stabilities from the
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FIG. 7. (Color online) Stability characteristics in the gait patterns. (a) Return maps of the phase difference �13 for various values of the
parameter f by plotting the relationship between phase difference �13n for the nth step and phase difference �13n+1 for the next step during
locomotion. Solid and open dots indicate stable and unstable gait patterns, respectively. (b) Stable and unstable gait patterns investigated by
the return maps.
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intersection of the return map and the diagonal line (�13n+1 =
�13n). From the obtained return maps, we examined the
stability relationship between the gait patterns and the waist
joint stiffness to investigate the hysteresis mechanism.

Figure 7(a) shows return maps for several values of f . When
f = 2.3, the return map shows that the trot pattern is the only
attractor in this range of the phase difference �13. However,
when f = 2.6, there are two stable gait patterns (trot and walk
patterns) and one unstable gait pattern between the stable gait
patterns. When f = 2.95, the trot pattern disappears due to
the loss of the intersections and the walk pattern is the only
attractor.

Figure 7(b) shows the stability characteristics obtained from
the stable and unstable gait patterns investigated by the return
maps. The trot pattern is stable from f = 2.0 to 2.92 and the
walk pattern is stable from f = 2.33 to 3.2. The trot and walk
patterns are connected by the unstable gait pattern. The arrows
indicate jumps in the waist joint stiffness, which give rise to
the hysteresis (jump phenomenon) in the gait pattern. These
stability characteristics are also observed when the walking
speed is varied.

C. Robustness of the hysteresis for model parameters

We investigated if the hysteresis in the gait transition
obtained in the previous sections is specific to the selected
model parameters. Specifically, since the mass and size of
the bodies are important factors in generating the locomotor
behavior, we changed the mass, length, or width of the front
and rear bodies and examined if the hysteresis in the gait
transition appears and what changes are induced by varying
these parameters. Similarly to Sec. III A 1, we changed the
waist joint stiffness based on parameter f and investigated
how the phase difference �13 varies.

Figures 8(a)–8(c) show the results obtained when the
mass, length, and width of the front and rear bodies were
varied, respectively. Although these changes in the physical
parameters alter the waist joint stiffness that induces the gait
transition between the walk and trot patterns, hysteresis in the
gait transition occurs similarly to the previous sections.

IV. DISCUSSION

Our quadruped model consists of a body mechanical
system and an oscillator network system. These systems
dynamically interact with each other; the oscillator phases
in the oscillator network system produce the command
signals to create the limb movements and the foot-contact
events through the body dynamics modulate the oscillator
phases. Physiological studies have revealed that spinal cats
create locomotor behaviors on treadmill and their gait pattern
changes when the treadmill speed is altered [13,63]. Evidently,
the tactile sensory information between their feet and the
treadmill belt influences the locomotor phase and rhythm
generated by the CPGs [64]. Our simulation results show
that a simple dynamic model with interactions among the
body mechanical system, the oscillator network system,
and the environment based on physiological findings can
generate various gait patterns and a gait pattern transition with
hysteresis, similar to that observed in animal locomotion.

The gait pattern during locomotion is determined by the
phase relationship between the oscillators, which is produced
by interactions among the oscillators (6) and phase regulation
by phase resetting (7). When we do not use phase resetting,
the phase differences �12 and �34 converge to π due to the
interactions among the oscillators. However, all the values of
the phase difference �13 are neutral and the phase difference
�13 depends only on the initial values of the oscillator
phases; it does not depend on the body mechanical system.
In addition to this stability structure of the oscillator system,
when we incorporated phase resetting, the phase difference
�13 converged to some equilibrium points related to the
gait patterns through interactions among the body mechanical
system, the oscillator network system, and the environment. In
addition, changing the waist joint stiffness and the locomotion
speed altered the equilibrium points of the walk and trot
patterns and their stabilities.

Our results reveal that the walk pattern is generated at low
speeds and the trot pattern is produced at high speeds, which
is similar to animal locomotion (Fig. 6). That is, the four
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FIG. 8. (Color online) Effects of changing the physical parame-
ters of the quadruped model on the hysteresis in the gait transition
induced by changing the waist joint stiffness f . The mass (a), length
(b), and width (c) of the front and rear bodies were varied.
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limbs are not synchronized at low speeds and two limbs are
synchronized at high speeds. Although we used constraints for
the phase relationship between the right and left limbs, there
were insufficient constraints to fully determine the gait pattern;
the gait patterns obtained were generated through the dynamic
interactions. Thus the gait patterns are dynamically appropriate
for each walking speed. In contrast to the trot and walk patterns,
the pace pattern did not change when the physical conditions
were varied, implying that it is more stable than the walk and
trot patterns. To change the gait pattern from the pace pattern,
larger factors for the phase dynamics are required.

Our simulation results reveal that increasing (reducing) the
waist joint stiffness and reducing (increasing) the walking
speed have similar effects on the gait pattern (Figs. 5
and 6). In addition, changing the physical parameters, such as
the mass and the length, alters the waist joint stiffness at which
a gait transition occurs (Fig. 8). These results imply that since
the joint stiffness and the walking speed respectively influence
the natural frequency of the body mechanical system and the
frequency of the periodic force induced by the interaction
between the feet and the ground, the locomotion dynamics
will have similar stability characteristics in relation to changes
in these two parameters.

Unlike the walking speed, there is currently no clear
experimental evidence showing that gait transitions can be
induced by changing the waist joint stiffness in animals.
However, the joint stiffness must play an important role in
generating locomotor behavior in which coactivation of an-
tagonist muscles affects the joint stiffness [65,66]. In addition
to controlling the locomotor phase and rhythm, muscle tone
control is important for locomotion since it helps maintain
the posture during locomotion [12]. Our results demonstrate
that waist joint stiffness plays a similar role in generating
various gait patterns and in causing gait pattern transition as
the walking speed; this provides meaningful biological insight
from the perspective of dynamics.

Hysteresis and jump phenomena are typical characteristics
of nonlinear dynamic systems, as observed in the periodically
forced Duffing equation [67]. To better understand transition
mechanisms in locomotion dynamics, more sophisticated
mathematical models should be constructed and experimental
investigations using animals and biologically inspired robots
in the real world should be performed in the future.
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APPENDIX: EQUATION OF MOTION OF BODY
MECHANICAL SYSTEM

Here we derive the governing equations for the body
mechanical system of our quadruped model. We first derive
the equation of motion by assuming that each joint has three
rotational degrees of freedom.

To derive the equations, we introduce the following co-
ordinate axes: {a0} = {a01 a02 a03} is fixed to the ground.

{aFB} = {aFB1 aFB2 aFB3} and {aRB} = {aRB1 aRB2 aRB3} are
respectively fixed to the front and rear bodies such that the
origin of {aFB} is at the center of mass of the front body and the
origin of {aRB} is at the waist joint. {ai

UL} = {ai
UL1 ai

UL2 ai
UL3}

and {ai
LL} = {ai

LL1 ai
LL2 ai

LL3} are fixed in the upper and lower
links of limb i (i = 1, . . . ,4), whose origins are at joints 1
and 2 of limb i, respectively. For these coordinate axes, axes
denoted by the suffix 1 are in the nominal walking direction,
axes with the suffix 2 lie in the lateral direction, and axes with
the suffix 3 are vertical when the quadruped model stands with
straight limbs.

We introduce the following distance vectors in these
coordinate axes: rFB from the center of mass of the front body
to the waist joint and ri

FB from the center of mass of the front
body to joint 1 of limb i expressed in {aFB} (i = 1,2); ri

RB
from the waist joint to joint 1 of limb i and lRB from the waist
joint to the center of mass of the rear body expressed in {aRB}
(i = 3,4); ri

UL from joint 1 to joint 2 and liUL from joint 1 to
the center of mass of the upper link of limb i expressed in
{ai

UL} (i = 1, . . . ,4); ri
LL from joint 2 to the limb tip and liLL

from joint 2 to the center of mass of the lower link of limb i

expressed in {ai
LL} (i = 1, . . . ,4).

To describe the configuration of the quadruped model, we
define the following state vectors in terms of the coordinate
axes. r0 = [ x1 x2 x3 ]T is the position vector of the center of
mass of the front body in {a0}. θFB = [ θ1 θ2 θ3 ]T are the Euler
angles that express the posture of the front body in {aFB}.
θRB,FB = [ θRB,FB1 θRB,FB2 θRB,FB3 ]T are the Euler angles that
indicate the orientations of {aRB} relative to {aFB}. θ i

UL,FB =
[ θ i

UL,FB1 θ i
UL,FB2 θ i

UL,FB3 ]T are the Euler angles that express
the orientations of {ai

UL} relative to {aFB} (i = 1,2). θ i
UL,RB =

[ θ i
UL,RB1 θ i

UL,RB2 θ i
UL,RB3 ]T are the Euler angles that describe

the orientations of {ai
UL} relative to {aRB} (i = 3,4). θ i

LL,UL =
[ θ i

LL,UL1 θ i
LL,UL2 θ i

LL,UL3 ]T are the Euler angles that indicate the
orientations of {ai

LL} relative to {ai
UL} (i = 1, . . . ,4). ωFB is the

angular velocity vector of {aFB} relative to {a0} expressed in
{aFB}. ωRB,FB is the angular velocity vector of {aRB} relative
to {aFB} expressed in {aRB}. ωi

UL,FB is the angular velocity
vector of {ai

UL} relative to {aFB} expressed in {ai
UL} (i = 1,2).

ωi
UL,RB is the angular velocity vector of {ai

UL} relative to
{aRB} expressed in {ai

UL} (i = 3,4). ωi
LL,UL is the angular

velocity vector of {ai
LL} relative to {ai

UL} expressed in {ai
LL}

(i = 1, . . . ,4).
Although we have introduced the Euler angles such that

each joint has three rotational degrees of freedom, these Euler
angles have the following relationship with the actual joint an-
gles: θRB,FB1 = θw, θ i

UL,FB2 = θ i
1 (i = 1,2), θ i

UL,RB2 = θ i
1 (i =

3,4), and θ i
LL,UL2 = θ i

2 (i = 1, . . . ,4). Note that the other Euler
angles of the joints are constrained after deriving the equations.
We employ 3-1-2 Euler angles and introduce coordinate
transform matrices Ai,j from {aj } to {ai} (i,j = 0,FB,RB)
and Ai

j,k from {ak} to {ai
j } or from {ai

k} to {ai
j } (i = 1, . . . ,4,

j,k = 0,FB,RB,UL,LL).
We denote state variables � ∈ R33 and � ∈ R33 by

� = [
rT

0 θT
FB θ1T

UL,FB θ1T
LL,UL θ2T

UL,FB θ2T
LL,UL

θT
RB,FB θ3T

UL,RB θ3T
LL,UL θ4T

UL,RB θ4T
LL,UL

]T
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� = [
ṙT

0 ωT
FB ω1T

UL,FB ω1T
LL,UL ω2T

UL,FB ω2T
LL,UL

ωT
RB,FB ω3T

UL,RB ω3T
LL,UL ω4T

UL,RB ω4T
LL,UL

]T
. (A1)

These variables have the relationship

� = B�̇ (A2)

where

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

B(θFB)

B1
L

B2
L

B(θRB,FB)

B3
L

B4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R33×33

Bi
L =

[
B(θ i

UL,FB)

B(θ i
LL,UL)

]
∈ R6×6, i = 1,2

Bi
L =

[
B(θ i

UL,RB)
B(θ i

LL,UL)

]
∈ R6×6, i = 3,4

where I is a 3 × 3 unit matrix and for Euler angles ψ =
[ ψ1 ψ2 ψ3 ]T, matrix B(ψ) is given by

B(ψ) =

⎡
⎢⎢⎣

cos ψ2 0 − cos ψ1 sin ψ2

0 1 sin ψ1

sin ψ2 0 cos ψ1 cos ψ2

⎤
⎥⎥⎦ .

The kinetic energy ε of this system is given by

2ε = �THT(LTML + J )H� (A3)

where

H =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

I

H1
L,FB H1

L,L

H2
L,FB H2

L,L

ARB,FB I

H3
L,FB H3

L,RB H3
L,L

H4
L,FB H3

L,RB H4
L,L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R33×33

Hi
L,L =

[
I

Ai
LL,UL I

]
∈ R6×6, i = 1, . . . ,4

Hi
L,FB =

[
Ai

UL,FB

Ai
LL,FB

]
∈ R6×3, i = 1, . . . ,4

Hi
L,RB =

[
Ai

UL,RB

Ai
LL,RB

]
∈ R6×3, i = 3,4

L = L1 + L2

L1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AFB,0 O

L1
L,0 L1

L,FB L1
L,L

L2
L,0 L2

L,FB L2
L,L

ARB,0 ARB,FBr̃FB O

L3
L,0 L3

L,FB L3
L,RB L3

L,L

L4
L,0 L4

L,FB L3
L,RB L4

L,L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R30×33

Li
L,0 =

[
Ai

UL,0

Ai
LL,0

]
∈ R6×3, i = 1, . . . ,4

Li
L,L =

[
O

Ai
LL,ULr̃ i

UL O

]
∈ R6×6, i = 1, . . . ,4

Li
L,FB =

[
Ai

UL,FBr̃ i
FB

Ai
LL,FBr̃ i

FB

]
∈ R6×3, i = 1,2

Li
L,FB =

[
Ai

UL,FBr̃FB

Ai
LL,FBr̃FB

]
∈ R6×3, i = 3,4

Li
L,RB =

[
Ai

UL,RBr̃ i
RB

Ai
LL,RBr̃ i

RB

]
∈ R6×3, i = 3,4

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
O

O

R1
L

R2
L

l̃RB

R3
L

R4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R30×33

Ri
L =

[
l̃iUL

l̃iLL

]
∈ R6×6, i = 1, . . . ,4

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mFBI

M1
L

M2
L

mRBI

M3
L

M4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R30×30

Mi
L =

[
mi

ULI

mi
LLI

]
∈ R6×6, i = 1, . . . ,4
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

JFB

J 1
L

J 2
L

JRB

J 3
L

J 4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R33×33

J i
L =

[
J i

UL

J i
LL

]
∈ R6×6, i = 1, . . . ,4

where O is a 3 × 3 zero matrix; O is an appropriately sized
zero matrix; mFB, mRB, mi

UL, and mi
LL are the masses of the

front body, the rear body, the upper link, and the lower link
of limb i (i = 1, . . . ,4); JFB, JRB, J i

UL, and J i
LL are the inertia

matrices about the center of mass for the front body, the rear
body, the upper link, and the lower link of limb i (i = 1, . . . ,4);
and for vector h = [ h1 h2 h3 ]T, matrix h̃ is expressed as

h̃ =

⎡
⎢⎣

0 h3 −h2

−h3 0 h1

h2 −h1 0

⎤
⎥⎦ .

The equation of motion is derived using the Lagrangian
equation as

L̇ + WL + VP = G + U + �, (A4)

where L ∈ R33 is the generalized momentum vector of this
system, which is given by L = HT(LTML + J )H�, and

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

ω̃T
FB

W1T
L

W2T
L

ω̃T
RB

W3T
L

W4T
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R33×33

W i
L =

[
ω̃i

UL

ω̃i
LL

]
∈ R6×6, i = 1, . . . ,4

[
ṙT

0 ωT
FB ω1T

UL ω1T
LL ω2T

UL ω2T
LL ωT

RB ω3T
UL ω3T

LL ω4T
UL ω4T

LL

]T

= H� ∈ R33

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

ṽT
FB

V1T
L

V2T
L

ṽT
RB

V3T
L

V4T
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R33×30

V i
L =

[
ṽi

UL

ṽi
LL

]
∈ R6×6, i = 1, . . . ,4

[
vT

FB v1T
UL v1T

LL v2T
UL v2T

LL vT
RB v3T

UL v3T
LL v4T

UL v4T
LL

]T

= L1H� ∈ R30

P = ĤTMLH� ∈ R30, H =
[

I

Ĥ

]

and G ∈ R33 is the gravity term, U ∈ R33 is the joint torque
term, and � ∈ R33 is the ground reaction force term, which
are derived below. The gravity term G is given by

G = HTLTMFg (A5)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AFB,0

F1
L

F2
L

ARB,0

F3
L

F4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R30×3

F i
L =

[
Ai

UL,0

Ai
LL,0

]
∈ R6×3, i = 1, . . . ,4

g = [ 0 0 − g0 ]T

and g0 is the acceleration due to gravity. The joint torque term
U is expressed by

U = [ 6︷ ︸︸ ︷
0 · · · 0 u1T

UL u1T
LL u2T

UL u2T
LL uT

RB u3T
UL u3T

LL u4T
UL u4T

LL

]T

where uRB = [ uRB1 uRB2 uRB3 ]T, ui
UL = [ ui

UL1 ui
UL2 ui

UL3 ]T,
and ui

LL = [ ui
LL1 ui

LL2 ui
LL3 ]T (i = 1, . . . ,4) have the fol-

lowing relation with the actual joint torques: uRB1 = uw,
ui

UL1 = ui
1, ui

LL2 = ui
2 (i = 1, . . . ,4), and the other torques

are set to 0, where uw, ui
1, and ui

2 (i = 1, . . . ,4) are the torques
at the waist joint and joints 1 and 2 of limb i, respectively.
In particular, since the waist joint moves passively based on a
torsional spring and damper system, uw is given by

uw = −κwθw − σwθ̇w, (A6)

where κw and σw are the spring and damping constants,
respectively. The ground reaction force term � is derived as
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follows. First, the position vector ri
TL = [ ri

TL1 ri
TL2 ri

TL3 ]T of
the tip of limb i (i = 1, . . . ,4) is expressed in terms of {a0} as

ri
TL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r0 + AT
FB,0r

i
FB + AiT

UL,0r
i
UL + AiT

LL,0r
i
LL

i = 1,2

r0 + AT
FB,0rFB + AT

RB,0r
i
RB + AiT

UL,0r
i
UL

+AiT
LL,0r

i
LL i = 3,4

. (A7)

When the limb tip is in contact with the ground, it is constrained
by the ground and experiences a reaction force from the
ground. We model the ground reaction force λi = [ λi

1 λi
2 λi

3 ]T

of limb i (i = 1, . . . ,4) expressed in {a0} using viscoelastic
elements given by

λi =
{−KTL(ri

TL − ri∗
TL) − DTLṙ i

TL ri
TL3 � 0

0 ri
TL3 > 0

i = 1, . . . ,4, (A8)

where ri∗
TL is the position vector on which the tip of limb i

is constrained (i = 1, . . . ,4), and KTL = diag(κTL1,κTL2,κTL3)

and DTL = diag(σTL1,σTL2,σTL3) are viscoelastic parameters.
The ground reaction force term � is then given by

� = (ETB−1)T�, (A9)

where

ET = ∂RTL

∂�
∈ R12×33

RTL = [
r1T

TL r2T
TL r3T

TL r4T
TL

]T ∈ R12

� = [
λ1T λ2T λ3T λ4T

]T ∈ R12.

Finally, redundant angles are contracted since each joint
of our model has only one degree of freedom. We obtain the
equation of motion for our model (1) by setting the redundant
angles (i.e., the Euler angles that are not required to specify
the actual joint angles) to zero and eliminating the rows and
columns of the matrices and the components of the vectors in
the equation of motion (A4) that correspond to these redundant
angles.
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