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Thermodynamic parameters such as free energies and heat capacities are important quantities for understanding
processes involving structural transitions in complex molecules such as proteins. Computational investigations
provide simulated data that can be used for calculating thermodynamic parameters. However, calculations
give accurate results only if the simulations sample all of configuration space with the appropriate
temperature-dependent Boltzmann equilibrium probabilities. For many systems, truly comprehensive sampling
of configuration space is not computationally feasible. We present an approximation technique for the calculations
that will give accurate values for thermodynamic parameters when the data is incomplete. Our work is applicable
to systems in which there are two distinct, important regions of configuration space that must be sampled.
Importantly, the results are also valid when the system is more complex than two-state systems. Transition
pathways that involve intermediate configurations between two stable regions are allowed in this treatment, and
therefore the results are valid for multistate systems.
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I. INTRODUCTION

Thermodynamic parameters such as free energies and heat
capacities are important quantities for understanding processes
involving structural changes in complex molecules such as
proteins. The large number of degrees of freedom and the
many different substates in the energy landscape result in
a rough energy landscape [1,2] that can be characterized
as “complex” [3,4]. The conformational space of complex
systems is enormously large and grows exponentially with the
size of the system. An example is the increase in configurations
of a peptide chain as a function of the number of amino
acid residues in the chain [5]. Computational investigations
provide simulated data that can be used for calculating ther-
modynamic parameters. The validity of these calculated results
depends on the approach used to take the simulated data and
calculate numerical values of the thermodynamic properties.
Calculations give accurate results if all of the configuration
space is sampled with the appropriate temperature-dependent
Boltzmann equilibrium probabilities. For many systems, a
truly comprehensive sampling of configuration space is not
possible. A favorable situation for comprehensive sampling is
at temperatures near the transition temperature between two
regions. Under this condition, the probability is approximately
equal for the system to be in either region of configuration
space and both regions are adequately sampled. In contrast, for
relatively high or low temperatures, one region of configuration
space will have a low probability to be sampled. If computer
power is unlimited, this would not be a problem: Eventually the
computer simulation will leave the more probable region and
transition to the other region. For a long enough simulation,
even the less likely region would eventually be properly
sampled. However, due to limitations in computer power, at
simulation temperatures far from the transition temperature
it may become unfeasible to allow the computer to run a
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simulation long enough for the system to make the multiple
back-and-forth transitions necessary to sample configuration
space with the correct equilibrium probabilities.

In order to understand the behavior of a complex system,
various thermodynamic parameters are useful. To obtain these
parameters in complex systems, a variety of computational
simulation methods are used. All-atom molecular dynamics
(MD) simulations provide the most detailed information
about molecular processes but are limited because of the
computational cost. Explicit solvent, all-atom MD simulations
of proteins for up to a millisecond time scale have recently
been performed on a special-purpose machine [6]. However,
such simulations are still computationally costly for most
proteins, and the MD simulations are restricted in the amount
of configuration space that can be sampled to regions involving
structural changes of only small segments of the entire
molecule. Coarse-grained MD simulations and reduced-model
Monte Carlo (MC) simulations provide less atomistic detail
but have the benefit of being able to sample greater regions
of the energy landscape for longer processes. Simulations of
this type can investigate large-scale structural changes such as
folding of a protein molecule.

Limitations in computer power mean that for glassy
systems with rough landscapes, or large molecules with
many degrees of freedom, even the MC and coarse-grained
MD simulations are not able to sample all the regions of
configuration-space without the help of clever techniques
[7–11]. Enhanced sampling methods that facilitate equilibrium
sampling of configuration space have been developed, such as
multicanonical sampling [12,13], umbrella sampling [14,15],
transition path sampling [16,17], and entropic sampling [18].
With proper weighting functions, these sampling methods
can provide accurate estimates of equilibrium thermodynamic
parameters such as free energy and heat capacity. Another
method based on replica exchange (RE) [19] has emerged as a
powerful sampling method. When applied to MC simulations
it is known as the replica exchange Monte Carlo (REMC) or
parallel tempering method, and in MD simulations it is known
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as the replica exchange molecular dynamics (REMD) method
[20]. The REMD method has proven especially valuable and
is increasingly used to overcome sampling problems involving
multiple minima and barrier crossing in conventional MD
simulations [21,22]. The replica exchange method can also
be applied in conjunction with other sampling methods for
increased efficiency in equilibrium sampling for free-energy
calculations [23]. However, in some situations, such as in
simulations of large molecules in an explicit solvent, the
RE method may not be efficient without carefully applied
modifications [24,25]. Also, the RE method is not able to
supply kinetic information, such as median first passage times
(MFPTs).

Using many short simulation trajectories, instead of one
long simulation, has proven very useful for efficient sampling.
A powerful method based on such strategy is the Markov
state model (MSM) [26], which has been applied to facilitate
long time-scale MD simulations [27–29]. In this paper, we
present a compensation method that allows simulated data
obtained from many short, incomplete simulations to be used
to accurately calculate thermodynamic parameters for any type
of system with two distinct metastable configuration regions.
This method conceptually resembles the sampling strategy of
the MSM, but is applied to construct free-energy landscapes
from MC trajectories.

Another method for estimating free-energy differences
between macrostates is described by Jarzynski [30,31]. Jarzyn-
ski showed that in situations in which the work performed
while a molecule transitions between two states can be
determined, the free-energy difference between the two states
can be obtained by averaging the exponentially weighted
nonequilibrium work trajectories. Though not relevant to the
investigations described here, this powerful method has proven
particularly useful in force-extension or mechanical unfolding
experiments as well as simulations [32–35], where work is
done to perturb the system to transition from one state to
other. In contrast, our method can be useful in situations where
estimating the work done is not feasible.

We show how nonequilibrium data that do not compre-
hensively sample all of configuration space can be used in
calculations to provide accurate thermodynamic and kinetic
parameters using an approximation technique that is applicable
to systems in which there are two distinct, important regions of
configuration space that must be sampled. Transition pathways
that involve intermediate configurations between two stable
regions are allowed in this treatment, and therefore the results
are valid for multistate systems if the intermediate state regions
of configuration space are also appropriately sampled. The
paper is organized as follows. In Sec. II we describe our
compensation method of combining data from nonequilibrium
studies to produce time series of energy and other structural
data that can be used to calculate thermodynamic parameters.
In Sec. III we describe the computer model we use to simulate
protein dynamics and generate data. In Sec. IV we present
results. Heat capacities and free energies are calculated and
presented for two different proteins. One protein is small
enough so that we can perform comprehensive sampling of all
of configuration space at any temperature. The thermodynamic
parameters calculated from these comprehensive equilibrium
trajectories are treated as the “correct” reference values. We

also use our method on an incomplete data set for the same
protein to calculate thermodynamic parameters, and these
results are compared to the correct reference values to show
the accuracy of our compensation method. Next, in order
to show the wide applicability of our method, we apply the
compensation method to calculate thermodynamic parameters
for a protein that is too large to permit comprehensive sampling
of all of configuration space. We conclude with a summary of
the results and their significance in Sec. V.

II. COMPENSATING FOR NONEQUILIBRIUM DATA

A. Generating time-series trajectories

The method is applicable to systems that have two distinct,
important regions of configuration space. For proteins, one
macrostate region is composed of compact states that are
capable of performing the intended biological function. The
states of the molecule in this region are collectively known
as the “native (N) state” configurations. Nonfunctioning con-
figurations, such as extended states of the molecule are called
non-native, unfolded (U), or random coil states. Computational
simulations are initialized to commence from either an N or
U state. The configurations within a macrostate region make
rapid transitions among each other and, therefore, to properly
sample a region, it does not matter precisely which microstate
(configuration) is used to initiate a simulation. The same is
also true for other macrostate regions of configuration space,
such as the folded region.

The probability to transition to the other region depends on
various factors such as the height of the transition barriers and
the temperature of the simulation. Though at high temperatures
barriers are easy to cross, nevertheless, for a large, complex
system the transition to the lower-energy N region may be
unlikely because the high-energy, high-entropy U region may
have an enormous number of substates and the transition
barrier is never approached. For complex systems, the free-
energy landscape F = E − T S is a crucial parameter for
understanding the behavior of the molecule.

If a simulation is run under appropriate conditions, such
as near the transition temperature of the system, equilibrium
trajectories of the behavior of the system are obtainable in
which all regions of configuration space are appropriately
sampled. An equilibrium trajectory may resemble the one
in Fig. 1 in which we plot a time series of the energy
of a protein system. The protein system is the GCN4-p1
leucine zipper dimer and the computer simulations used a
MC algorithm. Later, we will describe in more detail both the
protein and the simulation technique. To generate Fig. 1, the
system is initialized to be in a high-energy (∼−20 kcal/mol)
U state. The temperature used in the simulation was near the
system’s transition temperature and therefore the sys-
tem makes multiple transitions from U configurations
(−80 kcal/mol< EU < 0) to the biologically functional N
configurations (−160 kcal/mol< EN < −120 kcal/mol). It
can also be seen that the system samples intermediate states
in the region between −120 and −80 kcal/mol, showing that
this is a multistate system. For the simulation temperature used
in Fig. 1, the system spends a substantial fraction of the time
in both U and N configurations. All of configuration space is
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FIG. 1. (Color online) (a) Energy time series for folding and
unfolding dynamics of the leucine zipper dimer. This simulation was
run at a temperature that allows multiple transitions between low-
energy native states and high-energy unfolded states. (b) Magnified
view of a section in the MC time series which clearly shows the
multistate nature of the transition. (c) Transitions occur between the
high-energy disorganized unfolded state, a midenergy transition state,
and a low-energy organized native-state dimer.

adequately sampled, and this trajectory can be used to calculate
accurate values for important thermodynamic parameters such
as heat capacity and free energy.

Figure 1 displays the time series of an energy trajectory that
includes multiple folding and unfolding transitions. However,
short simulations can also be used for calculating kinetic and
thermodynamic parameters, as is done in the MSM [26].
In MSM, multiple short trajectories are created during MD
simulations by initiating new runs at random times along a
simulation that started from an initial state such as U or N.
Trajectories are used in calculating parameters such as the
mean folding time or median first passage time (MFPT), and
p-fold only if they end up in the desired macrostate region of
configuration space (U or N) within the assigned cutoff time.
This method efficiently samples folding transitions. In our
method, we start our simulations from either U or N and stop
a simulation when the molecule reaches the other macrostate,
or when the cutoff time is reached. This can be viewed as a
modified subset of MSM that allows combining trajectories
for free-energy calculations.

Rather than using one long trajectory, we combine a
series of shorter simulations to create a time series such as

the one shown in Fig. 1. A group of 100 simulation runs
can all be started in the same high-energy U configuration
to investigate the dynamics of the folding process. The
difference between simulations is that each will be supplied
with a different sequence of random numbers that are used to
simulate the behavior of the system and each simulation will
generate a different trajectory through configuration space.
Each simulation is run independently of the others, and each
simulation is stopped when it makes the folding transition
to an N configuration. Likewise, to investigate unfolding, 100
simulations can all be started from the same low-energy folded
N configuration, but each with a different sequence of random
numbers. Each of these simulations will run independently,
and each one separately stopped when it makes the unfolding
transition to a U configuration. If the energy time series of the
100 folding simulations from U→N are appended to the 100
unfolding simulations from N→U, the result will be a long
time-series trajectory of the type displayed in Fig. 1(a). This
method of using multiple short simulation runs to generate
a long time-series trajectory has several advantages [17,26]
over running a single, very long run with the hope of obtaining
multiple folding and unfolding transitions. Kinetic properties
such as the characteristic time for folding require averaging
over many U→N folding attempts. Multiple independent
folding runs allow the averaging to be carried out more easily
than disentangling the information from a single long run with
many transitions. Also, occasionally problems occur during a
simulation that are artifacts of the computer model and not
physically relevant. An example of this is when a peptide
chain becomes stuck in a computer configuration from which
a real protein could escape. If this occurs during a single
long simulation that is intended to replicate many folding and
unfolding events, the information obtained does not represent
real dynamics. In contrast, if a single short simulation gets
stuck in an unphysical configurational trap, it only affects
a small fraction of the total simulation time and has an
insignificant effect on the results. We show that the remaining
simulations can be used for the next stage of analysis. Because
our trajectories through configuration space are determined
by random numbers, each time we start another simulation,
the time sequence of steps through configuration space is
completely independent of any other simulation. This allows a
realistic sampling of configurational space. For these reasons,
we create time-series trajectories by combining multiple short
runs.

B. Density of states and average folding time

The aim of computational results is to obtain accurate
values for quantities such as the true average U→N folding
time τ̄f , representing the theoretical average that would be
obtained if it was possible to include all trajectories through
the entire energy landscape that take the chain from an
unfolded configuration to the folded, native state. Similarly,
the true average N→U unfolding time τ̄u is defined for all
trajectories that take the chain from the folded state to an
unfolded configuration. Both τ̄f (T ) and τ̄u(T ) are temperature
dependent. This can be seen by use of the master equation [36],

dPf

dt
= −dPu

dt
= kf Pu − kuPf , (1)
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where Pf is the probability to be in the folded, native-state
region of configuration space, Pu is the probability to be in
an unfolded configuration, kf is the average rate for folding,
and ku is the average rate of unfolding. In equilibrium at any
temperature, kf Pu − kuPf = 0 and kf /ku = Pf /Pu. Since Pf

and Pu are each temperature dependent, then so are kf and ku,
and likewise τ̄f (T ) = 1/kf (T ) and τ̄u(T ) = 1/ku(T ) are also
temperature dependent.

The parameters τ̄f and τ̄u can be theoretically calculated
if the configurational landscape is known in complete detail.
In order to relate the underlying topology of the landscape to
observable kinetics, ideally we would like to know the folding
time as a function of temperature for each possible unfolded
configuration, τf = τf (�xu,T ). Here, �xu is a multidimensional
vector representing the structural configuration of an unfolded
chain. Because of the complex nature of the energy landscape,
different unfolded configurations �xu may have the same τf ,
i.e., the mapping of the set of �xu onto the set of τf is not
a one-to-one mapping. The distribution in folding times can
be represented as a density of states over all configurations,
each with a specific but not unique folding time, D(�xu(τf ),T ).
At a given temperature T, all unfolded configurations with a
folding time between a specific τf and τf + dτf contribute to
a density of states D(τf ,T ):

D(τf ; T ) =
∫

�xu

D(�xu(τ ′
f ); T )δ(τ ′

f − τf ) d �xu. (2)

This leads to an expression relating D(�xu(τf ); T ) to the
experimentally observable τ̄f . At a given temperature,

τ̄f (T ) =
∫ ∞

0
τf D(τf ; T ) dτf

=
∫ ∞

0

∫
�xu

τf D(�xu(τ ′
f ); T )δ(τ ′

f − τf ) d �xu dτf . (3)

A similar expression can be written for the theoretical
value τ̄u representing the transition from N→U,

τ̄u(T ) =
∫ ∞

0
τuD(τu; T ) dτu

=
∫ ∞

0

∫
�xf

τuD(�xf (τ ′
u); T )δ(τ ′

u − τu) d �xf dτu. (4)

The correct value of τ̄f can be obtained from computational
simulations if an infinite number of different simulations are
performed in order to exhaustively sample configuration-space
to reproduce D(�xu(τf ); T ) and each simulation is allowed
to run as long as necessary to successfully complete the
structural transition. Practical considerations limit the amount
of computations that can be performed. In our computer
investigations, at each temperature we start N0 simulations
(N0 = 100) in a native configuration, and an equal number
in an unfolded, random coil configuration. If started in an
unfolded configuration, a successful folding simulation run is
terminated when the chain first reaches a folded native-state
configuration, and its τf is recorded. The results of the
simulations provide a computationally determined numerical
estimate for the theoretical τ̄f of Eq. (3), τ̄f = 1

N0

∑N0
i=1 τf i .

Though we only discuss the details of the analysis for the
folding process, the same method can be applied at lower

temperatures to the unfolding process to determine the average
unfolding time τ̄u = 1

N0

∑N0
i=1 τui .

C. Nonequilibrium simulations: Problems due to computational
limitations

An equilibrium time-series trajectory of folding and unfold-
ing transitions can be generated by appending the time series
of all the folding runs to the time series from all the unfolding
runs. If all N0 folding and N0 unfolding runs are successful,
the total length of the full equilibrium trajectory is

τ =
N0∑
i=1

τf i +
N0∑
i=1

τui = (τ̄f + τ̄u)N0. (5)

Unfortunately, at many temperatures of interest, it is not
possible to create such an equilibrium trajectory. At high
temperatures, some of the simulations may take such a long
time to fold that it is not computationally feasible to follow
the folding to completion. At low temperatures, the same
situation can occur for unfolding runs. To avoid such endless
simulations in computational investigations, a simulation will
be terminated if the simulation is unsuccessful in reaching the
other condition after a user-defined cutoff, or end time, τe.
The proper way to compensate for these unsuccessful runs is
the topic of this paper.

D. Survival probability

At high temperatures, all N0 unfolding simulations that
start in the native state will be successful, but only a fraction
n/N0 of folding simulations will be successful in a time less
than τe. Under these conditions, it is still possible to estimate
τ̄f from survival probability [37–39]. The survival probability
is the fraction of simulations that are unsuccessful in folding
and remain in the unfolded state [40]. The survival probability
to remain unfolded after a simulation time t is denoted by
p(t) = 1 − n(t)/N0, where n is the number of successfully
folded simulation runs.

For the special case of a process that can be described
by single exponential kinetics, the survival function can be
expressed as p(t) = 1 − n(t)/N0 = exp(−t/τ̄f ), which allows
τ̄f to be straightforwardly calculated from the simulation
results by counting the number of successful runs n after any
cutoff end time, t = τe.

E. Compensating for incomplete sampling

Under temperature conditions in which comprehensive
sampling occurs and all folding and all unfolding runs are
successful, Eq. (5) shows that an equilibrium time-series
trajectory can be composed by using an equal number of
folding and unfolding simulations. We now show that the total
length of an equilibrium trajectory can be expressed more
generally in terms of the number of folding versus the number
of unfolding trajectories that should be combined. When
conditions are used that prevent comprehensive sampling and
100% success for all runs, these numbers may be different.

At high temperature, all N0 unfolding simulations are
successful in making the transition, but many folding runs are
terminated at the artificial cutoff end time τe without folding. If
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we combine N0 unfolding simulations with the N0 attempted
folding simulations in which only n are successful, the total
length of the nonequilibrium trajectory is a function of the
artificial cutoff end time τe,

τne =
n∑

i=1

τf i +
N0∑
n+1

τe +
N0∑
i=1

τui

= nτ̄ff + (N0 − n)τe + N0τ̄u, (6)

instead of Eq. (5). Here, τne refers to the length of a
nonequilibrium trajectory that contains N − n simulations that
were not able to successfully complete their task within τe,
and τ̄ff is the average folding time for the n successful folding
simulations. In analogy with Eq. (3), τ̄ff can be expressed
as τ̄ff (T ) = ∫ τe

0 τf D(τf ; T )dτf . For the nonequilibrium (not
all successful) time series, the total time spent by all N0

simulations that are attempting to fold under unfavorable
conditions is τf,ne = nτ̄ff + (N0 − n)τe.

A nonequilibrium trajectory of total length τne is not an
equilibrium trajectory because the unfolded state is under-
sampled. Each of the N0 − n folding simulations that were
unsuccessful in folding was still in the process of exploring the
unfolded part of the energy landscape when it was artificially
terminated at τe. For each unsuccessful folding simulation,
the unfolded region of the landscape was undersampled by a
time �τf i = τf i − τe, where τf i is the time at which the run
would have folded if it had been allowed to continue for as
long as necessary. Each of the N0 − n unsuccessful folding
runs contribute to this undersampling, and the total deficit of
time spent in the unfolded region compared to equilibrium
sampling is

�τf =
N0∑

i=n+1

�τf i =
N0∑

i=n+1

(τf i − τe). (7)

In order to compensate for the undersampling of the un-
folded state, �τf steps in the unfolded region of configuration
space should be added to the nonequilibrium length τf, ne that
is obtained directly from the simulations. Determining �τf

is the problem addressed in the paper. The reason for the
complication is that for the N0 − n unsuccessful folding runs
that are terminated at τe, we do not know their τf i to insert in
Eq. (7). We now describe a practical method to estimate and
compensate for this deficit �τf .

We define �Nf to be the unknown number of additional
folding simulations that are needed to supply �τf . This
rephrases the problem so that the question switches from
estimating �τf to how to determine an appropriate number
for �Nf . Once �Nf is determined, the total length of the
equilibrium trajectory will become

τ = τne + �τf =
(

n∑
i=1

τf i +
N0∑

i=n+1

τe+
N0∑
i=1

τui

)
+

�Nf∑
j=1

τfj .

(8)

Because some folding runs are prematurely terminated after
τe, Eq. (8) shows that for every N0 unfolding trajectories,
we must have Nf = N0 + �Nf folding trajectories. The
total number of unfolding and folding simulation runs that

constitute the full equilibrium time-series trajectory is given
by Neq = N0(u) + N0(f ) + �Nf = 2N0 + �Nf .

Since we are specifically interested in conditions in which
the true τ̄f of Eq. (3) is not known, from a practical standpoint
the only information available to estimate �Nf is the fraction
of runs that successfully folded within the cutoff time τe, which
is n/N0. The simplest correction would be to assume that the
N0 − n folding runs that did not fold would have necessitated
much longer than τe to successfully fold. If true, then we
should include not only the time series of these unsuccessful
runs but also use the same τe to run the same number of new
runs in addition, so that �Nf = N0 − n. This value of �Nf

can be reexpressed in terms of the known survival function
p(τe) = 1 − n(τe)/N0, which gives �Nf = pN0.

However, we can expect the same probability of success
for these additional folding runs, which means that a fraction
p(τe) of these �Nf additional runs will also not be successful,
and the unfolded region of configuration space will still be
undersampled, though now by a smaller amount. We must
add additional simulations to compensate for the remaining
undersampling. Since the remaining undersampling is due
to pN0 simulations, the additional simulations require a
correction that is second order with respect to the survival
function p: we add an additional p(pN0) = p2N0 runs. We
continue with this iterative process, which leads to an equation
that allows us to determine the number �Nf of additional
folding simulations (not all successful) that we need to
combine with the original N0 (not all successful) folding
simulations and the N0 original (all successful) unfolding
simulations so that both regions of the energy landscape are
correctly sampled with the proper equilibrium ratio of time:

Nf = N0 + �Nf = N0 + p(τe)N0 + p(τe) [p(τe)N0] + · · ·
= N0{1 + p(τe) + [p(τe)]2 + · · ·} = N0

1

1 − p(τe)

= N0

(
N0

n

)
. (9)

Equation (9) directly gives the number �Nf of additional
folding simulations that are necessary to run in order to create
an equilibrium trajectory:

�Nf = Nf − N0 = N0

(
N0

n

)
− N0 = N0

(
N0

n
− 1

)
.

(10)

As a check on Eqs. (9) and (10), if we are at a temperature in
which all N0 folding simulations are successful, then n = N0

and we get the correct results that �Nf = 0, which means
that an equilibrium trajectory requires an equal number of
folding and unfolding simulations, Nf = Nu = N0. At the
other extreme, when n � N0, we get the expected result that
�Nf � N0.

Equations (9) and (10) give expressions for the number
of additional folding runs that are necessary to create an
equilibrium trajectory. The procedure can be made simpler
to implement by noticing that Eq. (9) also gives the ratio
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of unfolding versus folding runs Nu/Nf = N0/Nf , that is
required to create an equilibrium trajectory of folding and
unfolding simulations that will have the correct temperature-
dependent ratio of τ̄u/τ̄f of Eq. (5). Since proper sampling
requires the correct ratio of time spent in each region, if we
maintain the same ratio of unfolding to folding simulations,
Nu/Nf = N0/Nf , but use a smaller number of each, we will
continue to have an equilibrium trajectory. Equation (9) shows
this ratio has a value of

Nu

Nf

= N0

N0
(

N0
n

) = n

N0
. (11)

We can keep this ratio the same by using all original Nf =
N0 folding simulations (not all successful), and only Nu = n

unfolding simulations (all successful). This means that the
final N0 − n successful unfolding runs are discarded. This is
preferred because we use runs that are all completed in the first
set of simulations containing N0 folding runs and N0 unfolding
runs, and it is not necessary to run additional simulations after
this first set is completed. The same procedure can be used
at low temperatures at which all the folding simulations are
successful but not all of the unfolding simulations.

III. COMPUTER MODEL

Equation (11) is a simple expression that allows computer
simulations of transitions of a system to be combined so
that accurate values of thermodynamic parameters can be
calculated. We now briefly describe the specific computational
model that we employed to generate the results presented in the
next section on two different protein systems. The model for
one-chain simulations is described in more detail in Ref. [41]
and for two-chain simulations in Refs. [42] and [43].

The computational model [44,45] uses an underlying cubic
lattice, and includes separate degrees of freedom for an amino
acid’s backbone and sidechain. The location of an amino acid
residue is defined by the position of its backbone. In addition,
another lattice site is assigned for the sidechain. The orientation
of a sidechain with respect to its backbone can vary, but is
always constrained so that it gives left-handed chirality to the
Cα , as is true with real amino acids. The lattice representation
of the peptide bond allows protein secondary, tertiary, and
quaternary structures to be effectively represented [46–48].
The volume of the simulation box was big enough to allow the
chains the freedom to flip, bend, or rotate, either individually
or as a dimer.

The computer simulations were performed by employing
a MC algorithm which simulates the dynamics of the system
by changing the internal configuration of each chain, as well
as the relative separation and orientation between the two
chains. A Metropolis test is incorporated to assure that the
various configurations appear with the correct thermodynamic
Boltzmann probability. Changes in the internal configuration
of a chain are attempted through a combination of moves
involving individual residues and multiresidue moves that
allow all of configuration space to be accessed. For a two-chain
system, translations and rotations of an entire chain that change
the relative position and orientation of the chains with respect
to each other are implemented based on Brownian motion
theory. In the simulations, time is counted in MC steps. Each

MC step includes a variety of moves involving individual
amino acids, groups of amino acids, or an entire chain.

For any configuration of the two chains that occurs in a
simulation, the energy of the system is calculated using a
Hamiltonian of the form [41,43]

H =
∑

i

aiEi. (12)

There are several different energy terms in the Hamiltonian.
Each term contributes to the total energy of the chain by
switching the corresponding ai from 0 to 1. Depending
on their user-defined properties, two sidechains can interact
through one of three terms: E(hydrophobic-hydrophobic),
E(hydrophobic-hydrophilic), or E(hydrophilic-hydrophilic).
Two backbones interact through E(backbone-backbone) if
their active sites approach within a distance of 4 or less.
This interaction represents the combined effects of hydrogen
bonding, dipole interactions, and van der Waals interactions.
If a residue finds itself in a secondary structural configuration
that is the same as its user-defined propensity, the energy of
the chain is lowered by a term representing the individual
amino acid’s local preference, EL. If two amino acids in a row
are in the same configuration preferred by the user-defined
propensity, a cooperative or medium range energy EM also
lowers the energy of the chain.

All information for the initial configurations of the peptide
chains, as well as the strengths of various interactions appear-
ing in the Hamiltonian, and other parameters, are supplied by
the user in an input file. For each configuration in a simulation,
the interactions that contribute are determined based upon
distances between amino acids and other criteria that are
expressed through the ai and explained in Refs. [42,43].

There are a variety of parameters that provide information
on the configuration of the system �x. The total energy of
the chains, including each chain’s internal energy as well as
interchain interactions, is denoted as E, and an example of
a time series of E is plotted in Fig. 1. To show clearly that
we are applying our compensation method to a system with
intermediate transition states, Fig. 1(b) is an expanded view
of a small section of Fig. 1(a). Figure 1(b) shows that the
system includes intermediate-energy states. A picture of an
intermediate state for the leucine zipper dimer is shown in
Fig. 1(c).

For the leucine zipper, the intermediate states are defined
as having three intact native interchain contacts. These three
interchain contacts occur between the trigger regions of the
two chains. In other complex systems, it may not be easy to
define what is meant by an intermediate state. Fortunately,
a precise definition of “intermediate state” is not important
as long as the configurations in this region are properly
sampled so that we can calculate accurate values for kinetic
and thermodynamic parameters. To accomplish this sampling
of intermediate states, we use an especially strict definition of
“folded” state. A folding simulation that starts in a random coil
configuration is considered to have successfully folded only if
all native interhelical contacts have been made. This ensures
that the intermediate states are sampled during a folding
simulation. In addition, to ensure that intermediate states are
sampled during an unfolding simulation, we define success
for an unfolding simulation only when all native interhelical
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contacts have been broken. Therefore, interhelical states which
have some, but not all, native contacts made are sampled both
during folding runs and unfolding runs.

In addition to energy time series, the computational sim-
ulations also produce time series of structural parameters.
The secondary structure of each individual chain is monitored
through the parameter q that supplies information on how many
amino acids are in an α-helical native secondary structure. For
the two-chain leucine zipper, the maximum value of q is 74
(37 from each chain). Native interchain interactions along the
interface between the chains are monitored by Q, with Q = 9
as the maximum that occurs in the fully formed native dimer
of Fig. 1(c). If the two chains interact, but are not properly
aligned, the value can be Q = 0. The separation between
the two chains is measured by dcm, which is the distance
between the centers of mass of the two chains. There are
many non-native configurations of the chain that can have
the same dcm, and therefore dcm is most valuable when used
with other structural parameters and the chains’ energy. The
results from using a combination of parameters to investigate
the dimerization process are presented.

In the next section we present results of calculations for
heat capacity and free energy. The temperature profile of the
heat capacity of a system that undergoes a structural transition
can provide deep insight into the underlying dynamics. The
heat capacity at constant volume can be calculated by using
the fluctuations in the energy, Cv = (E2 − Ē2)/kT 2. The
most accurate way to calculate Cv at any T is to perform
simulations at that specific T. The energy time series can be
used to obtain both Ē and E2 for use in the heat capacity
equation. Calculating Cv at many different temperatures re-
quires time-consuming simulations at different temperatures.
A computationally quicker approach for determining Cv at
many different T is known as the histogram method [49,50],
which allows the calculation of thermal averages for a range
of temperatures from the trajectory of a single simulation at
a single temperature. Free energy can be calculated for a spe-
cific configuration using the expression F (x) = −kT ln P (x),
where P(x) is the probability during a simulation that a chain
will have a specific value of a structural characteristic x, such as
E, q, or Q. P(x) is calculated using P (x) = m′(x)/m, where m
is the length of a simulation, and m′(x) is the number of frames
during the simulation in which a structural characteristic has a
specific value x.

IV. RESULTS

We first apply the prescription of Eq. (11) to a system that
is small enough so that we can also perform a comprehensive
sampling of all of configuration space at any temperature
to validate the method. The thermodynamic parameters cal-
culated from the comprehensive equilibrium trajectories are
treated as the “correct” reference values. We then rerun the
simulations using τe that is small enough so that all simulations
are not successful. We show that if not all simulations are
successful, using all N0 folding runs and all N0 unfolding
runs to calculate thermodynamic parameters gives highly
inaccurate results. We then apply the compensation technique
of Eq. (11) to the short τe nonequilibrium, incomplete data
set for the same protein and then recalculate thermodynamic

FIG. 2. Native structure of the two-helix bundle showing each
helix and the sidechain interactions (dark circles) between the two
helices.

parameters. The results of these compensated calculations are
compared to the correct reference values to show the accuracy
of the estimation method. At the end of this section, in order
to show the wide applicability of our method, we apply the
compensation method to calculate thermodynamic parameters
for a protein that is too large to permit comprehensive sampling
of all of configuration space.

The small system that can be investigated exhaustively
is a single protein whose native state is a two-helix bundle.
The native state is shown in Fig. 2 and is defined so that
all four interhelical contacts are made. This can only occur
when most, or all, of the amino acids in the helical sections
have assumed a helical configuration. Because this protein is
relatively small and has a simple native-state configuration,
folding and unfolding transitions occur quickly relative to
computational time scales. Therefore, over a large range of
temperatures, equilibrium trajectories can be constructed in
which all folding transitions are successful and all unfolding
transitions are successful. In Fig. 3(a), at each simulation
temperature the open circle is the heat capacity of the protein
calculated from an energy time series that was composed
of 100 successful folding simulations combined with 100
successful unfolding simulations. These open circles are
treated as the “correct” reference values for comparison. For
guidance, we also include a continuous curve in which the heat
capacity at all temperatures is calculated using the histogram
method from the simulations performed at a single temperature
near the transition temperature Tc ∼ 352 K.

In order to have 100% success for both folding and
unfolding at all temperatures in Fig. 3(a), the open circle
reference values were calculated from simulations in which
we set τ e = 60 million (60M = 6×107) MC steps. Since all
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FIG. 3. Calculated heat capacity as a function of temperature for
the two-helix bundle. The open circle (◦) τ e=∞ data points are
the correct values to be used as reference points. The solid curve
is the heat capacity calculated from single-temperature (T ∼ 352 K)
equilibrium simulations using the histogram technique [54] and helps
guide the eye. (a) Uncompensated calculations are shown at T=337
and 367 K for different τ e, given in units of M=106 MC steps. For
smaller τ e, the success rate for simulations decreases (Table I) and
the uncompensated Cv deviate further from the reference values,
exemplified by the 2M value at 367 K. (b) Heat capacities from the
same incomplete sampling simulations used in (a) but calculated using
the compensation method of Eq. (11). The compensation method
produces results that are very close to the correct value (τ e=∞) for
all values of τ e, including τ e that are so short that configuration space
is poorly sampled and the success rate for transitions is low.

simulations at all temperatures were successful within this
time, we can treat 60M MC steps as τ e = ∞. Near the
transition temperature, Tc ∼ 352 K, the folding and unfolding
processes are easy and all simulations are successful in less
than 7×106 (7M) MC steps. More specifically, the MFPT
is the time by which half of the simulations are successful.
For example, in this work we are using 100 simulations that
attempt to fold at each temperature, as well as 100 simulations
that attempt to unfold. The MFPT for folding, τ F(MFPT), is the
time required for the 50th slowest simulation to first fold. At
Tc = 352 K, the MFPT for folding is τ F(MFPT) = 2.06 × 106

MC steps and the unfolding τU(MFPT) = 1.97 × 106 MC steps.

TABLE I. Probability of success for folding and unfolding as a
function of cutoff time τ e for two different simulation temperatures.
The transition temperature for the two-helix bundle is Tc = 352 K.
The cutoff time is given in units of million (M = 106) MC steps.

T = 337 K

τ e (106 MC steps) % folded % unfolded

∞ (>60M) 100 100
20 100 70
10 100 53
5 100 37

T = 367 K

τe (106 MC steps) % folded % unfolded

∞ (>60M) 100 100
20 90 100
10 73 100
5 48 100
2 23 100

However, at temperatures well above Tc, the folding transition
is difficult and folding times can lengthen, though for this
simple exemplar system they remain below 60M MC steps.
Likewise, at temperatures well below Tc, unfolding is difficult
and unfolding times become large. It is at these temperatures,
far from Tc, that for more complicated systems it can become
computationally unfeasible to obtain equilibrium simulations
for both folding and unfolding. These are the conditions at
which our compensation technique is most valuable.

For the simple system of the two-helix bundle,
we examine two such temperatures, T = 337 K < Tc, in
which unfolding requires much longer times than fold-
ing [τ F(MFPT) = 0.49×106 MC steps, τU(MFPT) =
6.70×106 MC steps], and T = 367 K > Tc, in which
folding requires much longer time than unfolding
[τ F(MFPT) = 5.41×106 MC steps, τU(MFPT) =
0.53×106 MC steps]. As can be seen in Table I, for T =
337 K, as we lower τe, a larger fraction of the unfolding runs
are unsuccessful, and likewise for the decreasing probability of
success for the folding runs at T=367 K. At these temperatures
with small τe, if all 100 folding simulations are combined with
all 100 unfolding simulations, there is undersampling of one
of the regions in configuration space and the combined time
series is not an equilibrium representation at that temperature.
As Fig. 3(a) shows with these smaller values of τ e, using all
simulations of folding and unfolding regardless of whether
they were successful, the heat capacity that is calculated
using this uncompensated approach is not accurate when
compared to the reference value (τ e = ∞) at the corresponding
temperature. This problem is exemplified by the 2M value at
367 K.

In Fig. 3(b), we implement Eq. (11) to compensate for
unsuccessful runs. At T = 337 K, for τ e = 5M, all 100 folding
runs were successful but only 37 of the 100 unfolding runs
were successful. Following the prescription of Eq. (11), we
combined 37 folding simulations with all 100 of the unfolding
runs. The value of this approach is dramatic. Using all 100
folding and unfolding runs for τ e = 5M simulations at T =
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FIG. 4. (Color online) Free-energy curves F(E) for the two-helix
bundle as a function of energy at the same temperatures that are
focused on for Fig. 3, 337 K (<Tc) and 367 K (>Tc). Different F(E)
curves are calculated using simulations that imposed different cutoff
times τ e. (a) and (c): Uncompensated results showing large deviations
from the correct τ e = ∞ reference curve. (b) and (d): Compensated
calculations produce results that collapse for all τ e onto the reference
curve τ e = ∞.

337 K, Fig. 3(a) shows that the calculated heat capacity is
far from the reference results. In contrast, Fig. 3(b) shows that
implementation of Eq. (11) brings the heat capacity calculation
very close to the reference value. An even more extreme
example of the value of the method is demonstrated by the
τ e = 2M point at T = 367 K in which only 23% of the folding
runs were successful, as could occur for a system with a very
complex energy landscape. Figure 3(a) shows that using all
folding runs and all unfolding runs for calculating Cv gives a
result that is very far from the reference value. This incorrect
value is so high that it would broaden the peak of the Cv curve
dramatically and lead to incorrect estimates of Tc. Figure 3(b)
shows that when Eq. (11) is implemented, the calculated Cv

value for the τ e=2M point at T=367 K dramatically collapses
to the correct reference value. In addition, Fig. 3(b) also shows
that the calculated heat capacities that are the same for all τ e,
and the compensation method produces accurate results even
when the undersampling is large.

We examined another important thermodynamic parameter,
free energy F of the two-helix bundle. In Fig. 4, we plot F as
a function of E for the same two temperatures that we focused
on for Fig. 3, 337 and 367 K. In Figs. 4(a) and 4(c), we plot
F(E) using all 100 folding simulations and all 100 unfolding
simulations. As with the heat capacity graph of Fig. 3(a), for
smaller τ e the calculation of F(E) deviates far from the correct
reference value given by the τ e = ∞ curve. The results are so
inaccurate that it can be hard to even distinguish which state
is stable at 367 K. In Figs. 4(b) and 4(d), we plot F(E) that is
recalculated using the compensation method. As can be seen,
as with Fig. 3(b), the compensation method correctly collapses
the calculated F(E) for all τ e onto the reference curve τ e = ∞.

The compensation method used in Figs. 3 and 4 for the
relatively simple two-helix bundle system can be applied also
to more complex multistate systems involving metastable tran-
sition states. We performed folding and unfolding simulations
of the GCN4-p1 leucine zipper dimer [51–53] that is displayed

FIG. 5. (Color online) Free-energy landscapes for the leucine
zipper dimer of Fig. 1. Because of the complexity of the system, only
nonequilibrium, incomplete simulation trajectories are available. The
calculation of F employs the compensation technique of Eq. (11).
Red represent low F and blue represent high F (scale shown in kcal
mol−1). In both (a) and (b), F(q,x) is calculated for different values
of the secondary structural parameter, q which represents the fraction
of amino acids that are in the native helical state. The other structural
parameter x is (a) the fraction of native tertiary contacts Q that are
intact. The region with q ∼ 1, Q ∼ 1 corresponds to the native-state
basin, whereas q ∼ 0 and Q ∼ 0 correspond to the unfolded, random
coil basin. (b) In addition to q, the other structural parameter is
the center-of-mass separation dcm. The region with q ∼ 1, dcm ∼ 6
corresponds to the native-state basin.

in Fig. 1. For the energy parameters and amino acid sequence
used in these simulations, there was no temperature at which
there is 100% success for both folding and unfolding runs
within τ e = 100M. In Fig. 5 we plot the free-energy landscape
as a function of various structural parameters at T = 347 K.
At this temperature, which is near the transition temperature,
100% of the folding runs were successful, but only 87% of the
unfolding runs were successful, and therefore we applied our
compensation method to get the proper configuration-space
sampling ratio. Figures 5(a) and 5(b) are projections of the free-
energy landscape onto different planes of the multidimensional
configuration space. In both Figs. 5(a) and 5(b), F(q,x) is
calculated for different values of the secondary structural
parameter q. We plot F in terms of the fraction of amino acids
that are in the native helical state as compared to the maximum
of q = 74. The other structural parameter x in Fig. 5(a) is the
fraction of native tertiary contacts Q, with Q = 1 corresponding
to all nine contacts. The region with q ∼ 1, Q ∼ 1 corresponds
to the native-state basin, whereas the region with q ∼ 0 and
Q ∼ 0 corresponds to the unfolded, random coil basin. In
Fig. 5(b), in addition to q, the other structural parameter
is the center-of-mass separation dcm. In both Figs. 5(a)
and 5(b), transition states that are populated are shown.
This shows the value of our compensation method when
calculating thermodynamic properties such as free energy,
because Figs. 5(a) and 5(b) reveal likely routes from the
unfolded region to the native-state configuration.

V. CONCLUSION

We describe a method that allows computational simula-
tions to be used to calculate accurate values of thermodynamic
parameters for systems that are complex enough that computer
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simulations cannot properly sample the configurational land-
scape. Our compensation method can be applied to any system
that has transitions between two stable regions of configuration
space, and is valid when there are intermediate transition
states that are appropriately sampled. We present results for
two different biological physics systems, a relatively simple
two-helix bundle protein, and a more complicated leucine
zipper dimer.

In order to accurately calculate thermodynamic parameters
such as heat capacity and free energy, simulations must explore
configuration-space regions with a fractional time given by
the Boltzmann probability. For systems with many different

types of interactions and many degrees of freedom, this may
be computationally unfeasible at many temperatures because
of the complexity of the energy landscape. As shown in
Figs. 3 and 4, thermodynamic parameters calculated from
these incomplete, nonequilibrium simulations will give highly
inaccurate results if compensational methods are not used.
The results can be so far off from the correct values that little
insight can be obtained about the dynamics of the system. Our
method gives a straightforward technique for compensating
for the nonequilibrium sampling and allows nonequilibrium
simulations to be combined to allow accurate calculations of
thermodynamic parameters.
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