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Optimizing periodicity and polymodality in noise-induced genetic oscillators
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Many cellular functions are based on the rhythmic organization of biological processes into self-repeating
cascades of events. Some of these periodic processes, such as the cell cycles of several species, exhibit conspicuous
irregularities in the form of period skippings, which lead to polymodal distributions of cycle lengths. A recently
proposed mechanism that accounts for this quantized behavior is the stabilization of a Hopf-unstable state
by molecular noise. Here we investigate the effect of varying noise in a model system, namely an excitable
activator-repressor genetic circuit, that displays this noise-induced stabilization effect. Our results show that
an optimal noise level enhances the regularity (coherence) of the cycles, in a form of coherence resonance.
Similar noise levels also optimize the multimodal nature of the cycle lengths. Together, these results illustrate
how molecular noise within a minimal gene regulatory motif confers robust generation of polymodal patterns of
periodicity.
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I. INTRODUCTION

Biological oscillations underlie many physiological func-
tions in cells, from basic processes such as cell growth and
division [1] to evolutionary environmental adaptations such as
circadian rhythmicity [2]. Many circuit architectures have been
proposed that explain the observed periodic behavior in terms
of limit-cycle attractors of nonlinear dynamical models [3].
These limit cycles exhibit a perfectly periodic behavior, which
is only slightly perturbed by realistic levels of biochemical
random fluctuations, or noise, that are unavoidable in cells [4].
In some situations, however, cellular oscillations display a
degree of variability much larger than what can be obtained
from a limit-cycle model with added noise. This is the case,
for instance, of the cell cycle oscillations exhibited by Chinese
hamster cells [5], fission yeast cells [6], and Xenopus laevis
blastomeres [7]. In these organisms, cells do not always
divide when they are supposed to, giving rise to a distribution
of cell-cycle periods that is not unimodal, but that exhibits
secondary peaks at multiples of the cell-cycle period. This
quantized behavior cannot be explained by the usual factors
responsible for the heterogeneity of the cell cycle, such
as parameter inhomogeneities and the age distribution of cells
within a population. Those factors, which are undoubtedly
present in any dividing cell population, would only lead to
broadening of the period distribution but not to polymodality.
Therefore detailed mathematical models with a relatively large
number of biochemical components (on the order of 10)
have been proposed to explain this behavior [8]. In those
models, period skipping arises already at the deterministic
level (i.e., in the absence of sources of heterogeneity and
inhomogeneity) [9], while noise is sometimes considered
[10] to reproduce the level of irregularity observed in the
experiments. Other striking examples of polymodal cycles
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embedded in an otherwise oscillatory dynamics were reported
long ago in sensory neurons [11] and bacterial motility [12].

Using the phenomenologies described above as motivation,
here we address the general question of how a limit cycle be-
havior with polymodal period distribution can arise in minimal
oscillator models. To that end we consider one of the most basic
oscillator architectures, namely a two-component activator-
inhibitor system operating in an excitable regime (close to the
oscillatory region) and subject to noise. We recently showed
that such a model system exhibits noise-induced stabilization
of an unstable spiral state [13]. Due to its excitable character,
this model system displays noise-triggered excursions away
from the stable (rest) state, during which the cell passes through
a region near the unstable spiral. The stabilization mechanism
consists in the appearance of oscillations around the unstable
state, due to the stochastic fluctuations. As a consequence
of these oscillations, the distribution of excursion times away
from the rest state exhibits a marked polymodality: each noise-
induced oscillation around the unstable state introduces a well
defined delay (the oscillation period) in the pulse duration.
Thus noise can explain the polymodality of pulse duration
distributions in certain conditions. However, the (excitable)
pulses are triggered by noise to begin with, and thus they are
far from occurring periodically, which would be necessary if
this mechanism is to explain the polymodal cell-cycle duration
distributions mentioned above.

Coincidentally, however, systems with excitable dynamics
are known to exhibit enhanced periodicity, or coherence, for an
optimal amount of noise: too little noise will elicit pulses only
sparsely, and therefore irregularly, while too high noise will
lead to a strong disorder in the dynamics. A moderate level of
noise, on the other hand, is able to evoke pulses frequently, as
soon as the refractory time following the previous pulse (char-
acteristic of all excitable systems) has elapsed, and thus leads
to a substantially periodic behavior, with a period basically
given by the refractory time. Such somewhat counterintuitive
effect of noise has been termed coherence resonance or, more
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appropriately, stochastic coherence [14–16]. The goal of this
paper is to show that stochastic coherence can be invoked,
together with the noise-induced stabilization effect discussed
above, to provide a minimal mechanism for the generation
of polymodal distributions of cycle lengths in an otherwise
periodic behavior. The mechanism requires only a simple
genetic activator-repressor motif and an optimal amount of
random fluctuations. In our setting, the effect of intrinsic
molecular noise is characterized by using discrete stochastic
simulations.

The level of intrinsic noise is controlled by the cell
volume, whose increase (together with the gene copy numbers)
effectively scales up the numbers of molecular species (thus
reducing the noise), while maintaining the concentrations con-
stant. This approach was recently introduced experimentally
in B. subtilis [17], and has been subsequently used in E. coli
as well [18]. From the theoretical side, system-size effects
have been seen to lead to stochastic-resonance [19,20] and
stochastic-coherence [21] effect through their control of the
effective noise intensity perceived by the system.

Our results show that noise, besides enhancing the regu-
larity of the pulse activations, also optimizes polymodality
in the system’s response. Furthermore, optimization of peri-
odicity and polymodality are achieved when noise levels are
comparable. Thus when the coherence of the excitable pulses
is maximized, so is the probability that the pulses undergo
oscillations around the unstable spiral state. There is a range
of noise levels for which optimization holds. Together, these
results show that noisy activator-repressor genetic circuits can
naturally behave as polymodal oscillators.

II. MODEL

We now describe our model system using the terminology
of gene regulation circuits, although the results obtained
are applicable to any activator-inhibitor system. The genetic
circuit (see Fig. 1) is a simple two-component system where an
activator protein, A, binds to and activates its own promoter,
Pa , and the promoter of a repressor species Pr . The repressor
component, R, in turn, inhibits the expression of the activator
species by competitively binding to the promoter Pa . This
system is a prototypical transcriptional activator-repressor
genetic circuit where the activator species forms a direct
positive feedback loop through its autoregulation and an
indirect negative feedback loop by means of the activation
of its own repressor [22–24]. The dynamics of this system
is highly nonlinear, due to the cooperative nature of the
regulated transcription processes. Specifically, the kinetics of
the regulated activation of the Pa promoter is described by a
Hill function with cooperativity n:

f (A,R,k2,Ka,Ki,n,m) = k2A
n

An + Kn
eff

,

where A represents the activator concentration in the cell,
and the effective activation threshold Keff depends on the
concentration R of repressor through the expression Kn

eff =
Kn

a [1 + (R/Ki)m]. In this equation, the term Ki accounts for
the competitive inhibition exerted by R, the net effect of which
is to increase the promoter’s activation threshold. The kinetics

FIG. 1. (Color online) (a) The genetic motif investigated here
consists of two genes, a and r, coding for activator A and a repressor
R proteins, respectively. The activator protein binds to the promoters
Pa and Pr of the genes a and r, respectively, and the repressor protein
binds to Pa competitively inhibiting its activation by A. (b) Set of
reactions describing the genetic circuit. Reaction (a) corresponds to
the leaky or constitutive transcription of activator mRNA. Regulated
transcription of the activator and repressor mRNA species is encoded
in reactions (b) and (c). Protein translation for the activator and
repressor is represented by reactions (d) and (e), respectively,
and degradation reactions for the mRNA and protein species are
(f)–(i).

of regulated transcription of the repressor mRNA is described
by a simple activation Hill equation,

g(A,k3,Kr,p) = k3

1 + (
Kr

A

)p ,

with constant activation threshold Kr .
The values of the reaction rates used in the simulation

shown below are given in Table I. The values of the parameters
are within reasonable biological ranges for a gene regulation
circuit. In particular, the values chosen for the transcription,
translation, and degradation rates, and for the activation and
inhibition threshold concentrations, are of the same order
of magnitudes of previous studies that involved qualitative
comparison and careful validation with experimental
measurements [17,25,26]. Note that the rates of the
transcription reactions in Fig. 1 are proportional to a factor �.

TABLE I. Values of the reaction rates used in the stochastic
simulations of the circuit represented in Fig. 1.

k1 0.00625 nM/(s molecule) k6 0.05s−1

k2 0.5 nM/(s molecule) k7 0.05s−1

k3 0.05 nM/(s molecule) k8 0.001s−1

k4 2s−1 k9 0.0001s−1

k5 2s−1 Ka 5000 nM
Kr 9000 nM Ki 5000 nM
n 2 m 2
p 4
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This parameter is a global scaling factor that depends on the
size of the cell. Specifically, � = V · NA, where V is the cell
volume and NA is Avogadro’s number. In that way, � relates
the species concentrations with the number of molecules: if
nA is the number of molecules of A and A is its concentration,
then nA = �A. We will also consider that the transcription
strengths are proportional to �, which is a generalization to
the continuum of the assumption that the gene copy number
increases with cell size. This happens when a cell is prevented
from dividing but not from replicating its DNA, as happens
in certain bacterial mutants [17]. Under those assumptions,
the level of molecular noise increases monotonically with the
inverse of the system size �−1 [27]. In the following, we will
use the parameter �−1 to characterize the levels of noise in
the system.

A continuous model of the circuit for the case of negligible
fluctuations can be derived for the set of reactions listed
in Fig. 1(b) [28]. Let a, r denote the concentration of
activator and repressor mRNA molecules and A, R the
protein concentrations. Applying standard kinetics rules to the
reactions listed in Fig. 1(b) leads in a straightforward way to
the following coupled ordinary differential equations:

da

dt
= k1 + k2

An

An + Ka
n + (γrR)m

− k6a,

dr

dt
= k3

Am

Kr
p + Ap

− k7r,

dA

dt
= k4a − k8A,

dR

dt
= k5r − k9R.

(1)

where γr
m = Ka

n/Ki
m. Note that this system of equations is

independent of the system size.
Further assuming a separation of mRNA and protein

time scales, the former ones (being much smaller) can be
adiabatically eliminated, and the system can be reduced to two
coupled ordinary differential equations,

dA

dt
= α + β1

An

An + Ka
n + (γrR)m

− λ1A,

dR

dt
= β2

Ap

Kr
p + Ap

− λ2R,

(2)

where

α = k1k4/k6,

β1 = k2k4/k6, β2 = k3k5/k7,

λ1 = k8, λ2 = k9.

(3)

While in this work the model dynamics is obtained by exact
discrete stochastic simulation of the chemical kinetics [27]
described in Fig. 1(b), its qualitative dynamical aspects are
described with the planar system of differential equations (2).
We note that, as in the case of Eqs. (1), our final deterministic
model given by Eqs. (2) does not depend on the system size,
and thus the deterministic dynamics will be unchanged as noise
levels vary. This is due to the fact that the system size factor
� rescales the levels of all proteins (and thus the absolute
activation and inhibition thresholds) in the same manner
as the transcription rates, while keeping the concentrations

unchanged. In that way, the average concentration dynamics
of the model does not depend on noise, but only the variances
of the concentrations do.

III. RESULTS

A. Deterministic excitable dynamics and effects
of molecular noise

The interplay between the autoactivation positive feedback
loop of A on itself and the negative feedback loop formed
by the activator and the repressor allow for a wide range of
rich dynamics. In particular, for the set of parameters given in
Table I and Eq. (3) the system is excitable. The phase portrait
depicting the nullclines of this system for those parameter
values is shown in Fig. 2(a). The system has three equilibrium
points: a stable node, a saddle point, and an unstable focus. In
the absence of noise, the system rests in the only stable state,
which in this case corresponds to low numbers of both activator
and repressor molecules. Small perturbations from this stable

FIG. 2. (Color online) (a) Phase portrait representing the dynam-
ics of the system of equations (2). The nullclines for A and R are
represented by solid (green online) and dashed (red online) lines. The
system has three equilibrium points: a stable node (black circle), a
saddle point (white circle), and an unstable focus (white diamond).
The stable manifold of the saddle point (dotted line, yellow online)
introduces a threshold of excitability. A trajectory obtained by discrete
stochastic simulations (� = 1molecule/nM) is shown in black.
The random fluctuations of this system make it possible to cross the
separatrix and initiate a large excursion in the phase plane. (b) The
same trajectory is plotted as a time course of the protein species. When
the threshold of excitability is crossed, a transient pulse in the number
of activator and repressor molecules is produced. (c) Sensitivity of
the model to single parameter changes. Vertical lines show the range
of parameter values for which excitability is maintained (in % change
from the values in Table I). The symbols at the end of the vertical
lines indicate the type of bifurcation leading to loss of excitability, or
whether the range is unbounded (see legend and main text). Broken
bars indicate much larger ranges than the one indicated by the vertical
axis.
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point vanish exponentially and the system quickly recovers
the rest state. However, the stable manifold of the saddle point
[the separatrix, dotted spiral line in Fig. 2(a)] is an excitability
threshold beyond which perturbations evoke a large excursion
through phase space, passing around the unstable focus and
back to the stable point avoiding crossing the separatrix [29].
The occurrence of this excitability cycle can be understood
as follows: a sufficiently large initial amount of activator
molecules triggers the positive feedback loop and leads to
a large pulse of activator molecules. The increasing levels
of activator switch on the production of repressor proteins
(repressor pulse) which, in turn, shut down the production of
activator. Finally, the amounts of activator and repressor decay
due to linear degradation or dilution. This transient response
is characterized by a refractory time, which is the duration of
the cycle from the triggering event to the recovery of the rest
state.

Stochastic fluctuations due to intrinsic noise can destabilize
the rest state by randomly crossing the excitability threshold
and hence generating pulses of activator and repressor protein
levels. Figure 2(a) shows an excursion in phase space triggered
by stochastic fluctuations, and Fig. 2(b) shows the correspond-
ing time course for both the activator and the repressor.

The excitable regime in which this system operates arises
when the system is close to a bifurcation point beyond which
the dynamics has the form of a limit cycle [30]. In addition,
the noise-induced stabilization of the unstable state emerges
close to a Hopf bifurcation [13] beyond which the system
becomes bistable. Despite these constraints in the parameter
values, the activator-repressor system presented here is robust
to parameter changes, as shown in Fig. 2(c). This figure
depicts the main bifurcations from excitability that the system
undergoes as the kinetic parameters are varied one by one. In
particular, the codimension-1 bifurcations found are (i) the
stabilization of the unstable spiral via a Hopf bifurcation;
(ii) the collision of the saddle and the node defining the resting
state [saddle node 1 in Fig. 2(c)]; and (iii) the collision of the
saddle and the unstable state (saddle node 2). This analysis
shows that the more sensitive parameters are the activator
degradation rate λ1, for which the excitability is maintained
for a global range of variation of 27.8%, and the the maximum
regulated transcription rate β1, for which a global variation of
36.7% is possible without losing excitability.

B. Polymodality in the cycle duration depends on the level
of intrinsic noise

As already mentioned, the sporadic generation of pulses
of activity is not the only effect caused by molecular noise
in this system. As shown in Figs. 3(a) and 3(b), noise also
stabilizes the unstable state and generates bursts, or cycles, of
multiple pulses. This is due to the fact that noise causes the
trajectories traveling around the unstable spiral point to cross
over the stable manifold of the saddle [dotted line in Fig. 2(a)].
This leads to the trajectory getting trapped orbiting around
the unstable fixed point for an integer number of cycles, thus
generating a polymodal distribution of pulse durations [13].

In order to characterize this noise-induced polymodality,
we have computed the cycle durations for varying levels
of molecular noise (which increase as the system size �

FIG. 3. (Color online) Molecular noise induces bursts with mul-
tiple pulses. (a) A burst trajectory obtained with discrete stochastic
simulations (� = 1molecule/nM) is depicted in the phase plane.
Fluctuations due to molecular noise synergistically interact with the
dynamics around the focus and can temporarily trap the system in
an area around the otherwise unstable state. (b) Time course for the
number of activator and repressor proteins for the burst shown in (a).
The stabilization of the active state is characterized by the oscillations
in the numbers of molecules. (c) Histograms of the burst durations
for varying levels of the intrinsic noise (�−1). Color is coded in
logarithmic scale to emphasize the existence of polymodality. (d)
Probability of generating a cycle with multiple pulses plotted against
the noise level. For intermediate values of the noise strength the
system reaches a maximum probability of generating bursts with
more than one pulse. (e) Average number of pulses per burst of
activity as a function of �−1.

decreases). Figure 3(c) shows the normalized histogram of
burst durations for different values of �−1. For large system
sizes (small �−1, small molecular fluctuations), the histogram
shows multiple modes with clearly defined peaks. Each of
the modes of the histogram obviously corresponds to a class
of burst with a definite number of pulses. The single pulse
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cycle (corresponding to the first mode in the histogram) is,
by far, the most probable case. For intermediate noise levels,
the secondary peaks, corresponding to cycles with multiple
pulses, get both higher and wider. If noise is increased further,
the polymodal character of cycle durations is lost and just a
single wide peak remains.

These results insinuate a new resonance-like effect in which
growing levels of noise increase the polymodality in the
pulse-duration distribution, until it reaches a maximum and
starts declining again. In order to assess this resonant effect, we
have computed the probability of having more than one pulse
in one burst [Fig. 3(d)], together with the number of pulses per
activation burst [Fig. 3(e)] as a function of increasing noise
levels. Here, the pulses per cycle are computed by counting
the number of complete cycles around the unstable focus. This
method was found to be a very robust way to compute the
number of pulses in the presence of large random fluctuations.
Both plots clearly show the predicted resonance effect, with
the optimal degree of polymodality arising at a value of
� ∼ 1 molecule/nM.

The reasoning behind this resonant effect can be stated as
follows. For large system sizes (small noise), noise is large
enough to trigger excitable pulses, but it is too small to easily
induce crossings of the trajectory beyond the stable manifold
of the saddle. Thus the fraction of bursts in which there is
more than one cycle is small (and the average number of
cycles is close to 1). On the opposite side, for small system
sizes, the random fluctuations are too large to maintain the
coherence of the oscillations around the unstable spiral, and
the burst duration is no longer quantized, but is widely variable
and with small mean, since it is easy for the trajectory to
escape the area near the unstable spiral and relax back to the
neighborhood of the rest state. For intermediate system sizes,
on the other hand, noise is large enough to induce frequent
crossings of the spiral’s stable manifold, but small enough to
maintain the coherence of the noise-induced oscillations, and
thus polymodality is maximized.

C. Noise modulates the regularity of the oscillations

Let us now turn our attention to the ability of the system to
generate regular cycles. Not being a genuine genetic oscillator
but an excitable system, pulses in this circuit are in principle
randomly generated by noise. In this scenario, we want to
establish whether the level of noise has an impact in the
regularity of pulse initiation. This effect is already made
evident by visual inspection of the time traces of the activator
species for different values of �, as shown in Fig. 4(a). The
three panels in this figure display time traces of the the activator
species for three different levels of molecular noise (increasing
noise from top to bottom). The dynamics of the system in
these three panels are qualitatively different. While the top
and bottom panels show bursts of activity at very irregular time
intervals, the middle panel presents a quite regular pattern of
cycles. This plot already hints at a second noise-dependent
resonancelike effect, according to which the regularity of
excitable pulses is maximized for an intermediate amount of
noise, which is known as coherence resonance or stochastic
coherence [15,16]. In order to quantify this effect, we compute
the coefficient of variation (CV) of the time between bursts of

FIG. 4. (a) Temporal evolution of number of activator molecules
for three different values of the system size. Note how the peak
number of molecules decreases as the system size decreases. (b)
Coefficient of variation of the intervals between consecutive cycle
initiations, plotted versus �−1. (c) The average rate of cycle initiation
as a function of the noise level. For large system sizes, the fluctuations
are not large enough to initiate the cycles. For small system sizes the
decay in the pulsing rate is mainly due to the discrete nature of the
chemical reactions and the small amount of mRNA species.

protein concentration, a reliable regularity measure. The CV
is defined as the standard deviation normalized to the mean,

cv =
√

〈T 2〉 − 〈T 〉2

〈T 〉 ,

where the random variable T denotes the duration between
bursts of activity. This measure is routinely used as a
quantifier of noise-induced regularity in coherence-resonance
studies [16]. In a perfectly periodic regime where the pulses
were equally spaced in time, the coefficient of variation
would be exactly zero. Conversely, in a completely random
regime with pulses following poissonian statistics (exponential
waiting times), the coefficient would take the value of 1 (the
standard deviation being equal to the mean) or even higher
(hyperexponential waiting times). Thus the smaller the value
of the CV, the closer the system is to operating in a coherent
regime. Other quantifiers of coherence resonance, such as the
correlation time of the dynamics, can be used, but lead to the
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same conclusions [15]. Here, the CV is estimated from the
simulated time courses using a robust thresholding method.

The coherence resonance effect is revealed in Fig. 4(b),
where the CV is plotted against the system size. For small
amounts of intrinsic noise the system mainly remains in
the basal stable state, with some sporadic pulses appearing
randomly in time [see also Fig. 4(c), which shows that the
pulsing rate approaches 0 for small noise]. This results in
a CV of around 1. As the system size is decreased, the
effect of intrinsic noise increases and the system pulses at
a higher pace. Here is where the refractory time enters the
game, as it poses a limit in the pulsation frequency (the
system cannot undergo a new cycle if it has already started
one). Thus temporal regularity appears as a synergistic effect
involving the dynamics of the system and the intrinsic noise.
In particular, the maximum regularity in the oscillations
(a minimum CV) appears at � = 0.147 molecule/nM. Further
reducing the system size causes a reduction in the regularity
of the oscillations. This loss of coherence is due to two main
causes: first, large amounts of noise destroy the excursion paths
thus generating a variety of incomplete pulses and eliminating
the system’s eigenfrequency dictated by the refractory time
[16]. The second cause of coherence loss, which is not common
in standard coherence resonance, is the appearance of periods
of silencing where the activity of the system is completely
shut down [see bottom panel in Fig. 4(a)]. These periods of
silencing are due to the fact that when the cell size is very small,
the number of molecular species is very small. In particular, the
number of mRNA molecules falls frequently to zero, resulting
in the total absence of protein expression during relatively large
time intervals. Such low levels of mRNA are not uncommon in
cells, as has been recently shown experimentally in E. coli [31].

D. Polymodality affects regularity

We have shown that this circuit displays two apparently
opposing effects caused by intrinsic noise. On one side, noise
increases the variability in the duration of the cycles in a
quantized manner. On the other side, it reduces the variability
in the cycle initiation times. Thus it is reasonable to think
that these effects might affect one another. Here we show
how polymodality in the duration of the cycle poses a limit in
the temporal coherence attained by the genetic oscillator. For
this purpose, we first assume that, for a given range of noise,
we reach a perfect timing of the cycles, where each cycle
follows the next without delay. In this hypothetical case we
can estimate the loss of temporal coherence (in the CV sense)
attributable to the cycle duration polymodality by taking into
account the probabilities of obtaining a cycle with a particular
number of bursts. In this case, in which a new cycle starts
just after the previous one, the average time between cycles
is 〈Tpm〉 = ∑

i�1 pi Ti , where pi is the probability of getting
a burst with exactly i pulses (i > 0) and Ti is the average
duration of a burst with i pulses. We can also estimate the
variance by further assuming that all the cycles with i pulses
have a length of exactly Ti (zero variance among them):
σpm

2 = 〈Tpm
2〉 − 〈Tpm〉2 = ∑

i�1(pi Ti
2) − 〈Tpm〉2. This al-

lows us to calculate the contribution of the polymodality,
c

pm
v , to the total coefficient of variation of the time between

initiations.

FIG. 5. Coefficient of variation of the interburst times due to
polymodality cpm

v (white circles), compared to the total CV cv of the
dynamics [black squares, from Fig. 4(b)]. For intermediate values of
noise the CV of the oscillator becomes close to cpm

v .

Figure 5 compares c
pm
v (white circles) with the total

CV [black squares; see also Fig. 4(b)] for varying noise
levels. In this figure, c

pm
v has been computed using val-

ues for the probabilities pi that were estimated from the
time traces of the stochastic simulations [see Fig. 3(d) and
accompanying text]. In addition, the values for Ti have
been fitted to the formula Ti/T1 = 1 + (i − 1)δ (resulting
in δ = 0.75). A comparison between the white circles in
Fig. 5 and the result of Fig. 3(e) shows that, for continuous
pulsing (noise generates a pulse as soon as the refractory time
from the previous pulse is over), the regularity of the pulses
drops (cpm

v increases), as the polymodality is enhanced. Thus
in the regime of continuous pulsing there is an evident tradeoff
between cycle length polymodality and temporal coherence.
Finally, Fig. 5 also shows that around the minimum CV the
system is close to the regime of constant cycling. Thus in
that case basically all the remaining irregularity (note that
the CV does not decay to zero) is due to the polymodality.
Therefore polymodal behavior establishes an upper bound for
the regularity of the system’s dynamics.

E. Noise-induced polymodality and regularity robustly coexist

An important question is how the noise levels that optimize
coherence and polymodality compare to one another. A
comparison between Figs. 3(d) and 4(b) reveals that, for the
parameter values chosen, there is one order of magnitude
difference between the two optimal noise levels. However,
we can still say that the two effects displayed by this simple
genetic model take place for overlapping ranges of molecular
noise. This can be argued from Fig. 6, which plots together
the measures of polymodality (in the x axis) and regularity
(in the y axis) for varying amounts of noise (milestones
labeled in some data points in the figure). The figure shows
that as noise increases, both the regularity and polymodality
increase, and there is a range of noise levels spanning over
an order of magnitude (black squares in the figure), for which
both magnitudes are equally high, before decreasing again as
noise is further increased. Thus one can say that an optimal
level of noise maximizes almost simultaneously, and for a
relatively wide range of noise amplitudes, both the regularity
and the polymodality of the dynamics of the activator-repressor
module.
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FIG. 6. A range of noise levels optimize regularity and poly-
modality almost simultaneously. Regularity (1/cv , from Fig. 4) is
plotted against polymodality [probability of multiple pulses in a burst,
from Fig. 3(d)] for varying levels of molecular noise. Labels indicate
the inverse of the system sizes (�−1) for some of the points. Black
squares correspond to noise levels for which the system is both largely
polymodal (probability � 0.15) and regular (cv < 0.6).

IV. DISCUSSION

Cellular processes regulated by genetic components are
subject to large amounts of random fluctuations. In the face
of this fact, it is appealing to conjecture that, rather than
simply trying to filter out noise, certain cellular mechanisms
have evolved to cope with random fluctuations, and in some
cases even rely on them for function. In the last decades
many noise-induced phenomena in physical systems have been
described, both theoretically and experimentally. Strikingly,
noise can in some cases increase order in the dynamics [32]
and play a constructive role in nonlinear systems. It is also
becoming evident in recent years that molecular noise has an

impact on the dynamics underlying many biological processes
[26,33–36].

Here we have shown that intrinsic noise is able to turn
a simple activator-repressor genetic circuit into an oscillator
with nontrivial statistical properties, reflected in a polymodal
distribution of cycle durations embedded in a relatively
strongly periodic sequence. A similar effect has been reported
in coupled excitable elements [37,38]. Here, in contrast,
we show that the phenomenon can arise in single excitable
elements. The role of noise in our system is twofold. On the
one hand, it stabilizes an unstable spiral point by inducing
oscillations around it, which increases the duration of phase-
space excursions in a quantized manner. Furthermore, the
resulting polymodal character of the dynamics is enhanced
for an intermediate noise level. The second role of noise
is to enhance coherence in the pulse initiation times, which
occurs via a standard coherence resonance effect, characteristic
of excitable systems subject to noise [16]. This double
optimization provides a relatively simple mechanism for the
emergence of polymodal behavior in genetic oscillators.
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