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We develop a transfer matrix formalism to visualize the framing of discrete piecewise linear curves in three-
dimensional space. Our approach is based on the concept of an intrinsically discrete curve. This enables us to
more effectively describe curves that in the limit where the length of line segments vanishes approach fractal
structures in lieu of continuous curves. We verify that in the case of differentiable curves the continuum limit
of our discrete equation reproduces the generalized Frenet equation. In particular, we draw attention to the
conceptual similarity between inflection points where the curvature vanishes and topologically stable solitons.
As an application we consider folded proteins, their Hausdorff dimension is known to be fractal. We explain
how to employ the orientation of Cβ carbons of amino acids along a protein backbone to introduce a preferred
framing along the backbone. By analyzing the experimentally resolved fold geometries in the Protein Data Bank
we observe that this Cβ framing relates intimately to the discrete Frenet framing. We also explain how inflection
points (a.k.a. soliton centers) can be located in the loops and clarify their distinctive rôle in determining the loop
structure of folded proteins.
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I. INTRODUCTION

The visualization of a three-dimensional discrete framed
curve is an important and widely studied topic in computer
graphics, from the association of ribbons and tubes to the
determination of camera gaze directions along trajectories.
Potential applications range from aircraft and robot kinematics
to stereo reconstruction and virtual reality [1,2].

We are interested in addressing the problem of character-
izing the physical laws that govern protein folding. For this
we develop a technique for framing a general discrete and
piecewise linear curve. Our goal is to combine the geometric
problem of framing with an appropriate physical principle for
frame determination. Ultimately we hope to have an approach,
where instead of purely geometric considerations the frames
along a curve are determined directly from the properties of
an underlying physical system. As a consequence we expect
that our formalism and our results will find wide applicability
well beyond the protein folding problem, where the present
formalism has already found several applications [3–6].

The classical theory of continuous curves in three-
dimensional space employs the Frenet equation [1,2] to
determine a moving coordinate frame along a sufficiently
differentiable space curve. However, if the curve has inflection
points and/or straight segments or if it fails to be at least
3 times continuously differentiable, the Frenet frame becomes
either discontinuous or may not even exist. In such cases
there can be good reasons to consider the option to introduce
an alternative framing such as Bishop’s parallel transport
frame [7], a geodetic reference frame, or some possibly hybrid
variants [1,2].

In this article we derive a discrete version of the Frenet
equation that introduces a framing along an intrinsically
discrete and piecewise linear curve in R3. We develop the
general formalism for the visualization of such a curve without

any underlying assumption that it approaches a continuous
space curve in the limit where the maximum length of its line
segments goes to zero. The continuum limit may as well be
a fractal, with a nontrivial Hausdorff dimension. Thus, unlike
in several approaches that we are aware of, our starting point
is not in a discretization of the continuum Frenet equation.
Instead our approach is intrinsically discrete, and it is based on
the transfer matrix formalism that is widely used for example
in lattice field theories [8]. Indeed, we find it useful to adapt
some notions of lattice gauge theories [8]. For us this provides
a valuable conceptual point of view. Moreover, the transfer
matrix formalism intrinsically incorporates self-similarity and
thus the very concept of line segment length has no role in
our derivations. Consequently, we can effortlessly consider
curves that have fractal continuum limits, while at the same
time ensuring that, if the continuum limit exists as a class C3

space curve, we recover the standard Frenet framing together
with its generalized versions.

As an application we consider folded proteins, for which
the continuum limit is known to be a fractal with Hausdorff
dimension that is very close to three [3]. The locations of
the central Cα carbon atoms along the protein determines a
discrete piecewise linear curve; this is the protein backbone.
We introduce a framing to the backbone by employing the Cβ

carbon atoms of the side chain amino acids that are covalently
bonded to the Cα carbons that define the backbone. The frame
at the location of a given Cα carbon is determined by the
directional vector that connects it with the ensuing Cβ carbon,
together with the directional vector that connects it to the next
Cα carbon along the backbone. By inspecting the framing of all
protein structures in the Protein Data Bank (PDB) [9] we find
that such a Cβ framing relates intimately to the discrete Frenet
framing of the backbone. In particular, we conclude that for a
folded protein the concept of an inflection point acquires an
intrinsic biological interpretation; it coincides with the location
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FIG. 1. (Color online) A curve with inflection point (ball). At each
point the direction of the (Frenet frame) normal vectors is toward the
center of an oscullating circle. There is a discontinuity in the direction
of the normal vectors when we traverse the inflection point. At this
point the radius of the oscullating circle diverges and the normal
vector n becomes abruptly reflected in the oscullating plane from one
side to the other side of the curve. The direction of the ensuing vector
is opposite to the (reflected) normal vector n (see also Fig. 6).

of the center of the loop in a folded protein. Indeed, these
inflection points drive the protein loop geometry, an isolated
inflection point is topologically stable and it cannot be removed
by any local continuous deformation of the curve. We remark
that this kind of topological stability is inherent to solitons such
as the kink-soliton and propose that the concept of solitons is
a profitable one to understand the folding of proteins.

This connection between inflection points and topological
solitons such as the kink can be understood as follows: At an
isolated inflection point of a continuous curve, the curvature
that is a frame-independent geometric characteristic of the
curve vanishes. At such a point the Frenet frame can become
discontinuous (see Fig. 1).

Consequently, a single nondegenerate inflection point
cannot be removed by any local continuous deformation of the
curve. An isolated nondegenerate inflection point can be only
locally and continuously removed in the presence of another
inflection point by deforming the curve so the inflection points
annihilate each other in a saddle-node bifurcation. In particular,
a sole nondegenerate inflection point can be removed only by
translating it away through an end point of the curve that
involves a global deformation of the curve. This kind of
stability enjoyed by an isolated inflection point under local
deformations of the curve is the hallmark of a topological
soliton. Indeed, let us recall the topological kink-soliton in a
quartic double-well potential [10]

ÿ = − d

ds
V (s) = − d

ds

[
m2

2c2
(y2 − c2)2

]

= −2m2

c2
y(y2 − c2)

y(s) = c tanh[m(s − s0)]. (1)

It describes a trajectory that interpolates between the two
minima y = ±c of the potential V (s); see Fig. 2.

V (y)

y
• c +c0

y(s)

s

• c

+c

s0

0

FIG. 2. (Color online) The kink-soliton (right) interpolates be-
tween the two ground states at φ = ±c of the potential (left) as
s → ±∞. It is topologically stable and cannot be removed by any
finite energy deformation.

The center of the soliton is at the point s = s0 where y(s)
vanishes. The influence of this center point to the global
topology of the trajectory cannot be removed by any kind
of continuous local deformation y(s) → y(s) + δy(s), as the
resulting curve continues to retain its characteristic global
property that y → ±c as s → ±∞. Thus the deformed y(s)
necessarily vanishes at least at one point. The goal of the
present paper is to explain how this signature behavior of a
topological soliton can be detected and described in the case of
discrete piecewise linear curves and in particular those curves
that relate to the framing of folded proteins.

II. THE GENERALIZED FRENET FRAME, INFLECTION
POINTS, AND SOLITONS

A. The generalized Frenet frame

We start by describing the continuum Frenet equation and
its generalizations. Let x(s) be a space curve in R3. Its unit
tangent vector

t = 1

||ẋ|| ẋ ≡ 1

||ẋ||
dx(s)

ds

(we assume that ||ẋ|| �= 0) is subject to the Frenet equation
[1,2]

d

ds

⎛
⎜⎝

n

b

t

⎞
⎟⎠ = ||ẋ||

⎛
⎜⎝

0 τ −κ

−τ 0 0

κ 0 0

⎞
⎟⎠

⎛
⎝ n

b
t

⎞
⎠ , (2)

where

b = ẋ × ẍ
||ẋ × ẍ||

is the unit binormal vector and

n = b × t

is the unit normal vector of the curve, and

κ(s) = ||ẋ × ẍ||
||ẋ||3

is the frame independent curvature of x(s) and

τ (s) = (ẋ × ẍ) · .
ẍ

||ẋ × ẍ||2
is the torsion. The three vectors (n,b,t) form the right-handed
orthonormal Frenet frame at each point of the curve.
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FIG. 3. (Color online) The Frenet frame (n,b) and a generic
orthogonal frame (e1,e2) on the normal plane of t, the tangent vector
of the curve.

In the following we shall assume with no loss of generality,
that s ∈ [0,L] measures the proper length along a curve with
total length L in R3 so

||ẋ|| = 1. (3)

Consider a curve with an isolated nondegenerate inflection
point (or, more generally, a straight segment) such as the one
depicted in Fig. 1. At the inflection point s = s0 the Frenet
frame cannot be introduced since κ(s0) vanishes; in the proper
length gauge

κ(s0) = ||ẍ(s0)|| = 0.

Conventionally, see, e.g., Ref. [11], in the presence of inflection
points, the Frenet equation (2) is usually introduced only
piecewise between the inflection points for those values
of s for which κ(s) is nonvanishing. But there are also
alternative approaches that allow for a continuous passage of
the frame through the inflection point (more generally straight
segments). For this we view the Frenet frame as an example
of a general frame, obtained by starting from the observation
that while the tangent vector t(s) for a given curve is unique,
instead of {n(s),b(s)} we may choose an arbitrary orthogonal
basis {e1(s),e2(s)} for the normal planes of the curve that
are perpendicular to t(s), without deforming the curve. This
general frame is related to the Frenet frame by a local SO(2)
frame rotation around the frame-independent tangent vector
t(s) (see Fig. 3),(

n

b

)
→

(
e1

e2

)
=

[
cos η(s) − sin η(s)

sin η(s) cos η(s)

] (
n

b

)
. (4)

The ensuing rotated version of the Frenet equation is

d

ds

⎛
⎜⎝

e1

e2

t

⎞
⎟⎠ =

⎡
⎢⎣

0 (τ − η̇) −κ cos η

−(τ − η̇) 0 −κ sin η

κ cos η κ sin η 0

⎤
⎥⎦

⎛
⎜⎝

e1

e2

t

⎞
⎟⎠. (5)

If we recall the adjoint basis of SO(3) Lie algebra

T 1 =

⎛
⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎠ T 2 =

⎛
⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎠ T 3 =

⎛
⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎠,

where

[T a,T b] = εabcT c,

we find that on τ and κ the SO(2) transformation acts as
follows,

τ → τ − η̇ (6)

κT 2 → κ(T 2 cos η − T 1 sin η) ≡ eηT 3
(κT 2) e−ηT 3

. (7)

If instead of η ≡ 0 that specifies the Frenet frame (Frenet
gauge) we select η(s) so

η(s) =
∫ s

0
τ (s ′)ds ′,

we arrive at Bishop’s parallel transport frame [1,2,7] that
can be defined continuously and unambiguously through
inflection points. We note that (6) and (7) can be interpreted
in terms of a SO(2) gauge multiplet [12]: The change (6) in
τ (s) is identical to the SO(2) � U (1) gauge transformation
of a one-dimensional gauge vector while κ(s) transforms
like a component of a SO(2) scalar doublet. This leads us
to a gauge-invariant quantity, the complex valued Hashimoto
variable [13]

ξ (s) = κ(s) exp

(
i

∫ s

0
τ ds ′

)
. (8)

When we combine (6) with a SO(2) ⊂ SO(3) rotation (7) by
η(s) around the T 3 direction of the SO(3) Lie algebra, the
effect on (8) can be summarized as follows:

ξ (s) → [
κ(s)e−iη(s)] {

exp

[
i

∫ s

0
τ ds ′ + iη(s)

]}
eiη(0) (9)

and thus the Hasimoto variable ξ (s) is manifestly independent
of η(s). (Note, however, that the η(0) dependence remains
as an overall global phase ambiguity that is inherent to (9);
the local gauge invariance becomes eliminated but a global
one remains.) In fact, the Hasimoto variable simply combines
the two real components of the SO(2) scalar doublet into a
single complex valued variable, with modulus that equals the
frame independent (a.k.a., gauge-invariant geometric curva-
ture of the curve. In particular the Frenet frame is like the
widely used “unitary gauge” in the Abelian Higgs model [12].

We find this language of gauge transformations in connec-
tion of frame rotations introduced in Ref. [12] to be intuitively
appealing and beneficial, and we shall use it frequently in the
sequel.

B. Inflection points

We proceed to consider a continuous curve with n inflection
points at s = si ,

s0 = 0 < · · · < si < si+1 < · · · < L = sn+1.

For simplicity, we assume that the inflection points are isolated
and nondegenerate zeros of the curvature

κ(si) = 0.

A generalization to more involved inflection points is straight-
forward. We take the curve to be of class C3. This ensures
that at each segment (si,si+1) the curvature is of class C1.
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Furthermore, since the inflection points are nondegenerate, as
we approach an inflection point the left and right derivatives of
the curvature are nonvanishing and in the limit when s → si

they become equal in magnitude but have an opposite sign,

dκ(s)

ds |s+
i

= −dκ(s)

ds |s−
i

�= 0.

This jump in the derivative of the curvature is the signature
of an inflection point in the Frenet frame. But even though
the curvature κ(s) fails to be continuously differentiable, the
signed curvature

κ̃(s) =
n∑

i=0

(−1)iκ(s)θ (s − si)θ (si+1 − s) (10)

with θ (s) the unit step function

θ (s) =
{

1 s > 0

0 s < 0

is now continuously differentiable for all s ∈ [0,L] and, in
particular,

dκ̃

ds |si

�= 0.

The original Frenet curvature κ(s) and the signed curvature
κ̃(s) are related by a gauge transformation (7) of the Frenet
frame, with η(s) given by the following gauge transformation
(6) of the Frenet torsion

τ (s) → τ (s) − η̇(s) = τ (s) − π
d

ds

n−1∑
i=1

θ (s − si)

= τ (s) − π

n−1∑
i=1

δ(s − si). (11)

This can be immediately verified by comparing the form of
(10) with that of the Hashimoto variable (8) and (9). We may
call this gauge transformed version of the Frenet frame the Z2

Frenet frame, its discrete version will become important to us
when we consider applications to folded proteins.

C. Solitons

For a concrete example of an inflection pint, we take the
plane curve in Fig. 1. For this curve, in the vicinity of the
inflection point the Frenet curvature has clearly a qualitative
form that may be described by the absolute value of the kink-
soliton profile (1),

κ(s) ∼ κ0 |tanh[m(s − s0)]| .
Obviously the derivative of this curvature is discontinuous
with a finite jump at the inflection point I where s = s0. This
discontinuity reflects itself in the abrupt change in the direction
of the (green) normal vector n, as depicted in Fig. 1. The
ensuing signed curvature (10) is qualitatively described by the
kink-soliton (1)

κ̃(s) ∼ κ0 tanh[m(s − s0)] (12)

and it is manifestly continuously differentiable, including the
point s = s0. Now the direction of the corresponding normal

vector is also continuous through the inflection point. This
is because the change in its direction becomes compensated
by the change in the sign of the signed curvature when we
cross the inflection point; see the blue vectors in Fig. 1 and
Fig. 6. The example clearly exhibits the intimate relation
between the concepts of inflection point and topological
soliton.

III. THE DISCRETE FRENET EQUATION

A. The discrete Frenet frame

In the sequel we are primarily interested in an open and
oriented, piecewise linear discrete curve that we describe by a
three-vector r(s) ∈ R3. The parameter s ∈ [0,L] measures the
arc length and L is the total length of the curve. The curve is
determined by its vertices Ci that are located at the positions
ri = (r0, . . . ,rn) with r(si) = ri . The end points of the curve
are at r(0) = r0 and r(L) = rn. The nearest-neighbor vertices
Ci and Ci+1 are connected by the line segments

r(s) = s − si

si+1 − si

ri+1 − s − si+1

si+1 − si

ri

where si < s < si+1. We utilize the Galilean invariance to
translate the base of the curve to the origin in R3 so

r0 = 0.

The remaining global rotational orientation of the curve can
then be fully determined by the choice of r1 and r2.

For each pair of nearest-neighbor vertices ri+1 and ri along
the curve we introduce the unit tangent vector

ti = ri+1 − ri

|ri+1 − ri | . (13)

If all tangent vectors are known, the position of the kth vertex
is given by

rk =
k−1∑
i=0

|ri+1 − ri | · ti . (14)

We now introduce the discrete Frenet frame (DF frame)
at the vertex Ci at ri . This can be done whenever the three
vertices at ri+1, ri , and ri−1 are not located on a common line
so ti and ti−1 are not parallel. This enables us to determine the
unit binormal vector

bi = ti−1 × ti
|ti−1 × ti | (i = 1, . . . ,n − 1) (15)

and the unit normal vector

ni = bi × ti . (16)

The orthogonal triplet (ni ,bi ,ti) constitutes the discrete Frenet
frame (DF frame) for the curve at the position of the vertex ri
for each i = (1, . . . ,n − 1); see Fig. 4.

B. The transfer matrix

We now proceed to derive a discretized version of the Frenet
equation (DF equation) that relates the discrete Frenet frame at
vertex Ci to the discrete Frenet frame at vertex Ci+1 and allows
for the construction of the curve in terms of the appropriate
discrete versions of the curvature κ(s) and torsion τ (s).

061908-4



DISCRETE FRENET FRAME, INFLECTION POINT . . . PHYSICAL REVIEW E 83, 061908 (2011)

FIG. 4. (Color online) A discrete piecewise linear curve is defined
by its vertices Ci and at each vertex there is an orthonormal discrete
Frenet frame (ti ,ni ,bi), provided ti−1 and ti are not parallel.

From general considerations [8] we conclude that the DF
equation should involve a transfer matrix Ri+1,i that maps the
DF frame at the vertex i to the DF frame at the vertex i + 1,⎛

⎜⎝
ni+1

bi+1

ti+1

⎞
⎟⎠ = Ri+1,i

⎛
⎜⎝

ni

bi

ti

⎞
⎟⎠ . (17)

The construction of this transfer matrix then amounts to a
solution of the DF equation:⎛

⎜⎝
nn

bn

tn

⎞
⎟⎠ = Rn,n−1 · Rn−1,n−2 · ... · R2,1

⎛
⎜⎝

n1

b1

t1

⎞
⎟⎠

so once the transfer matrix is known for all i = 1, . . . ,n − 1,
we can use (17) to construct all the Frenet frames for i =
2, . . . ,n and the entire curve r(s) using (14) together with the
fact that the curve is linear in the intervals si−1 < s < si . We
recall that for the initial conditions we need to specify r0 that
we have already chosen to coincide with the origin r0 = 0
and r1 and r2 that remove the degeneracy under global SO(3)
rotations of the curve in R3.

The transfer matrix Ri+1,i is an element of the adjoint
representation of SO(3), and thus we can parametrize it in
terms of Euler angles. We choose the (zxz) angles

R11
i+1,i = − sin ψ sin φ + cos θ cos ψ cos φ |i+1,i

R12
i+1,i = sin θ cos ψ |i+1,i

R13
i+1,i = − sin ψ cos φ − cos θ cos ψ sin φ |i+1,i

R21
i+1,i = − sin θ cos φ |i+1,i

R22
i+1,i = cos θ |i+1,i

R23
i+1,i = sin θ sin φ |i+1,i

R31
i+1,i = cos ψ sin φ + cos θ sin ψ cos φ |i+1,i

R32
i+1,i = sin θ sin ψ |i+1,i

R33
i+1,i = cos ψ cos φ − cos θ sin ψ sin φ |i+1,i . (18)

Here the angular variables have the following ranges: For the
inclination angle θ we take θ ∈ [0,π ] mod(2π ) and for the

two azimuthal angles we choose φ ∈ [−π,π ] mod(2π ) and
ψ ∈ [−π,π ] mod(2π ). Note that since the angular variables
are elements of the transfer matrix that takes the discrete Frenet
frame from the vertex i to the vertex i + 1, they are all to be
interpreted as link variables that are defined on the bonds
connecting the vertices.

From (15) we get the following condition:

bi+1 · ti = 0.

Thus for each bond (i,i + 1)

sin θ sin φ = 0

and we conclude from (13)–(16) that for all i we must have

φi+1,i = 0.

This simplifies the discrete Frenet equation into⎛
⎜⎝

ni+1

bi+1

ti+1

⎞
⎟⎠ =

⎛
⎜⎝

cos ψ cos θ cos ψ sin θ − sin ψ

− sin θ cos θ 0

sin ψ cos θ sin ψ sin θ cos ψ

⎞
⎟⎠

i+1,i

⎛
⎜⎝

ni

bi

ti

⎞
⎟⎠

≡ Ri+1,i

⎛
⎜⎝

ni

bi

ti

⎞
⎟⎠ . (19)

Here

cos ψi+1,i = ti+1 · ti (20)

is the discrete bond angle and

cos θi+1,i = bi+1 · bi (21)

is the discrete torsion angle. Geometrically, the bond an-
gle ψi+1,i measures the angle between ti+1 and ti around
bi+1 on the plane that is determined by the three vertices
(Ci,Ci+1,Ci+2) (Fig. 5). The torsion angle θi+1,i measures
the angle between the two planes that are determined by
the vertices (Ci−1,Ci,Ci+1) and (Ci,Ci+1,Ci+2), respectively
(Fig. 5).

FIG. 5. (Color online) The bond angle ψi+1,i is determined by
the three vertices (Ci−1,Ci,Ci+1). The torsion angle θi+1,i is the angle
between the two planes determined by vertices (Ci−1,Ci,Ci+1) and
(Ci,Ci+1,Ci+2).
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We give these planes an orientation in R3 by extending
the range of the torsion angle from θi+1,i ∈ [0,π ] into θi+1,i ∈
[−π,π ] mod(2π ). This introduces a discrete Z2 symmetry

Z2 : θi+1,i ↔ −θi+1,i (22)

that we find useful in the sequel.
We recall the Rodrigues formula

eαU = I + U sin α + U2(1 − cos α), (23)

where

U = u · T = uaT a

and T a are the SO(3) matrices and u is a unit vector. With
these we can write the transfer matrix as follows:

Ri+1,i = exp{−ψi+1,iT
2} exp{−θi+1,iT

3}

= exp{−αv · T}i+1,i , (24)

where

αi+1,i = 2 arccos

[
1

4
(bi+1 · bi)(ti+1 · ti)

]

and

vi+1,i

= 1

sin α
2

(
− sin

ψ

2
sin

θ

2
, sin

ψ

2
cos

θ

2
, cos

ψ

2
sin

θ

2

)
i+1,i

.

C. Gauge symmetries

Let us consider the effect of the discrete version of the local
SO(2) rotation (4),⎛

⎜⎝
n

b

t

⎞
⎟⎠

i

→ e�iT
3

⎛
⎝ n

b
t

⎞
⎠

i

. (25)

For the covariance of the DF equation under (25) we need

e−θi+1,i T
3 → e�i+1T

3
e−θi+1,i T

3
e−�iT

3
(26)

e−ψi+1,i T
2 → e�i+1T

3
e−ψi+1,i T

2
e−�i+1T

3
. (27)

A direct computation shows that this implies the following
transformation laws

θi+1,i → θi+1,i + �i − �i+1 (28)

ψi+1,iT
2 → ψi+1,i(T

2 cos �i+1 − T 1 sin �i+1). (29)

These are the discrete versions of the transformations of τ and
κ in (6) and (7), respectively.

Explicitly, the gauge transformed transfer matrix is

e�i+1T
3Ri+1,i e−�iT

3≡ R�
i+1,i

R� 11
i+1,i = cos � cos θ� cos ψ + sin � sin θ�

R� 12
i+1,i = cos � sin θ� cos ψ − sin � cos θ�

R� 13
i+1,i = − cos � sin ψ

R� 21
i+1,i = sin � cos θ� cos ψ − cos � sin θ�

R� 22
i+1,i = sin � sin θ� cos ψ + cos � cos θ�

R� 23
i+1,i = − sin � sin ψ

R� 31
i+1,i = cos θ� sin ψ

R�32
i+1,i = sin θ� sin ψ

R�33
i+1,i = cos ψ. (30)

We have here used the notation

� ≡ �i+1 (31)
θ� ≡ θi+1,i + �i

and the corresponding general frame Frenet equation is⎛
⎜⎝

e1

e2

t

⎞
⎟⎠

i+1

= R�
i+1,i

⎛
⎜⎝

e1

e2

t

⎞
⎟⎠

i

. (32)

Note that even though the explicit matrix elements in (30)
do not have a manifestly covariant form in terms of the
link variables, the gauge-transformed transfer matrix is by
construction a covariant link variable.

D. Continuum limit

The different choices of �i in (32) correspond to different
generalized Frenet frames. We shall now verify that with the
general version of transfer matrix (30), this indeed yields
the generalized Frenet equation (5) in the continuum limit
where the distances between the vertices Ci of the curve vanish,
provided the limit is a class C3 curve.

|ri+1 − ri | ≈ ε → 0.

We define

ψi+1,i = εκi+1,i ,

θi+1,i = ετi+1,i , (33)
�i+1 − �i = εσi+1,i ,

1
2 (�i+1 + �i) = ηi+1,i ,

where σi+i,i are some finite constants. When we expand (32)
in ε we get in the leading order

1

ε

⎡
⎣

⎛
⎝ e1

e2

t

⎞
⎠

i+1

−
⎛
⎝ e1

e2

t

⎞
⎠

i

⎤
⎦

=

⎛
⎜⎝

0 (τ − σ ) −κ cos η

−(τ − σ ) 0 −κ sin η

κ cos η κ sin η 0

⎞
⎟⎠

i+1,i

⎛
⎜⎝

e1

e2

t

⎞
⎟⎠

i

. (34)

If the ε → 0 exists it gives us the generalized continuum Frenet
equation (5), with the identification

σ → η̇

and the identification (33) between the discrete torsion and
curvature angles with their continuum counterparts.

E. Inflection points

Consider a piecewise linear curve that has a single isolated
inflection point located at vertex Ci . A generalization to several
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inflection points and straight segments is straightforward. By
assumption, the preceding vertex Ci−1 admits a Frenet frame.
Since the tangent vectors ti and ti−1 are parallel, at the vertex
Ci both the normal vector ni and the binormal vector bi of
a Frenet frame cannot be determined and the Frenet frame at
Ci cannot be introduced. Consequently the torsion angle θi,i−1

cannot be defined. But the definition of the bond angle involves
only the tangent vectors so it can still be computed and from
(20) we get

ψi,i−1 = 0 (mod 2π ).

In order to introduce a framing of the curve that covers
the vertex Ci , we proceed as follows: We first deform the
curve slightly by moving the vertex Ci in a direction of some
arbitrarily chosen vector u that is not parallel with ti ,

ri → ri + ε · u. (35)

Here the limit ε → 0 is tacitly understood. The introduction
of u removes the inflection point from the shifted vertex C̃i

and this enables us to introduce a u-dependent Frenet frame
at the shifted vertex C̃i . In the limit where ε vanishes we get
a u-dependent frame at the original vertex Ci , obtained by
transferring the Frenet frame from the vertex Ci−1 as follows,⎛

⎜⎝
e1

e2

t

⎞
⎟⎠

i

=

⎛
⎜⎝

cos θ̂ sin θ̂ 0

− sin θ̂ cos θ̂ 0

0 0 1

⎞
⎟⎠

i,i−1

⎛
⎜⎝

n

b

t

⎞
⎟⎠

i−1

. (36)

Here θ̂i,i−1 is now description i.e., explicitly
u-dependent angle.

In order to establish that the frame can be chosen in a
u-independent manner we proceed to remove the explicit u
dependence. For this we introduce the gauge transformation
(28) in (36) which sends

θ̂i,i−1 → θ̂i,i−1 + �i−1 − �i.

Since we have the original Frenet frame at the vertex Ci−1, we
also have

�i−1 = 0.

But �i is freely at our disposal and we may choose it so that
any u dependence becomes removed. This leaves us with a
u-independent remainder that we may choose at our conve-
nience,

θ̂i,i−1 − �i ≡ �̂i,i−1,

where �̂i,i−1 is now by construction a u-independent quantity
at our disposal. Different choices correspond to different
gauges.

Since ti and ti+1 are not parallel, we can proceed to
construct a frame at vertex Ci+1 from the frame (e1,e2,t)i at
vertex Ci using the transfer matrix (30). Since the remaining
gauge parameters �k with k > i are all at our disposal, we
may return to the Frenet frame or select any other convenient
framing, at the vertex Ci+1 and at all subsequent vertices. If the
goal is to approximate a continuous space curve, in the limit
of vanishing bond length the gauge parameters �k should be
selected in such a manner that in the continuum limit they yield

the gauge function η(s) and so the ensuing discrete transfer
matrix smoothly goes over to its continuum limit (34).

F. Discrete gauge transformations

The transfer matrix Ri+1,i determines the curve in R3 up
to rigid Galilean motions, i.e., global translations and spatial
rotations. The improper spatial rotation group O(3) acts on
each of the vertices rk in (14) by a rotation matrix O ∈ O(3)
that sends each of the rk into

rk → Ork.

As a consequence only the global orientation of the curve inR3

changes. An example is the improper rotation that inverts the
curve in R3 by reversing the direction of each tangent vector

ti → −ti

but with no effect on the ni and bi . From the explicit form of
the transfer matrix in (19) we conclude that this corresponds
to the following global version of (28) and (29)

θi → θi

ψi → −ψi.

That is, �i = π for all i. Consequently, if we include this im-
proper rotation in our gauge structure we can restrict the range
of ψi from ψi ∈ [−π,π ] mod(2π ) to ψi ∈ [0,π ] mod(2π ), but
we prefer to continue with the extended range.

Similarly, we can introduce the improper rotation that sends

bi → −bi

with no effect on ti and ni . Since the ti remain intact, the
curve does not change, and from the DF equation (19) we
conclude that this corresponds to the following global Z2

transformation:

θi → −θi

ψi → ψi.

This is the Z2 symmetry that we have introduced in (22) to ex-
tend the range of θi from θi ∈ [0,π ] to θi ∈ [−π,π ] mod(2π ).
We note that this symmetry of the underlying curve can not
be reproduced by the gauge transformation (28) and (29);
nevertheless, the curve remains intact since the ti do not
change.

Another useful discrete transformation in our subsequent
discrete curve analysis is the proper rotation that at a given
vertex Ci sends

bi → −bi

ni → −ni

but with no effect on ti so the curve remains intact. This rotation
is obtained by selecting �i+1 = π and with all �k = 0 at the
preceding vertices Ck (with k � i). Since the �i+1 appears in
the gauge transformation law of both θi+1,i and θi+2,i+1, this
leads to the following realization of the gauge transformation
(28) and (29)

θi+1,i → θi+1,i − π

θi+2,i+1 → θi+1,i + π
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FIG. 6. (Color online) A continuous plane curve with an inflection
point such as the one in Fig. 1, together with its discrete approx-
imation. The tangent vectors ti of the discrete approximation can
be chosen so two neighbors are never parallel and thus a discrete
Frenet frame can be introduced at each vertex. When we pass through
the inflection point the direction of the binormal vectors following
(A,B,C) becomes reflected in the plane into (D,E,F) and there is a
discontinuity in the Frenet framing. But if we introduce the gauge
transformation (37) at vertices after the inflection point, the ensuing
framing (A,B,C,G,H,I) is continuous.

ψi+1,i → −ψi+1,i .

If we generalize this gauge transformation by selecting

�k = π for k � i + 1

with

�k = 0 for k < i + 1,

where the vertex Ci is preselected, the gauge transformation
becomes

θi+1,i → θi+1,i − π

ψk+1,k → −ψk+1,k for all k � i. (37)

Since the bond angle is the discrete version of the Frenet
curvature (33), we recognize here the discrete analog of the
continuum gauge transformation (10) and (11). For a piecewise
linear discretization of a plane curve such as the one Fig. 1, this
enables us to introduce a framing that captures the kink-soliton
behavior (1) and (12) of the inflection point, with the change
of sign in curvature at the soliton position (Fig. 6).

G. Curve construction

An example of problems where the present formalism can
be applied is the construction of a discrete and piecewise linear
curve from the known values of its bond and torsion angles.
These angles can be constructed, for example, using an energy
principle to locate a minimum energy configuration of some
energy functional

E(ψk+1,k,θk+1,k).

We may define the angles using the Frenet frame. Examples
of energy functionals have been discussed in Refs. [3,12].

Three vertices are needed to specify the position and the
overall rotational orientation of the curve. To compute a single
bond angle from the curve, we need three vertices while for

the torsion angle we need four; see Fig. 5. Consequently, from
the first three initial positions of the curve, (r0,r1,r2), we can
compute the first bond angle ψ1,0. But in order to compute the
first pair (ψ2,1,θ2,1) we also need to specify r3.

Here we are interested in the inverse problem where the set
of angles {ψk+1,k,θk+1,k} are assumed to be known. Depending
on the boundary conditions for the energy functional, the
known initial data may also include numerical values of
(ψ1,0,θ1,0), even though θ1,0 lacks a geometric interpretation.
In such a case we can immediately proceed to the computation
of the entire curve using (19) or, alternatively, using the transfer
matrix (32), starting from an initial choice of frame (n0,b0,t0).
Different initial choices are related to each other by a global,
i.e., index i-independent, parameter � in (28) and (29). We
get both the frame at the vertex k and its location rk when we
also employ (14), starting from a given initial value r0(= 0).

In general we expect to have a situation where the three
first points (r0,r1,r2) are given. From these points we get the
two tangent vectors t0 and t1. We then use (15) and (16) to
complete the Frenet frame at the location r1. We identify the
bond angle ψ1,0 with the angle between the two vectors t0 and
t1 using (20). This bond angle may or may not be determined
by the energy functional. If it is determined, the angle between
t0 and t1 is determined and instead of fully specifying r2 we
only need to specify its distance from r1 and the remaining
directional angle that we may call θ1,0.

For a practical algorithmic implementation the following
choice can be convenient,

r0 = δ1,0

⎛
⎜⎝

− cos ψ1,0

sin ψ1,0

0

⎞
⎟⎠

r1 =

⎛
⎜⎝

0

0

0

⎞
⎟⎠

t0 =

⎛
⎜⎝

cos ψ1,0

− sin ψ1,0

0

⎞
⎟⎠

n1 =

⎛
⎜⎝

1

0

0

⎞
⎟⎠ b1 =

⎛
⎜⎝

0

1

0

⎞
⎟⎠ t1 =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ , (38)

where we have introduced the notation

δk+1,k = |rk+1 − rk|
for the segment lengths. The generalized Frenet frame together
with the corresponding location of the vertex ri+1 can then be
computed by iterative application of
⎛
⎜⎜⎜⎝

n

b

t

r

⎞
⎟⎟⎟⎠

i+1

= Ti+1,i

⎛
⎜⎜⎜⎝

n

b

t

r

⎞
⎟⎟⎟⎠

i

=

⎛
⎜⎜⎜⎝

0

(R) 0

0

0 0 δ 1

⎞
⎟⎟⎟⎠

i+1,i

⎛
⎜⎜⎜⎝

n

b

t

r

⎞
⎟⎟⎟⎠

i+1

.

(39)
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This can be directly generalized into⎛
⎜⎜⎜⎝

e1

e2

e3

r

⎞
⎟⎟⎟⎠

i+1

= T �
i+1,i

⎛
⎜⎜⎜⎝

e1

e2

e3

r

⎞
⎟⎟⎟⎠

i

=

⎛
⎜⎜⎜⎝

0

(R�) 0

0

δ1 δ2 δ3 1

⎞
⎟⎟⎟⎠

i+1,i

⎛
⎜⎜⎜⎝

e1

e2

e3

r

⎞
⎟⎟⎟⎠

i+1

,

where R� is the matrix (30) and the δ1,δ2,δ3 are the
components of the vector

δk+1,k = δk+1,k

⎛
⎜⎝

cos α sin β

sin α sin β

cosβ

⎞
⎟⎠

k+1,k

.

When β = 0 (and � = 0) we obtain the transfer matrix (39)
with tk the tangent vector of the curve, while for general (α,β)
the tangent of the curve is in the direction of δ in the (e1,e2,e3)
frame. Thus this transfer matrix provides a rule for transporting
an a priori arbitrarily oriented orthogonal frame along the
curve.

Of particular interest is the construction of a discrete version
of Bishop’s parallel transport frame [7] as a gauge transformed
version of the discrete Frenet frame. Since the Frenet frame
starts with (ψ2,1,θ2,1) and can be constructed once (r0,r1,r2,r3)
are known (unless we introduce θ1,0 which lacks a geometric
interpretation), we assume this to be the case. The discrete
version of Bishop’s frame is obtained by gauge transformation
from the Frenet frame by demanding that

θ2,1 → θ2,1 + �1 − �2 = 0.

We can freely choose

�1 = 0

as an initial condition, and, consequently, we arrive at Bishop’s
frame by selecting

�2 = θ2,1.

For �3 we get similarly from

θ3,2 → θ3,2 + �2 − �3 = 0

that

�3 = θ2,1 + θ3,2

and thus the discrete version of Bishop’s parallel transport
frame is related to the discrete Frenet frame by gauge
transformations

�k =
k−1∑
i=1

θi+1,i .

When we substitute this in (30) with (31), we find that the
transfer matrix (30) simplifies into

RB 11
i+1,i = 1 + cos2 ��(cos ψi+1,i − 1)

RB 12
i+1,i = sin �� cos ��(cos ψi+1,i − 1)

RB 13
i+1,i = − cos �� sin ψi+1,i

RB 21
i+1,i = sin �� cos ��(cos ψi+1,i − 1)

RB 22
i+1,i = 1 + sin2 ��(cos ψi+1,i − 1)

RB 23
i+1,i = − sin �� sin ψi+1,i

RB 31
i+1,i = cos �� sin ψi+1,i

RB 32
i+1,i = sin �� sin ψi+1,i

RB 33
i+1,i = cos ψ, (40)

where now

�� ≡
i∑

k=1

θk+1,k

and with (32), we can construct the discrete version of Bishop’s
parallel transport frame at each vertex Ci .

IV. FRAMING OF FOLDED PROTEINS

As an application we utilize the DF equation to investigate
the framing of the folded proteins in the PDB [9]. We are
particularly interested in the existence and characterization
of a preferred framing that derives and directly reflects the
physical properties of the folded proteins. The identification
of such a preferred framing, if it exists, should help to pinpoint
the physical principles that determine how proteins fold.

From the PDB we get the three-dimensional coordinates
of all the different atoms in a folded protein. The overall fold
geometry is described by the location of the central Cα carbons
that determine the protein backbone. We take the Cα carbons
to be the vertices in a discrete and piecewise linear curve
that models the backbone. We then use the Cα coordinates
to compute the corresponding Frenet framing. For this we
first apply (13), (15), and (16) to obtain the orthonormal basis
vectors at each vertex. We then construct the transfer matrices
by evaluating the bond and torsion angles from (20) and (21).

A. Z2 Frenet framing and solitons

We start by analyzing in detail an explicit example, the
chicken villin headpiece subdomain HP35 (PDB code 1YRF
[9]). This is a naturally existing 35-residue protein, with three
α helices separated from each other by two loops. This protein
continues to be the subject to very extensive studies both
experimentally [14–17] and theoretically [18–22]. We note
that the overall resolution in the experimental x-ray data in
PDB is 1.07Å in root-mean-square deviation [16].

We first compute the backbone Frenet frame bond and
torsion angles (ψi+1,i ,θi+1,i) from the PDB coordinates of the
HP35 Cα carbons. The result is shown in Fig. 7 (left).

We inquire whether the loop regions contain inflection
points. As we have previously explained, for example, in
connection with Fig. 6, the inflection points can be difficult
to identify in terms of the bond angles of the discrete Frenet
framing alone. But as is apparent from Fig. 6, we can expect
that an inflection point is located in the vicinity of vertices
where the Frenet frame torsion angle is subject to strong local
fluctuations. Thus we proceed to inspect the data in Fig. 7
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FIG. 7. (Color online) (Top) The Frenet frame bond angle (�) and
torsion angle (�) along the HP35 backbone. In this frame the potential
presence of an inflection point is visible only in large local variations
of torsion angle. (Bottom) The outcome of Z2 gauge transformations
(37) at the loop regions. The result clearly reveals the presence of
inflection points, and they are located between the sites where the
(gauge transformed) bond angle changes its sign. This can also be
used to identify the center of the loop. Note how closely the profile of
the bond angle in the bottom figure resembles that of the kink-soliton
in the right-hand side of Fig. 2.

(left) using the gauge transformation (37) to scrutinize the
loop regions where the Frenet torsion angle in Fig. 7 (left) is
strongly fluctuating. This leads us to a particular version of
the Z2 Frenet frame, with bond and torsion angles as in Fig. 7
(right).

By comparing the bond angles in Fig. 7 (right) with the
kink-soliton profile in the right hand side of Fig. 2 we observe
that the bond angles of our gauge transformed frames at each
of the loops have assumed the distinctive hallmark profile of a
(discrete) kink-soliton that interpolates between the adjacent
α helices. In particular, we can unambiguously pinpoint the
centers of the loops to the locations of the inflection points on
the curve: The inflection points are between the vertices where
the bond angle in our gauge transformed frame changes its
sign.

We have performed a similar analysis to several proteins in
the PDB, and some of our results where the techniques of the
present article are utilized have been reported in Refs. [4–6].
The results are remarkably consistent: In every secondary
superstructure that we have studied where a loop connects
two α helices and/or β strands, after appropriate Z2 gauge
transformations the profile of the bond angles in the loop can
be described with sub-Ångström accuracy in terms of a discrete
version of the kink-soliton in Fig. 2. The two asymptotic
ground states at s = ±c in this figure correspond to the

α helices and/or β strands at the ends of the loop. For the
α helices we have the Frenet frame values very close to

(ψ,θ )α ≈ (1.57,0.87) ∼
(

π

2
,1

)
.

The β strands can also be interpreted as helices but in the
“collapsed” limit with the approximative values

(ψ,θ )β ≈ (±1.0, − 2.9) ∼ (±1, − π ).

Consequently, it appears that these α-helix/β-strand-loop-
α-helix/β-strand superstructures are indeed inflection point
solitons with the qualitative profile of (1). We remark that a
long loop may also consist of a number of inflection points,
i.e., it can be a multisoliton configuration.

B. Physics-based framing

In every amino acid except glycine, there is a Cβ carbon
that is covalently bonded to a Cα carbon. The positioning of
these Cβ carbons in relation to their Cα carbons characterizes
the relative orientation of the amino acid side chains along the
protein backbone and can be used to introduce a distinctive
framing of the backbone; the case of glycine can be treated
like that of an inflection point. Since the interactions between
different amino acids are presumed to have a pivotal role
both during the folding process and in the stabilization of
the native fold, the Cβ framing should be a natural choice to
intimately reflect the physical principles that determine the fold
geometry of the backbone. Consequently, one way to try and
understand the physical principles that determine how a protein
folds could be to investigate the Cβ framing along the protein
backbone. Here we propose that a practical approach is to look
for gauge parameters (25) that relate the Cβ frames to some
purely geometrically determined frames such as the Frenet
frames or parallel transport frames. The identification of the
rules that determine the relevant gauge parameters �i should
then provide insight to the physical principles that underlie the
protein-folding phenomenon.

The Cβ framing is constructed from the tangent vectors t
of the backbone and the unit vectors c that point from the Cα

carbons toward their Cβ carbon. The framing is obtained by
Gram-Schmidt algorithm by first introducing the unit vector

p = t × c
||t × c||

and then completing it into an orthonormal frame (t,p,q) at
each Cα vertex, where

q = t × p.

In order to characterize the rules that determine the gauge
parameter �i relating a Cβ frame to the corresponding Frenet
frame, we have investigated the statistical distribution of
the ci vectors in the PDB proteins in the Frenet framing of the
backbone. For this we introduce, at each backbone vertex, the
inclination angle χi ∈ [0,π ] between the tangent vector ti and
the corresponding vector ci , together with the azimuthal angle
ϕi ∈ [−π,π ] between the normal vector ni and the projection
of ci on the (ni ,bi) plane; see Fig. 8.
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FIG. 8. (Color online) The definition of the angles χi and ϕi that
describe the location of the ith Cβ carbon with respect to the Frenet
frame along the Cα backbone. The distance between the Cα and
Cβ carbons is within the range of 1.56–1.57 Å.

We first consider the Cβ framing of the HP35. When we
compute the directions of the individual vectors ci in the Frenet
frame, we get the result that we display in Fig. 9.

Remarkably, the directions of the ci vectors in the Frenet
frame are relatively site independent. This implies that at
least in the case of HP35, the parameters �i that relate the
Cβ frame to the Frenet frame can be assigned to a high
accuracy a constant and site independent value: The physically
determined orthonormalized Cβ frame appears to differ from
the purely geometrically determined Frenet frame only by
small nutations in the direction of the vectors c in the Frenet
frame. We observe that these nutations are somewhat smaller in
the helix regions than in the loops. We conclude that since the
Frenet framing of HP35 is determined entirely by the backbone
geometry so, too, are the orientations of the amino acids, with
a surprisingly good accuracy.

In the general case, we have inspected the correlation
between the Cβ framing and the Frenet framing by performing

FIG. 9. (Color online) The nutation in the direction of the vectors
ci in the Frenet frame along 1YRF backbone.

FIG. 10. (Color online) Kent plots of the Cβ carbon vectors c for
all sites of all proteins presently in PDB, with intensity proportional
to the number of vectors. For α helices (top), the direction of
c nutates very little around the direction (χ,ϕ) ≈ (1.84, − 2.20). For
β strands (bottom) the nutation is somewhat more spread out, but still
very clearly concentrated around (χ,ϕ) ≈ (1.96, − 2.47). Finally, for
loops (middle) we observe the formation of a narrow arc that connects
the α and β directions.
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a statistical analysis of the directional distribution of the
c vectors in the backbone Frenet frames for all amino acids in
PDB. Our results are summarized in Fig. 10.

Where we display the statistical distribution of the angles
(ϕi,χi) that we have defined in Fig. 8. We have used the PDB
definition to identify the three structures we display separately
(α helix, β strand, loop) but we note that there are sometimes
ambiguities in determining whether a particular amino acid
belongs to a α helix, β strand or a loop in particular when
the amino acid is located in the vicinity of the border between
these three classes.

We find that the observation we have made in the case
of HP35 persists: The orientations of the Cβ carbons in the
Frenet frames are quite inert and essentially protein and amino
acid independent. There is only a slight nutation around
the statistical average value. Furthermore, the directions for
the α helices and β strands are also almost the same, the
difference in the statistical average is surprisingly small but
nevertheless noticeable. In the case of loops, we find that
the statistical distribution of the vector c in the Frenet frame
displays a thin band that connects the α helices and β strands.
This universality is somewhat unexpected, since only a small
proportion of the loops connect an α helix with a β strand.

The overlapping regions between the three different classes
in the Kent plots of Fig. 10 can be at least partly explained by
the uncertainty in classifying amino acids in the vicinity of the
border regions. We expect that a careful scrutiny of the class
assignments of these amino acids will sharpen our statistical
results. Alternatively, our approach could be developed into a
technique to determine a more definite classification of those
amino acids that are located in the border regions separating

FIG. 11. (Color online) Frenet frame histogram of the distribution
of (χ,ϕ) angles displayed in Fig. 10 for all Cβ in the PDB. The
histogram shows how the directions are subject to only very small
deviations around their average values.

FIG. 12. (Color online) The same as in Fig. 10 but for all proteins
in PDB using Bishop’s parallel transport frame. In this frame the
directions of the Cβ carbons are distributed in a longitudinally uniform
manner inside a segment of the Kent sphere.

the α helices, β strands, and the loops from each other. But
even at this level of classifying the amino acids the results of
our analysis imply that almost independently of the protein,
when we traverse its backbone by orienting the camera gaze
direction so it remains fixed in the Frenet frames, the directions
of the Cβ carbons are subject to only small nutations.

In Fig. 11 we display the histograms for the components
of the Cβ vectors ci in terms of the χ and ϕ angles defined in
Fig. 8. These histograms confirm that the directional variations
of the ci are surprisingly inert.

Finally, we have found that in Bishop’s parallel transport
frame the direction of the Cβ carbon does not lead to such a
regular structure formation as in the Frenet frame; see Fig. 12
where we plot the statistical distributions of the vectors c in
the Bishop’s frames.

V. CONCLUSIONS

We have scrutinized the problem of frame determination
along piecewise linear discrete curves, including those with
inflection points. Our approach is based on the transfer
matrix method that has been previously applied extensively
to investigate discrete integrable systems and lattice field
theories. The introduction of a transfer matrix enables us
to describe a framing in a covariant manner, with different
frames related to each other by SO(2) gauge transformations
that correspond to rotations in the normal planes of the
curve. In particular our construction is not based on, and
does not involve, any discretization of a continuum equation.
Consequently, we can effortlessly describe curves that become
fractals in the limit where the lattice spacing (e.g., the length
of line segments) vanishes. But we have also verified that
if the continuum limit exists as a class C3 differentiable
curve, we arrive at the generalized version of the continuum
Frenet equation. Furthermore, the manifest covariance of our
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formalism under frame rotations enables us to investigate the
framing of a physically determined discrete curve in a manner
where the framing is based on and captures the properties
of the underlying physical system. Consequently, we expect
that our formalism has wide applications to the visualization of
discrete curves and the determination of camera gaze positions
in a variety of scenarios.

One notable outcome of our analysis is the identification
of inflection points with the centers of loops, and the
interpretation of loops as kink-solitons. In Refs. [3,12] we
have already applied this identification to develop an ansatz
based on (1) to succesfully describe the native folds of PDB
proteins in terms of elementary functions.

As an example, we have investigated the framing of folded
proteins in the Protein Data Bank. In this case no valable
continuum description exist, due to the fact that the universality
class of folded proteins is characterized by the presence of a
nontrivial Hausdorff dimension. Consequently, any framing
of folded proteins should be inherently discrete. In order
to introduce a framing that directly relates to the physical
properties of a folded protein, we have employed the relative
orientation of the Cβ carbons in the amino acids with respect to
the ensuing backbone central Cα carbons. We have statistically
analyzed the relative orientation of these Cβ frames to the
geometrically determined Frenet frames of the PDB proteins.
We have found that the two framings are almost identical,

and they differ from each other only by a practically amino
acid independent global frame rotation: For the α helices the
nutation in the orientation of the Cβ carbons in the Frenet frame
is very sharply concentrated around its statistically determined
average direction. For β strands the result is very similar, with
only a relatively small increase in the amplitude of nutations.
Finally, in the case of loops we find that the orientation of
the Cβ carbons oscillates along a narrow circular arc that
connects the α helices and β carbons. In each case, we have
used the definition employed in the Protein Data Bank to
identify the helix or loop class of the amino acid, and we
note that the existing criteria for determining this class in
the case of an amino acid that is located in the vicinity of
the terminals of each structure is subject to interpretations.
Consequently, we propose that there are several borderline
cases that interfere destructively with the accuracy of our
statistically determined results. We hope that our framing
technique will eventually provide a refinement of the existing
classification principles. The biophysical interpretation and
biological relevance of our observations will be reported
elsewhere.
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