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Anisotropic mobility model for polymers under shear and its linear response functions
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We propose a simple dynamic model of polymers under shear with an anisotropic mobility tensor. We calculate
the shear viscosity, the rheo-dielectric response function, and the parallel relaxation modulus under shear flow
deduced from our model. We utilize recently developed linear response theories for nonequilibrium systems
to calculate linear response functions. Our results are qualitatively consistent with experimental results. We
show that our anisotropic mobility model can reproduce essential dynamical nature of polymers under shear
qualitatively. We compare our model with other models or theories such as the convective constraint release
model or nonequilibrium linear response theories.
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I. INTRODUCTION

The linear response theory gives a formula which relates
a response function in equilibrium to an equilibrium time
correlation function [1–3]. In equilibrium, the response of a
physical quantity A at time t to a weak external perturbation at
time t ′(� t), which is conjugate to B, is given as the following
form:

RAB(t − t ′) = 1

kBT

d

dt ′
〈A(t)B(t ′)〉eq. (1)

Here kB is the Boltzmann constant, T is the absolute
temperature, and 〈· · ·〉eq means the equilibrium statistical
average. Equation (1) holds for a wide range of systems [1–3]
as long as the system is in equilibrium. [In the following,
we call the response formula (1) as the Green-Kubo type
formula.] From the viewpoint of experiments, Eq. (1) can be
utilized to obtain the correlation function from the response
function. This enables us to extract information of microscopic
and/or mesoscopic dynamics of molecules from macroscopic
responses.

For polymeric systems, the viscoelastic response functions
(especially the shear relaxation modulus or the storage and
loss moduli) or the dielectric response function are useful. For
example, the viscoelastic response functions can be related to
the autocorrelation function of the microscopic stress tensor,
and the stress tensor can be related to bond vectors [4]. The
dielectric response functions of polymers with type A dipoles
(polymer chains which have electric dipoles along the chain
backbones) can be related to the autocorrelation functions of
end-to-end vectors. The combination of the viscoelastic and
dielectric measurements provides various information about
dynamics of polymer chains [5–9].

Even out of equilibrium, it is possible to measure linear
response functions. Then we expect that the measured response
functions can be related to the correlation functions, or at least
they reflect the information about the dynamics of polymer
chains. Actually, several linear response measurements under
steady shear, such as mechanical responses [10–17] or dielec-
tric responses [18–22] have been reported. However, unlike
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the equilibrium cases, it is not clear how we can analyze
and interpret the nonequilibrium linear response functions.
In several works, the Green-Kubo-type relation (1) is utilized
to analyze obtained experimental data, without justifications.
But from the viewpoint of nonequilibrium statistical physics,
generally Eq. (1) does not hold except for some special or
limited cases.

Fortunately, the Green-Kubo-type relation approximately
holds for the dielectric response of polymers in the shear
gradient direction under shear (the rheo-dielectric response)
[23], and thus we can obtain the correlation function of the
end-to-end vectors under shear. In this work we therefore
concentrate on polymers with type A dipoles. The rheo-
dielectric responses for polymers with type A dipoles have
been systematically studied and analyzed for various systems
and shear rates [18,20–22]. The rheo-dielectric functions
of linear polymers are reported to be insensitive to shear,
even if the shear rate is large and the shear thinning is
observed. This implies that the dynamics of polymer chains
in the shear gradient direction is not affected largely by
shear flow even under fast shear. So far, why and how such
insensitivity occurs is not fully understood. Although attempts
have been made by coarse-grained molecular simulations
[23,24], simulations have failed to reproduce experimentally
obtained rheo-dielectric behavior.

In the field of the constitutive equation models, many
different approaches to nonequilibrium systems have been
utilized, to reproduce nonlinear viscoelasticity well. Among
them, the anisotropic mobility-type models [25–30] are par-
ticularly notable. In the anisotropic friction model, the friction
coefficient (or almost equivalently, the relaxation time) of the
model is expressed as a tensor quantity instead of a scalar
quantity. This allows us to reproduce a variety of models which
can reproduce complex viscoelastic behavior with relatively
simple constitutive equations.

Motivated by the anisotropic mobility-type constitutive
equation models, in this work we aim to propose a Langevin
equation model with an anisotropic mobility tensor for
dynamics of polymers under shear. Although the anisotropic
mobility tensors are not utilized widely in the field of the
nonequilibrium statistical mechanics, they can potentially
model the dynamics under fast shear. A Langevin equation
model with an anisotropic mobility tensor model was already
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proposed for a rather simple system [31] based on the pro-
jection operator method and molecular dynamics simulation
data. We construct an anisotropic mobility model which is
consistent with some molecular dynamics simulation results,
in a similar way. We limit ourselves to an analytically solvable
toy model to examine the characteristic properties of the
anisotropic mobility model explicitly and simply. We explicitly
calculate several linear response functions such as the rheo-
dielectric response function and the moduli in the shear
flow direction (parallel moduli) for our model. To calculate
the linear response functions, we utilize recently developed
linear response theories for nonequilibrium Langevin systems
[32–34]. Finally we discuss the properties of our model and
its linear response functions under shear from several aspects.
We compare our model with several pieces of previous work,
and show the differences and similarities between our model
and the other models.

II. MODEL

In this section, we propose a simple and solvable model
for dynamics of polymers under shear. We consider weakly
entangled polymer melts or solutions, for which rheo-dielectric
experiments have been carried out [18,20–22]. There are sev-
eral different approaches to model the dynamics of polymers
[4,5,35,36]. Thus, at first, we should choose an appropriate
model from candidates. We are interested in the qualitative
and essential feature of the polymer dynamics under shear. We
require the model to be simple and analytically solvable, so that
we avoid unnecessary complexities and confusions, and make
the model properties clear. From these requirements, we limit
ourselves to the dynamics of the end-to-end vector of a single
polymer chain R, in the weakly entangled system. This reduces
the degrees of freedom drastically. (This approximation gives
the so-called dumbbell model [36].) We also limit ourselves
to the dynamics in the long-time limit, where there is no
memory effect for the end-to-end vector dynamics. Then
we can describe the dynamic equation for R in a closed,
Markovian form. In equilibrium, this equation can be described
as

d R(t)

dt
= − 1

ζ0

∂F(R(t))

∂ R(t)
+ ξ 0(t), (2)

where ζ0 is the friction coefficient which the end-to-end vector
feels, F(R) is the free energy, and ξ 0(t) is the Gaussian noise.
For a Gaussian chain, the free energy can be expressed in the
following simple linear elasticity form:

F(R) = 3kBT

2R̄2
R2. (3)

R̄2 is the equilibrium mean-square average end-to-end dis-
tance. The fluctuation-dissipation relation of the second kind
[1] requires that the thermal noise ξ 0(t) satisfy the following
relations:

〈ξ 0(t)〉 = 0, (4)

〈ξ 0(t)ξ 0(t ′)〉 = 2kBT

ζ0
δ(t − t ′)1. (5)

Here 〈· · ·〉 denotes the statistical average and 1 is the unit
tensor.

R

γ
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z

FIG. 1. Schematic image of a polymer chain under shear. The
solid curve and the solid arrow represent the polymer chain and
its end-to-end vector of the chain, respectively. The dotted arrows
represent the flow field given by Eq. (6). R and γ̇ are the end-to-end
vector and the shear rate, respectively.

We consider a system under simple shear. The velocity
gradient tensor κ is given as follows:

καβ =
{

γ̇ (α = x,β = y)

0 (otherwise),
(6)

where γ̇ is the shear rate. We assume that γ̇ is smaller
than τ−1

R (τR is the Rouse time of the polymer chain) and
the polymer chain is not so highly stretched. A schematic
image of the system is shown in Fig. 1. Since the shear flow
cannot be expressed in relation to a conservative potential
force, the system is nonequilibrium under simple shear. As a
simple extension of the equilibrium Langevin Eq. (2), one may
consider the following Langevin equation:

d R(t)

dt
= − 1

ζ0

∂F(R(t))

∂ R(t)
+ κ · R(t) + ξ 0(t). (7)

In the Langevin Eq. (7), the mobility, which is defined as
the inverse of the friction coefficient, is scalar and thus
isotropic. This is because we simply used the mobility (the
friction tensor) in equilibrium. The system is isotropic in
equilibrium, and the mobility should also be isotropic from the
symmetry. However, if the system is not in or near equilibrium,
it is generally not isotropic. This means that, in principle,
the mobility could be an anisotropic, tensor quantity [31].
Actually, in some constitutive equation models [27,30], the
mobility tensors are designed to be anisotropic under flow.
Thus we consider that Eq. (7) is an oversimplified dynamic
equation model, which may lead physically incorrect results
in particular under fast flow.

When the mobility tensor becomes anisotropic, we expect
that some transport coefficient tensors also become anisotropic
[37–39]. Anisotropic diffusion coefficient tensors are actually
observed in nonequilibrium molecular dynamics (NEMD)
simulations based on the SLLOD model [40,41]. The diffusion
tensor of Lennard-Jones (LJ) particles under shear is first
reported by Sarman et al. [40]. They studied the diffusion
tensor of an LJ particle under shear, at various rates. Their
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simulation result clearly shows that the diffusion tensor
becomes anisotropic and it depends on the shear rate. Quite
recently, Hunt and Todd [41] performed NEMD simulations
for relatively short polymer melts (the Kremer-Grest chains
[42]) and measured the diffusion tensors under shear. Their
result is qualitatively similar to the case of the LJ system.
Namely, the diffusion tensor of the center of mass of a polymer
chain becomes anisotropic and depends on the shear rate.
Besides, the dependence of the diffusion tensor on the shear
rate becomes strong as the polymerization index (number of
beads in a chain) increases. Although their simulations were
limited for rather short chains (unentangled chains), we expect
that this trend will be qualitatively the same or even enhanced
for well-entangled chains.

Although there are several possible interpretations for
these NEMD results [31,43], in this work we interpret that
the anisotropic diffusion is caused by anisotropic mobilities.
Namely, if we model the dynamics of a polymer chain under
shear by a Langevin equation, we should employ an anisotropic
mobility tensor (or an anisotropic friction tensor). McPhie
et al. [31] proposed a Langevin equation with an anisotropic
friction tensor to describe the coarse-grained motion of an LJ
particle under shear. Although they proposed an underdamped
Langevin equation, an overdamped Langevin equation [like
Eq. (2)] seems to be more suitable for the end-to-end vector
of a polymer. Then we express the Langevin equation under
shear as follows:

d R(t)

dt
= −�(γ̇ ) · ∂F(R)

∂ R
+ κ · R + ξ (γ̇ ; t), (8)

where �(γ̇ ) is the mobility tensor which depends on the shear
rate γ̇ and ξ (γ̇ ,t) is the Gaussian noise. We assume that the
fluctuation-dissipation-type relation between ξ (γ̇ ,t) and �(γ̇ )
is satisfied.

〈ξ (γ̇ ; t)〉 = 0, (9)

〈ξ (γ̇ ; t)ξ (γ̇ ; t ′)〉 = 2kBT �(γ̇ )δ(t − t ′). (10)

Equation (10) requires the mobility tensor �(γ̇ ) to be symmet-
ric under the shear field given by Eq. (6). Quite recently, Ilg and
Kröger [44,45] proposed a constitutive equation model with
anisotropic mobility (friction coefficient) tensor for relatively
short polymer chains, based on the NEMD results. Although
their model is not equivalent to ours, it is qualitatively
similar.

From NEMD simulation results and properties of a
Langevin-type equation, we consider the mobility tensor �(γ̇ )
under steady shear should have the following properties.

(1) The mobility tensor should be positive definite (all of its
eigenvalues should be positive).

(2) The eigenvalues of �(γ̇ ) are unchanged under the
transform γ̇ → −γ̇ , that is, each eigenvalue is an even function
of γ̇ .

(3) The xx component (
xx) decreases as γ̇ increases, while
other diagonal components (
yy and 
zz) are not so sensitive
to γ̇ .

(4) The xy component (
xy) is nonzero but its value
is smaller than diagonal elements. Thus it may be simply
neglected (
xy ≈ 0).

(5) From the symmetry, 
xz = 
yz = 0.

(6) The mobility tensor should reduce to the isotropic tensor
at equilibrium (γ̇ = 0).

In this work, we employ the following simple form which
satisfies the above properties (we discuss the other possible
forms later):

�(γ̇ ) = 1

ζ0

⎡
⎣ λ̃(γ̇ ) 0 0

0 1 0
0 0 1

⎤
⎦ . (11)

Here, ζ0 is the friction coefficient at equilibrium and λ̃(γ̇ )
is a function of γ̇ . λ̃(γ̇ ) is an even function of γ̇ , and it
monotonically increases as γ̇ 2 increases. Further, since it
should recover the equilibrium form in the absence of shear
flow, λ̃(γ̇ ) reduces to the equilibrium form, λ̃(0) = 1, at the
limit of γ̇ → 0. For example, we can employ the following
simple form for λ̃(γ̇ ):

λ̃(γ̇ ) = [1 + (τcγ̇ )2]α/2. (12)

α is an exponent which satisfies 0 � α � 1, and τc is a
characteristic crossover time. Roughly speaking, the mobility
tensor is isotropic for |τcγ̇ | � 1 and anisotropic for |τcγ̇ | � 1.
As we show in the next section, Eq. (12) gives the power-
law-type behavior of the shear viscosity. We call Eq. (12) as
the power-law-type model. We can also employ the following
form:

λ̃(γ̇ ) = 1 + ζ0 − ζ∞
ζ∞

(τcγ̇ )2

1 + (τcγ̇ )2
. (13)

ζ∞ corresponds to the effective friction coefficient in the x

direction for |τcγ̇ | � 1. Equation (13) may be preferred if the
system exhibits the second Newtonian region for the shear
viscosity. Equations (12) and (13) are just possible candidates,
and there are many other possible forms for λ̃(γ̇ ). It is worth
noting that our anisotropic mobility tensor is qualitatively
similar to the model by Ilg and Kröger [44,45] (in their model,
the dynamics of the x direction is also accelerated under shear).
Before we proceed, we should notice that the anisotropic
mobility tensor (11) is designed for the simple shear flow,
and it is not expected to be applicable for other flows such
as elongational flows. In the following analysis, we consider
the response around the steady state under the simple shear
[expressed by Eq. (6)] and thus Eq. (11) is sufficient for our
purpose.

Since the Langevin Eq. (8) is linear in R, we can analytically
integrate it and obtain an explicit expression for several
physical quantities. Thus we can analyze linear responses
such as the rheo-dielectric response of our model explicitly.
By substituting Eq. (11) into Eq. (8), we have the following
equations for Rx,Ry, and Rz:

dRx(t)

dt
= − λ̃(γ̇ )

τ0
Rx(t) + γ̇ Ry(t) + ξx(γ̇ ,t), (14)

dRy(t)

dt
= − 1

τ0
Ry(t) + ξy(γ̇ ,t), (15)

dRz(t)

dt
= − 1

τ0
Rz(t) + ξz(γ̇ ,t), (16)
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where we defined the characteristic time τ0,

τ0 ≡ ζ0R̄
2

3kBT
. (17)

The probability distribution defined via the following equation
is useful for some calculations:

P (r,t) ≡ 〈δ(r − R(t))〉. (18)

The probability density (18) follows the Fokker-Planck equa-
tion, which describes the time evolution due to the Langevin
Eq. (8).

∂P (r,t)
∂t

= ∂

∂ r
· �(γ̇ ) ·

[
∂F(r)

∂ r
P (r,t) + kBT

∂P (r,t)
∂ r

]

− ∂

∂ r
· [κ · rP (r,t)] . (19)

The steady-state solution of the Fokker-Planck Eq. (19), Pss(r)
satisfies

0 = ∂

∂ r
· �(γ̇ ) ·

[
∂F(r)

∂ r
Pss(r) + kBT

∂Pss(r)

∂ r

]

− ∂

∂ r
· [κ · rPss(r)] . (20)

For a linear Fokker-Planck equation, the steady-state proba-
bility distribution is known to be a Gaussian [3]. Thus we can
describe the explicit form of Pss(r) simply as follows:

Pss(r) = 1√
det[2πC(γ̇ )]

exp

[
−1

2
r · C−1(γ̇ ) · r

]
. (21)

Here C(γ̇ ) is the covariance matrix,

C(γ̇ ) ≡ R̄2

3

⎡
⎢⎢⎢⎢⎣

1 + (τ0γ̇ )2

λ̃(1 + λ̃)

τ0γ̇

1 + λ̃
0

τ0γ̇

1 + λ̃
1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ . (22)

For any physical quantity determined by R, the statistical
average of a function of R in the steady state can be evaluated
easily with the aid of the steady-state probability distribu-
tion (21). Also, we can construct the constitutive equation
of the anisotropic mobility model from the Fokker-Planck
equation (19). We show the constitutive equation and compare
it with some conventional constitutive equation models in
Appendix A.

III. RESULTS

A. Shear viscosity

In our model, the stress tensor is expressed as follows:

σ (R) = 3ν0kBT

R̄2
RR, (23)

where ν0 is the number density of polymer chains. The steady-
state statistical average of Eq. (23) can be evaluated easily by
using Eqs. (21) and (22). The shear viscosity at the steady state
is expressed as

η(γ̇ ) ≡ 〈σxy〉ss

γ̇
, (24)

where 〈· · ·〉ss denotes the statistical average in the steady state
(under shear). Finally, we have the following expression for
the steady-state shear viscosity η(γ̇ ):

η(γ̇ ) = 3ν0kBT

R̄2γ̇
Cxx(γ̇ ) = η0

2

1 + λ̃
. (25)

Here η0 is the Newtonian viscosity in the limit of γ̇ → 0,
η0 ≡ ν0kBT τ0/2. Equation (25) is a monotonically decreasing
function of γ̇ 2. Thus we find that our model can reproduce the
shear thinning behavior.

Here we note that the shear thinning mechanism of our
model is somehow similar to ones of the Giesekus model
[27] or the Johnson-Segalman (JS) model [46,47]. Both the
Giesekus model and the JS model are a kind of linear dumbbell
model which describes the dynamic behavior of viscoelastic
fluids. (We briefly compare our model with the Giesekeus
model or the JS model in Appendix A.) In the Giesekus
model, the anisotropic mobility comes from the hydrodynamic
interaction from surrounding polymer chains. The anisotropic
mobility tensor depends on the average conformation, which
leads the effective acceleration of the relaxation and the shear
thinning behavior. (The hydrodynamic interaction for a linear
dumbbell model and the resulting shear thinning behavior
have been extensively studied [48–50].) On the other hand,
the characteristic feature of the JS model is the slippage effect,
which allows a dumbbell to locally slip and effectively reduces
shear deformation. In both models, a dumbbell apparently
relaxes faster as we increase the shear rate, independent of
their detail mechanisms. Our model behaves in a similar
way. However, in our model, we did not explicitly consider
the origin of the anisotropic mobility tensor (11). (In our
model, the mobility tensor is designed based on the MD
results, whereas in the conventional models it is usually
designed from specific kinetic interactions.) We also note that
nonlinear elasticity models (such as the finite extensibility
nonlinear elasticity models [36]) can reproduce similar shear
thinning behavior. It is difficult to identify the molecular level
mechanism of shear thinning behavior only from the shear
viscosity data.

The first normal stress difference coefficient can be calcu-
lated in a similar way:

�1(γ̇ ) ≡ 〈σxx − σyy〉ss

γ̇ 2
= ν0kBT τ 2

0

2

2

λ̃(1 + λ̃)
. (26)

This also exhibits the thinning behavior. However, the depen-
dencies on the shear rate of η(γ̇ ) and �1(γ̇ ) are different. If
we employ the power-law-type model for λ̃ (Eq. (12)), at the
high shear rate region we have

η(γ̇ ) ∝ γ̇ −α (γ̇ → ∞), (27)

�1(γ̇ ) ∝ γ̇ −2α (γ̇ → ∞). (28)

The shear viscosity and the first normal stress difference
coefficient for the power-law-type model (with α = 9/11 [51])
are shown in Fig. 2.

B. Rheo-dielectric response function

In dielectric measurements, we impose the time-dependent
electric field in the y direction (shear gradient direction), Ey(t),
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FIG. 2. The shear viscosity η(γ̇ ) and the first normal stress
difference coefficient �1(γ̇ ) calculated by the power-law-type model
[Eq. (12)]. The exponent is set to α = 9/11.

and we measure the y component of the electric flux density.
For a polymer chain which has a type-A dipole, the electric
flux density (strictly speaking, the y component of the electric
flux density) Dy can be expressed as follows [1]:

Dy(R) = ε∞Ey + 4πν0μ̃Ry, (29)

where ε∞ is the effective dielectric constant due to the fast
dynamics which is not resolved in our model, and μ̃ is the
effective dipole intensity per unit backbone length of a polymer
chain. At equilibrium, the Green-Kubo-type formula (which
is also referred to as the Cole formula) gives

ϕ(t − t ′) = 1

kBT

〈
[4πν0μ̃Ry(t)]

d

dt ′
[μ̃Ry(t ′)]

〉
eq

= 4πν0μ̃
2

kBT

〈
Ry(t)

dRy(t ′)
dt ′

〉
eq

. (30)

Here, for simplicity we assumed that the correction factor for
the internal electric field is unity. In equilibrium, our model
[which reduces to Eq. (2)] gives a single Debye-type dielectric
relaxation function. The result is

ϕ(t) = �ε0
1

τ0
e−t/τ0 , (31)

where we defined the dielectric intensity �ε0 as �ε0 ≡
4πν0μ̃

2R̄2/3kBT .
Under shear, generally we cannot use the Green-Kubo-type

response formula (30). Although it is already shown that
the Green-Kubo-type formula can be used reasonably as a
good approximation [23], here we calculate the rheo-dielectric
response function exactly to investigate the model properties
precisely. Recently, Baiesi et al. [32,33] derived a linear
response formula in nonequilibrium states. Their formula
does not involve any unclear approximations, and it can be
applied to various nonequilibrium systems. Moreover, it is
expressed as a simple form which enables us to evaluate
linear response functions easily. We show a simple derivation
of the Baiesi-Maes-Wynants formula in Appendix B. The

Baiesi-Maes-Wynants formula gives the following form as the
rheo-dielectric response function:

ϕ(γ̇ ,t − t ′) = 4πν0μ̃
2

kBT

[
1

2

d

dt ′
〈Ry(t)Ry(t ′)〉ss

+ 1

2

〈
Ry(t)

1

ζ0

∂F(R(t ′))
∂Ry(t ′)

〉
ss

]
. (32)

After straightforward calculations, finally the rheo-dielectric
response function becomes a single Debye-type decay function
as follows:

ϕ(γ̇ ,t) = �ε0
1

τ0
e−t/τ0 . (33)

Now we find that the rheo-dielectric response function (33)
is independent of shear rate γ̇ , and thus it coincides with
the equilibrium dielectric response function [Eq. (31)]. Then
the rheo-dielectric intensity �ε(γ̇ ) and the rheo-dielectric
relaxation time τε(γ̇ ) simply become

�ε(γ̇ ) = �ε0 = 4πν0μ̃
2R̄2

3kBT
, (34)

τε(γ̇ ) = τ0. (35)

Both are equivalent to equilibrium forms. This result is
consistent with experimental data [20–22]. Strictly speaking,
the term “relaxation” should be used to describe “an approach”
from a nonequilibrium state to an equilibrium state. But in
this work, for convenience, we also call “an approach” to a
perturbed state to a nonequilibrium steady state as “relaxation.”

Experimentally, it is convenient to use the frequency
domain expression (Fourier transform) of the rheo-dielectric
expression, rather than the time domain expression (33) [1].
The real and imaginary parts of the Fourier transform of (33)
become as ε′(γ̇ ,ω) − ε∞ = �ε0/[1 + (ωτ0)2] and ε′′(γ̇ ,ω) =
�ε0ωτ0/[1 + (ωτ0)2].

These results are rather trivial, because the y component
of the Langevin equation, Eq. (15), is closed and contains
only Ry(t) (no Rx and Rz contamination). Also, ξy(γ̇ ,t) is
independent of γ̇ , and thus it is independent of the shear rate. If
the dynamics of the x and y components are coupled, the rheo-
dielectric function can be affected by the shear rate (as shown
in Appendix C). But we should be careful that even if there
are no differences between the equilibrium dielectric response
and the rheo-dielectric response under shear, the system is
subjected to shear flow and thus not in equilibrium. Actually,
as we showed in the previous subsection, the shear viscosity
drastically decreased even when the rheo-dielectric response
was not affected.

C. Parallel and perpendicular moduli

We consider the situation where a small, time-dependent
deformation is imposed to the constant-rate simple shear
flow (6). Experimentally, so-called parallel or orthogonal
superpositions are often utilized. In the case of the parallel
superposition, the shear rate γ̇ is modulated in time. This
can be interpreted that we impose the perturbation velocity
gradient tensor which has only the xy component to the system.
The excess contribution for the xy component of the stress
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tensor is then measured. On the other hand, in the case of
the perpendicular superposition, the xy component is fixed
to be constant and a small zy-component velocity gradient is
imposed. The zy component of the stress tensor is measured
as the linear response. In the absence of the shear flow, these
response functions coincide with the shear relaxation modulus
G(t). The linear response theory gives

G(t − t ′) = 1

kBT

〈
σxy(t)

[
3kBT

R̄2
Rx(t ′)Ry(t ′)

] 〉
eq

= 9ν0kBT

R̄4
〈Rx(t)Ry(t)Rx(t ′)Ry(t ′)〉eq. (36)

In our model, Eq. (36) reduces to a single Maxwell model.

G(t) = G0e
−2t/τ0 , (37)

where we defined the characteristic modulus G0 as G0 ≡
ν0kBT .

Now we calculate the linear response of the stress tensor to
the perturbation velocity gradient tensor, under steady shear.
Unfortunately, the Baiesi-Maes-Wynants formula is limited
for perturbations which can be expressed as perturbation
potentials, and cannot be used in this case. Here we utilize
the formula given by Seifert and Speck [34] instead. The
Seifert-Speck formula can be applied for nonpotential-type
perturbations. We show a brief derivation of the formula in
Appendix B. The Seifert-Speck formula gives the following
expressions for the parallel and perpendicular moduli.

G‖(γ̇ ,t − t ′) = 1

kBT

〈
σxy(R(t))

[
Ry(t ′)

1


xx(γ̇ )

[
dRx(t ′)

dt ′

+
xx(γ̇ )
∂F(R(t ′))
∂Rx(t ′)

− γ̇ Ry(t ′)
]]〉

ss

,

(38)

G⊥(γ̇ ,t − t ′) = 1

kBT

〈
σzy(R(t))

[
Ry(t ′)

1


zz(γ̇ )

[
dRz(t ′)

dt ′

+
zz(γ̇ )
∂F(R(t ′))
∂Rz(t ′)

]]〉
ss

. (39)

After straightforward calculations, we find Eqs. (38) and (39)
reduce to simple Maxwellian forms as follows:

G‖(γ̇ ,t) = G0e
−(1+λ̃)t/τ0 , (40)

G⊥(γ̇ ,t) = G0e
−2t/τ0 . (41)

We find that the parallel modulus (40) differs from the
equilibrium shear relaxation modulus G(t) while the perpen-
dicular modulus (41) is identical to G(t). Both G‖(γ̇ ,t) and
G⊥(γ̇ ,t) approach G0 at the short time limit. The parallel and
perpendicular relaxation times under shear are given by

τ‖(γ̇ ) = τ0

1 + λ̃
, (42)

τ⊥(γ̇ ) = τ0

2
. (43)

The parallel relaxation time depends on the shear rate in the
same way as the shear viscosity. We find that, in our model,
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FIG. 3. The parallel storage and loss moduli G′
‖(γ̇ ,ω) and

G′′
‖(γ̇ ,ω), calculated by the power-law-type mobility model

[Eq. (12)]. The exponent is set to α = 9/11.

the effect of the shear rate to the parallel relaxation modulus is
observed only as the acceleration of the relaxation time. As we
increase the shear rate, the parallel relaxation time decreases.
This is in contrast to the rheo-dielectric function where we have
no effect of the shear rate. Theoretically, the parallel modulus
depends on the shear rate because it involves the correlation
function of the x component.

As in the case of the rheo-dielectric response, it is
convenient to use the Fourier transformed response functions
in the frequency domain [4]. From Eqs. (40) and (41), the
real and imaginary parts (storage and loss) moduli become
G′

‖(γ̇ ,ω) = G0(ωτ‖(γ̇ ))2/[1 + (ωτ‖(γ̇ ))2], G′′
‖(γ̇ ,ω) = G0ω

τ‖(γ̇ )/[1 + (ωτ‖(γ̇ ))2], G′
⊥(γ̇ ,ω) = G0(ωτ0/2)2/[1 + (ωτ0/

2)2], and G′′
⊥(γ̇ ,ω) = G0(ωτ0/2)/[1 + (ωτ0/2)2]. We show

parallel storage and loss moduli for several values of τcγ̇ with
the power law model [Eq. (12)] in Fig. 3.

Experimentally, both parallel and perpendicular relaxation
times, τ‖ and τ⊥, decrease as the shear rate increases, and
the decrease is more systematic for τ‖ [12]. Our model
predicts the decrease of the parallel relaxation time, which
is consistent with the experimental data. On the other hand,
the perpendicular relaxation time in our model is independent
of the shear rate. This is because the dynamics of the y and z

components are not coupled to that of the x component. Thus
we conclude that our model can reproduce the parallel modulus
qualitatively but cannot reproduce the perpendicular modulus.
(This is due to the oversimplification.) Although the parallel or
perpendicular moduli have been analyzed or explained mainly
on the basis of constitutive equation models [12,52–54], as far
as we know, there is no analysis or explanation on the basis of
the linear response theory.

IV. DISCUSSIONS

A. Anisotropic mobility tensor

Although our model is too simple to apply practical anal-
yses, it still specifies some characteristic features of polymer

061802-6



ANISOTROPIC MOBILITY MODEL FOR POLYMERS UNDER . . . PHYSICAL REVIEW E 83, 061802 (2011)

dynamics under shear. We may comment that the anisotropic
mobility tensor model proposed in this work can be understood
as a simplified model studied in a previous theoretical work
on the rheo-dielectric response [23]. In the previous work,
we have studied the rheo-dielectric response function of a
linearized Langevin equation for an entangled polymer. The
anisotropic mobility tensor model is linear and has the same
properties as the linearized Langevin equation model. (The ex-
pression of the rheo-dielectric response function is not affected
significantly by the shear rate.) Our anisotropic mobility model
reinforces the validity of the linearized Langevin equation
model. Further, we expect that the linearized Langevin model
will reproduce similar properties as the anisotropic mobility
model (such as the acceleration of the parallel relaxation time).

To model the dynamics of entangled polymers under
fast shear, currently the convective constraint release (CCR)
model [55] is widely employed. The CCR model claims that
the effective relaxation time is accelerated under shear flow,
due to the enhancement of the constraint release. Theories
or simulations which take account the CCR effect achieved
success to explain or reproduce rheological behavior of
entangled polymers under shear [55–60]. While the CCR
model originally gives the expression for the relaxation time,
here we interpret the modification of the relaxation time as
the modification of the mobility (or the friction coefficient).
Then the CCR model is interpreted as the shear-rate-dependent
mobility model. The expression of the CCR mobility becomes
as follows:

�CCR(γ̇ ) =
[

1

ζ0
+ βCCR

kBT
κ : 〈RR〉

]
1

=
[

1

ζ0
+ βCCR

kBT
γ̇ 〈RxRy〉

]
1, (44)

where βCCR is a positive constant of the order of unity and
〈. . .〉 represents the statistical (ensemble) average. In the
steady state, 〈RR〉 can be replaced by the steady-state average
〈RR〉ss, which is determined self-consistently.

It is obvious that the CCR mobility (44) is isotropic, and thus
accelerates chain motion in all directions. As a result, linear
response functions such as rheo-dielectric response function or
the parallel modulus are affected by the shear flow. Although
experimental data of parallel moduli can be reproduced well
by the CCR model [15–17], the rheo-dielectric response data
[18,20–22] cannot be reproduced. In other words, the isotropic
acceleration by the CCR is not consistent with the experimental
data for the rheo-dielectric responses. As we have shown
in the previous section, the anisotropic model can naturally
overcome this difficulty. Therefore we consider that the CCR
model needs to be modified to reproduce the anisotropic chain
motion (or the anisotropic acceleration). For example, we
may introduce a phenomenological anisotropic relaxation time
tensor instead of a scalar relaxation time. Then the resulting
model will reproduce the rheo-dielectric function which is
insensitive to the shear rate, as well as the shear thinning. One
simple possible modification is shown in Appendix D.

To compare the CCR model with our anisotropic mobility
model from a different aspect, here we consider a general
form for the mobility tensor. We consider the mobility tensor
under shear flow in general flow and gradient directions.

From the symmetry of the Langevin equation under rotational
transform, the mobility tensor � should be invariant for
rotational transform; that means we can expand � into a power
series of scalar and tensor invariants if the shear rate is not high.
Then, up to the second order in γ̇ , the expansion form of � is
given as

�(κ) = 1

ζ0
[1 + L̃1(κ + κ t ) + L̃2tr(κ · κ t )1

+ L̃3κ · κ t + L̃4κ
t · κ + O(γ̇ 3)]. (45)

Here {L̃i} is a set of expansion coefficients. We find that
the CCR mobility model (44) can be reproduced by setting
L̃1 = L̃3 = L̃4 = 0, while our anisotropic mobility model
can be reproduced by setting L̃1 = L̃2 = L̃4 = 0. (If γ̇ is
sufficiently small, we can set 〈RxRy〉 = γ̇ τ0R̄

2/6 + O(γ̇ 2) in
Eq. (44). If κ is given by Eq. (6), only the xx component
of κ · κ t is nonzero.) Therefore both the CCR model and our
model are allowed from the symmetry argument. The mobility
tensor should be modeled so that the resulting dynamics
reproduces required properties (such as the insensitivity of the
rheo-dielectric response function to the shear rate). We may
employ a different mobility tensor model which is reduced to
Eq. (45). For example, by setting L̃2 = L̃3 = L̃4 = 0, we have
a nondiagonal mobility tensor model which takes account of
the kinetic coupling effect (see Appendix C). Here we should
note that in the conventional approach [30], the mobility tensor
is expressed as a function of the average conformation tensor
(not as a function of the velocity gradient tensor), and thus it
is expanded into a power series of the conformation tensor.
However, from the viewpoint of the nonequilibrium statistical
physics [31], in principle, the mobility tensor can depend on
the velocity gradient tensor and can be modeled as Eq. (11)
or Eq. (45). (We should also note that the current approach
is limited for simple shear flows, and for other flows, such as
elongational flows, we need to construct the mobility tensor
model.)

One may argue that if an isotropic mobility (which can
be utilized near equilibrium) should be replaced by an
anisotropic mobility for nonequilibrium systems, then an
equilibrium free energy (3) should also be replaced by a
nonequilibrium effective free energy. This is indeed correct
in general. Nevertheless, for polymeric systems we can use
the equilibrium free energy (3) safely even under fast shear.
This is because in polymeric systems, the stress-optical rule
[4,61] is known to hold even under fast shear. (Although it is
known that the stress-optical rule fails for some cases, such as
systems under fast extensional flow [62,63], it is valid under
the current situation.) The stress-optical rule relates the chain
conformation and the force exerted by the chain, and holds
only when the force is proportional to the bond vector. This
gives the linear entropic elasticity model for the free energy,
and as long as the stress-optical rule holds we can justify the
use of the equilibrium free energy (3) even under fast shear.

At the end of this subsection, we may comment on one as-
sumption used in our model. We have assumed the fluctuation-
dissipation-like relation for the thermal noise [Eq. (10)]. Such
a relation does not necessarily hold in the nonequilibrium
states, and thus we can employ the nondiagonal mobility
tensor model. From the viewpoint of the linear response theory,
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whether the mobility tensor is diagonal or not is not so essential
(see Appendix B). Although we do not discuss further in
detail about the nondiagonal mobility tensor because it is
beyond the scope of this work, we expect it may be required
to describe polymer dynamics precisely under general flow
conditions.

B. Entropy production and steady-state probability current

We have derived expressions for several linear response
functions. In several pieces of theoretical work, the violation of
the fluctuation-dissipation relation is interpreted as the entropy
production rate [64,65], the steady-state probability current
[66–68], or other related physical quantities. Here we calculate
the entropy production rate for our model and investigate how
it is related to the response functions.

Following the standard definition [69–71] we define the
steady-state entropy production rate per unit volume as
follows:

�(γ̇ ) ≡ ν0

T

∫
d r

J ss(r) · �−1(γ̇ ) · J ss(r)

Pss(r)
, (46)

where J ss(r) is the steady-state probability current defined as

J ss(r)≡−�(γ̇ ) ·
[
∂F(r)

∂ r
Pss(r)+kBT

∂Pss(r)

∂ r

]
+κ · rPss(r).

(47)

The steady-state probability current (47) satisfies the steady-
state condition, (∂/∂ r) · J ss(r) = 0. After the straightforward
calculation, we have the explicit expression for the steady-state
entropy production rate in our model.

�(γ̇ ) = ν0

T
�(γ̇ ) :

∫
d r Pss(r)

[
3kBT

R̄2
r − �−1(γ̇ ) · κ · r

]

×
[

3kBT

R̄2
r − �−1(γ̇ ) · κ · r

]
− 3ν0k

2
BT

R̄2
�(γ̇ ) : 1

= ν0ζ
2
0 λ̃

T

(
1

τ 2
0

Cxx − 2γ̇

τ0λ̃
Cxy + γ̇ 2

λ̃2
Cyy

)

+ ν0ζ
2
0

T τ 2
0

(Cyy + Czz) − ν0kB

τ0
(λ̃ + 2)

= ν0kB

τ0

(τ0γ̇ )2

λ̃(1 + λ̃)
. (48)

As expected, the entropy production rate (48) is the even
function of γ̇ , and it is nonzero unless γ̇ = 0. We show
the entropy production rate for the power-law-type model
(α = 9/11 and τc = τ0) in Fig. 4. We can employ another
definition for the entropy production rate, � ≡ γ̇ 〈σxy〉ss/T

[72]. This gives a slightly different form from Eq. (48), but the
result is qualitatively the same.

Some nonequilibrium linear response theories state that
the entropy production rate (which may be interpreted as
the distance from equilibrium) is related to the violation of the
Green-Kubo-type response formulas. We call such a picture the
entropy production picture. In the entropy production picture,
one expects that if the system is not in equilibrium, there should
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FIG. 4. The entropy production rate �(γ̇ ) calculated by the
power-law-type model [Eq. (12)]. The exponent and the characteristic
crossover time are set to α = 9/11 and τc = τ0, respectively.

be the correction terms in the linear response formulas which
are directly related to the entropy production rate. However, as
we have already shown, the rheo-dielectric response function
is unchanged even under shear in our model. Besides, in the
previous work [23], the Green-Kubo-type formula was shown
to be approximately valid for the rheo-dielectric response.
These results mean that some linear response functions do
not change their forms even in the nonequilibrium states. This
may sound inconsistent with the entropy production picture.
This is because what appears in linear response formulas is
not the entropy production rate itself but the derivative of the
entropy production rate with respect to an external perturbation
field.

The situation may be clearer if we employ another picture,
which focuses on the steady-state probability current. A
linear response function in nonequilibrium steady state can
be expressed as the sum of the Green-Kubo-type equilibrium
form and the correction term, which involves the probability
current. We call this picture the Lagrangian moving frame
picture [66,67]. The Lagrangian moving frame picture gives
the following response formula:

RAB(t − t ′) = 1

kBT

d

dt ′
〈A(t)B(t ′)〉ss − 1

kBT

×
〈
A(t)vss(R(t ′)) · ∂B(t ′)

∂ R(t ′)

〉
ss

, (49)

where vss(r) is the mean steady-state streaming velocity
defined as vss(r) ≡ J ss(r)/Pss(r). The second term in the
right-hand side of Eq. (49) is the correction term due to the
nonzero steady-state probability current. The correction term
can be zero even if J ss(r) �= 0. In the case of the rheo-dielectric
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response in our model, the correction term is exactly equal to
zero. This can be shown straightforwardly.〈

[4πν0μ̃Ry(t)]vss(R(t ′)) · ∂[μ̃Ry(t ′)]
∂ R(t ′)

〉
ss

∝
〈
Ry(t)

[
Rx(t ′) − τ0γ̇

1 + λ̃
Ry(t ′)

] 〉
ss

= e−(t−t ′)/τ0

[
〈RyRx〉ss − τ0γ̇

1 + λ̃
〈R2

y〉ss

]
= 0. (50)

Moreover, it is quite difficult to separate an experimentally
measured response function into two terms as Eq. (49). This
is because the first term in the right-hand side of Eq. (49) (the
Green-Kubo-type term) can also depend on the shear rate.

From the results and discussions above, we consider that
even if we measure the rheo-dielectric function and the entropy
production rate of the same system under shear simultaneously,
we will not be able to verify the violation of the Green-Kubo-
type formula precisely. Thus we consider that the entropy
production or the Lagrangian moving frame pictures are not
so useful to analyze rheo-dielectric responses or other linear
responses under shear. To investigate dynamics of polymer
chains under shear in detail, we consider it is better to measure
other linear response functions, such as the parallel modulus,
instead of the entropy production rate (or the corresponding
heat flow). Combination of several linear response functions
will provide us detail information about the dynamics of
polymer chain [5–9].

To be fair, we should mention that for microscopic systems
(such as a colloid particle driven by an optical trap [73,74])
the entropy production rate or related quantities can be utilized
successfully to characterize the nonequilibrium features. For
carefully designed microscopic systems we can measure
correlation functions or the steady-state probability current
directly by microscopes. These physical quantities are essen-
tial in the entropy production or Lagrangian moving frame
pictures. But in macroscopic systems, it is quite difficult or
practically impossible to measure several physical quantities.
Thus a different approach for macroscopic systems is naturally
required.

C. Dependence on architecture of polymers

We have shown that our anisotropic mobility tensor model
can reproduce rheo-dielectric response behavior qualitatively;
that is, the rheo-dielectric response functions of linear poly-
mers are insensitive to the shear rate. However, rheo-dielectric
response functions of star polymers are reported to slightly
depend on the shear rate [20]. This cannot be explained by our
model. In this subsection, we consider why our model fails
to describe star polymers and possible ways to improve the
model.

Arsac et al. [28] fit experimental rheology data to the JS
model and determined the slip factors (the fitting parameters
in the JS model). They found that the slip factors for linear
polymers are nearly independent of the flow regime (transient
or steady state) or the molecular weight distribution. This
means that the JS model can reproduce the dynamics of
linear polymers in spite of its very simple form. However,

for branched polymers the slip parameters depend on various
factors. We may say that the dynamics of entangled linear
polymers is rather simple, in a sense. Thus we consider that
the dynamics of star polymers cannot be described well by a
simple model like the JS model.

Matsumiya et al. [6–9] measured and analyzed the linear
viscoelasticities and dielectric responses of entangled linear
and star polymers. They quantitatively tested the dynamic tube
dilation (DTD) model [75] for linear and star polymers. They
reported that the simple DTD model explains the experimental
data for linear polymers well [6], while it fails for star
polymers [7–9]. This failure is attributed to the overestimate
of the equilibration by the constraint release at the long time
region [76–78], or the events that newly created entanglements
push out the old entanglements toward chain ends [79]. These
experimental results indicate that a rather simple model can
describe the dynamic behavior of entangled linear polymers
but not of star polymers.

Thus we expect linear polymers have rather simple dynamic
properties even under fast flow while star polymers do not. This
implies that our simple anisotropic mobility model will be
able to describe the dynamics of linear polymers qualitatively
well. On the other hand, the dynamics of branched polymers
(including star polymers) is much more complicated compared
with linear polymers and too simplified models (like ours)
cannot explain the dynamics of branched polymers. Then we
can conclude that our model should not be applied for star
polymers directly, and some modifications are required.

There are several possible ways to improve our model.
For example, we can employ the nondiagonal mobility
tensor model, which represents the kinetic coupling between
dynamics of different directions (the kinetic coupling model).
Such a model can reproduce the dependence of the rheo-
dielectric response to the shear rate to some extent. We
show the rheo-dielectric response function for a simple and
weak kinetic coupling model in Appendix C. Similarly,
we can employ the conformation-dependent mobility tensor
model [25–27,80–82]. The conformation-dependent mobility
kinetically couples the dynamics for different directions, and
will give similar results as simple kinetic coupling models.

Another possible way is to employ a fine scale description
such as the full bead-spring-type model with topological
constraints [83]. Integration of our anisotropic mobility model
into bead-spring-type models will allow us to study the
dependence of the rheo-dielectric behavior on the polymer ar-
chitecture. Anyway, the rheo-dielectric behavior and dynamics
of entangled star polymers are still not fully understood and
further theoretical developments are required.

V. CONCLUSION

In this work, we proposed the anisotropic mobility model
for polymers under shear. In the anisotropic mobility model,
the mobility tensor or the friction coefficient tensor becomes
anisotropic and dependent on the shear rate. The anisotropic
mobility tensor model is consistent with NEMD simulation
results and thus we expect that our model captures the
qualitative and essential nature of polymer dynamics under
shear.
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We calculated the shear viscosity, the rheo-dielectric re-
sponse function, or the parallel and perpendicular moduli. Our
model gives the rheo-dielectric function which is independent
of the shear rate, even when the shear rate is sufficiently
high and shear thinning is exhibited. This is qualitatively
consistent with the experimental results. Our model gives
the parallel relaxation time which decreases with increasing
the shear rate. This is also qualitatively consistent with the
experimental results. Of course, the shear-rate insensitive
rheo-dielectric relaxation and acceleration of the parallel
relaxation observed in experiments may result from not only
the anisotropic mobility but also from other factors (such as
full DTD in the linear response regime). However, the current
study demonstrates that the anisotropic mobility could play an
important role in the relaxation processes.

To examine the properties of our model in detail, we
compared our model with other models or theories. We
compared our model with the CCR model. Both our model and
the CCR model accelerate the dynamics of polymers under
shear. Our model accelerates the dynamics anisotropically
while the CCR model accelerates the dynamics isotropically.
Judging from the experimental results, we consider our model
to be more suitable to describe the dynamics of polymers under
shear.

We also compared our result with the recent linear response
theories for nonequilibrium systems. Although the entropy
production rate or the steady-state probability current is widely
utilized in recent models, we showed that they are not as useful
to analyze or understand the rheo-dielectric response function.
We consider that the combination of several different linear
response functions will be reasonable to investigate polymer
dynamics under shear.

Although our model can explain the essential feature
of linear polymers under shear, it should be improved or
modified further. For example, our model cannot explain the
experimental results for star polymers under shear. We did not
explicitly consider the effect of entanglements, which will be
important for star polymers. The integration of our anisotropic
mobility model into fine scale models or the generalization of
our model to general flow conditions is considered to be an
interesting subject of future work.
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APPENDIX A: CONSTITUTIVE EQUATION FOR
ANISOTROPIC MOBILITY MODEL

In this appendix, we derive the constitutive equation from
the anisotropic mobility model and compare it with some
conventional models. For simplicity, we assume that the
system is homogeneous in this appendix. (The generalization
for inhomogeneous systems is straightforward.) We consider

expressing the constitutive equation as the dynamic equation
for the following time-dependent conformation tensor:

C(t) ≡ 〈R(t)R(t)〉 =
∫

d r r rP (r,t). (A1)

The time-evolution equation for the conformation tensor can
be easily calculated from the Fokker-Planck equation (19).
After a straightforward calculation, we have the following
constitutive equation for the anisotropic mobility model
[Eq. (8) together with Eq. (11) or Eq. (45)]:

∇
C (t) = −3kBT

R̄2
[C · �(κ) + �(κ) · C] + 2kBT �(κ),

(A2)

where we defined the upper-convected derivative as
∇
C≡

dC/dt − κ · C − C · κ t . It should be noticed that the
anisotropic mobility model is designed around the steady state
under simple shear and thus the corresponding constitutive
equation (A2) is also applicable around the steady state. (It is
not suitable to calculate, for example, the start-up shear flow.
To study such transient phenomena, we will need to describe
the time evolution of the mobility tensor � explicitly.)

It is informative to compare Eq. (A2) with other constitutive
equation models. Although there are many constitutive equa-
tion models for polymeric systems [30], for the sake of sim-
plicity, here we limit ourselves to rather simple models. One
of the simplest constitutive equation models with anisotropic
mobilities is the Giesekus model. The Giesekus model [27] em-
ploys the conformation-tensor-dependent mobility, whereas
the anisotropic mobility model employs the mobility which
does not depend on the conformation tensor. The Giesekus
constitutive equation can be expressed as follows:

∇
C (t) = 2

ζ0

[
(1 − α)1 + 3α

R̄2
C

]
·
[
−3kBT

R̄2
C + kBT 1

]
,

(A3)

where α is a phenomenological constant (0 � α � 1). (The
Giesekus model corresponds to the preaveraged and linearized
Curtiss-Bird model [25–27].) Equation (A3) can be obtained
by replacing �(κ) in Eq. (A2) by [(1 − α)1 + (3α/R̄2)C]/ζ0.
Inversely, we can replace [(1 − α)1 + (3α/R̄2)C]/ζ0 by �(κ)
to obtain Eq. (A2) from Eq. (A3). One may interpret the
anisotropic mobility model as the conventional anisotropic
tensor model with some approximations, for example, the
preaveraging around the steady state. (We note that it is not
simple to analyze Eq. (A3) due to its nonlinearity, unlike
Eq. (A2). The conformation-tensor-independent mobility ten-
sor makes analyses in the main text simple and tractable.)

Another simple constitutive equation model is the Johnson-
Segalman (JS) model [46]. The JS model employs the Gordon-
Schowalter derivative [84] to produce the nonaffine motion,
which can be interpreted as the slippage effect. Here we
rewrite the JS model by using the upper-convected derivative,
to compare it with Eq. (A2):

∇
C (t) = 2

ζ0

[
−3kBT

R̄2
C + kBT 1

]
+ a − 1

2

× [(κ + κ t ) · C + C · (κ + κ t )]. (A4)
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Here a is a phenomenological constant (−1 � a � 1), which
is sometimes called the slip parameter. We find that the form
of the JS model (A4) is somehow similar to the anisotropic
mobility model (A2). The last term in the right-hand side
of Eq. (A4) is mathematically similar to the first term in the
right-hand side of Eq. (A2). Thus we expect that the anisotropic
mobility model and the JS model will show qualitatively
similar dynamical behavior in some cases. However, the origin
of that term in the JS model is the nonaffine motion (or the
slippage). Unlike the case of the Giesekus model, we cannot
obtain the anisotropic mobility model (A2) by simply replacing
a part (such as the mobility tensor) in Eq. (A4).

APPENDIX B: DERIVATION OF THE
BAIESI-MAES-WYNANTS FORMULA BY THE PATH

INTEGRAL FORMALISM

In this appendix, we show the derivation of the Baiesi-
Maes-Wynants formula [32,33] in steady state based on the
path integral formalism. The derivation of the linear response
formula in nonequilibrium steady state based on the path
integral formalism is first shown by Seifert and Speck [34].
Here we mainly follow their derivation. It is worth noting
that the path integral formalism had already been utilized by
Ohta and Ohkuma [68] to derive a similar but slightly different
formula, prior to the Seifert-Speck theory.

The Seifert-Speck formula reduces to the Baiesi-Maes-
Wynants formula if the perturbation is expressed as a perturba-
tion potential. As far as we know, an explicit derivation of the
Baiesi-Maes-Wynants formula by the path integral formalism
has not been presented.

Here we consider a general nonequilibrium system, of
which the dynamics follows the Langevin equation. We denote
the dynamic variables which obey the Langevin equation
as X1,X2, . . . ,Xn (with n being the number of indepen-
dent stochastic variables). For convenience, we use the Ito
stochastic calculus [85] for the stochastic differential equation.
(One can employ the Stratonovich calculus instead of the Ito
calculus. Although the calculation below becomes somehow
complicated, the result is essentially the same.) For simplicity
we introduce the shorthand notation X ≡ (X1,X2, . . . ,Xn).
Because many physical quantities depend on X(t), we also
introduce a shorthand notation for a function of X(t) as
f̂ (t) ≡ f (X(t)). The Langevin equation for X(t) is described
as

d X(t)

dt
= V̂ (t,h(t)) + kBT

∂

∂ X(t)
· �̂(t) + ξ̂ (t), (B1)

where V̂ (t,h(t)) is the average change rate of X (which may
be understood as a sort of velocity), h(t) is the external
perturbation, �̂ is a positive definite symmetric tensor, and
ξ̂ (t) is the Gaussian noise. V̂ (t,h(t)) is decomposed into
the reference part which is independent of h(t) and the
perturbation part which is linear in h(t).

V̂ (t,h(t)) = V̂ 0(t) + V̂ 1(t)h(t), (B2)

where V̂ 0(t) is the average velocity exerted by the interaction
potential or the external force, and V̂ 1(t)h(t) is the perturbation
term. We assume that h(t) is sufficiently small to neglect higher
order terms in h(t). The third term in the right-hand side of

Eq. (B1) is the stochastic drift term which cancels unphysical
probability current [3]. ξ̂ (t) satisfies the following equations.

〈ξ̂ (t)〉 = 0, (B3)

〈ξ̂ (t)ξ̂ (t ′)〉 = 2kBT �̂(t)δ(t − t ′). (B4)

Equations (B3) and (B4) can be interpreted as the fluctuation-
dissipation-type relation, or, inversely we can define �̂(t) via
Eq. (B4).

The probability that a trajectory X(t) is realized, which
we may call the path probability (or the path weight), can be
calculated from the distribution of the noise ξ̂ (t). Because ξ̂ (t)
obeys the Gaussian distribution, the path probability P[X(·)]
can be calculated as follows [86]:

P[X(·)]DX = N exp

[
− 1

4kBT

∫
dt

[
d X(t)

dt
− V̂ (t,h(t))

− kBT
∂

∂ X(t)
· �̂(t)

]
· �̂

−1
(t) ·

[
d X(t)

dt

− V̂ (t,h(t)) − kBT
∂

∂ X(t)
· �̂(t)

]]
DX

=
[

1 + 1

2kBT

∫
dt V̂ 1(t) · �̂

−1
(t)

·
[
d X(t)

dt
− V̂ 0(t) − kBT

∂

∂ X(t)
· �̂(t)

]

×h(t) + O(h2)

]
P0[X(·)]DX, (B5)

where N is the normalization factor and P0[X(·)] is the path
probability at the reference state (without any perturbations).
The time derivative is interpreted as the retarded derivative [86]
(which is consistent with the Ito calculus), and thus N is
independent of h(t). The path probability at the reference state
is defined as

P0[X(·)]DX ≡ N exp

[
− 1

4kBT

∫
dt

[
d X(t)

dt
− V̂ 0(t)

− kBT
∂

∂ X(t)
· �̂(t)

]
· �̂

−1
(t) ·

[
d X(t)

dt

− V̂ 0(t) − kBT
∂

∂ X(t)
· �̂(t)

]]
DX . (B6)

By using the path probability (B6), we can define the steady-
state statistical average as the following path integral:

〈· · ·〉ss ≡
∫

DX · · ·P0[X(·)]. (B7)

Since we are interested in the linear response, the O(h2)
term in Eq. (B5) can be safely neglected. Then, the statistical
average of a physical quantity A at time t with perturbation
can be expressed as

〈Â(t)〉 ≡
∫

DX Â(t)P[X(·)]

=Ass+ 1

2kBT

∫ t

−∞
dt ′

〈
Â(t)V̂ 1(t ′) · �̂

−1
(t ′) ·

[
d X(t ′)

dt ′

− V̂ 0(t ′) − kBT
∂

∂ X(t ′)
· �̂(t ′)

]〉
ss

h(t ′). (B8)
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Here, Ass ≡ 〈Â(t)〉ss is the steady-state statistical average at the
reference state (without perturbation). From time translational
symmetry, Ass is independent of time t . We have the following
expression as the response function of A(t) to the perturbation
h(t ′) from Eq. (B8):

RA(t − t ′) = 1

2kBT

〈
Â(t)V̂ 1(t ′) · �̂

−1
(t ′) ·

[
d X(t ′)

dt ′

− V̂ 0(t ′) − kBT
∂

∂ X(t ′)
· �̂(t ′)

]〉
ss

. (B9)

Especially, if the perturbation is caused by a perturbation
potential, the perturbation term can be rewritten by using just a
single scalar quantity. If we assume the fluctuation-dissipation-
type relation, then V̂ 1(t) can be rewritten as follows:

V̂ 1(t) = �̂(t) · ∂B̂(t)

∂ X(t)
, (B10)

where B is the scalar quantity which is conjugate to h.
Equation (B9) can be simplified as follows:

RAB(t−t ′) = 1

2kBT

〈
Â(t)

[
dB̂(t ′)

dt ′
− L†B̂(t ′)

]〉
ss

= 1

2kBT

d

dt ′
〈Â(t)B̂(t ′)〉ss− 1

2kBT
〈Â(t)L†B̂(t ′)〉ss,

(B11)

where we have utilized the Ito formula,

dB̂(t)

dt
= d X(t)

dt
· ∂B̂(t)

∂ X(t)
+ kBT �̂(t) :

∂2B̂(t)

∂ X(t)∂ X(t)
, (B12)

and defined the backward generator L† (which has the same
form as the associate Fokker-Planck operator) as follows:

L†B̂(t) ≡ V̂ 0(t) · ∂B̂(t)

∂ X(t)
+ kBT

∂

∂ X(t)
·
[
�̂(t ′) · ∂B̂(t)

∂ X(t)

]
.

(B13)

Equation (B11) is nothing but the Baiesi-Maes-Wynants
formula [32,33]. Although Eq. (B11) is simpler than Eq. (B9),
we should notice that Eq. (B11) can be utilized only when
the perturbation is given as a perturbation potential and the
fluctuation-dissipation-type relation holds. We should directly
use Eq. (B9) if these conditions are not satisfied.

APPENDIX C: WEAK KINETIC COUPLING BETWEEN
DIFFERENT DIRECTIONS

In this appendix, we consider the kinetic coupling effect
between the x- and y-direction dynamics. From the NEMD
simulation results [40,41], we expect that the xy element of
the mobility tensor is sufficiently small compared with the
diagonal elements. We can employ the following nondiagonal
mobility tensor model as a simple kinetic coupling model:

�(γ̇ ) = 1

ζ0

⎡
⎢⎣

1 aτ0γ̇ 0

aτ0γ̇ 1 0

0 0 1

⎤
⎥⎦ . (C1)

Here a � 1 is a parameter which represents the coupling
strength. [Equation (C1) is obtained by setting L̃2 = L̃3 =

L̃4 = 0 in Eq. (45).] Unlike the model considered in the main
text, this mobility model does not accelerate the dynamics
in x direction explicitly. Nonetheless, this model can be
used to demonstrate how the kinetic coupling affects the
rheo-dielectric behavior.

We consider a as the perturbation parameter, and expand
physical quantities into the power series of a. To see how
the kinetic coupling affects the viscoelastic or dielectric
properties, it is sufficient to consider only the leading order
terms (which are proportional to a). First we consider the
steady-state probability distribution. Since the Fokker-Planck
equation is linear, the steady-state probability distribution can
be expressed as a Gaussian. Then the covariance matrix can
be expressed as follows:

C(γ̇ ) = R̄2

3

⎡
⎢⎢⎢⎢⎢⎣

1 + (τ0γ̇ )2

2

τ0γ̇

2
0

τ0γ̇

2
1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ − R̄2

3

a(τ0γ̇ )2

2

×

⎡
⎢⎢⎣

1 + (τ0γ̇ )2 τ0γ̇ 0

τ0γ̇ 1 0

0 0 0

⎤
⎥⎥⎦ + O(a2), (C2)

〈Ry(t)Ry(0)〉ss =Cyye
−t/τ0 −aγ̇

∫ t

0
dt ′e−(t−t ′)/τ0〈Rx(t ′)Ry(0)〉ss

= Cyye
−t/τ0 − a

[
Cxyγ̇ te−t/τ0

+ 1

2
Cyyγ̇

2t2e−t/τ0

]
+ O(a2), (C3)

〈Ry(t)Rx(0)〉ss = Cxye
−t/τ0 + O(a). (C4)

From the Baiesi-Maes-Wynants formula, the rheo-
dielectric response function becomes as follows:

ϕ(γ̇ ,t) = 3�ε0

2R̄2

[
− d

dt
〈Ry(t)Ry(0)〉ss + 1

τ0
〈Ry(t)[Ry(0)

+ aτ0γ̇ Rx(0)]〉ss

]

= �ε0
1

τ0
e−t/τ0

[
1 − 1

2
aγ̇ 2t2 + O(a2)

]
. (C5)

The rheo-dielectric intensity can be calculated to be

�ε(γ̇ ) =
∫ ∞

0
dt ϕ(t,γ̇ ) = �ε0[1 − a(τ0γ̇ )2 + O(a2)]. (C6)

From Eq. (C6) we find that the rheo-dielectric intensity is
decreased by the kinetic coupling. This is in contrast to the case
of the anisotropic mobility model, where the rheo-dielectric
intensity is independent of the shear rate. By performing the
Fourier transform for Eq. (C5), we have the following real and
imaginary parts of the rheo-dielectric response function in the
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FIG. 5. The rheo-dielectric response functions for the weak
kinetic coupling model. The effective coupling constant is varied
as a(τ0γ̇ )2 = 0, 0.1, 0.2. The case of a(τ0γ̇ )2 = 0 corresponds to the
equilibrium dielectric response.

frequency domain:

ε′(γ̇ ,ω) − ε∞ = �ε0

[
1

1 + (τ0ω)2
− a(τ0γ̇ )2

× 1 − 3(τ0ω)2

[1 + (τ0ω)2]3
+ O(a2)

]
, (C7)

ε′′(γ̇ ,ω) = �ε0

[
τ0ω

1 + (τ0ω)2
− a(τ0γ̇ )2

×3τ0ω − (τ0ω)3

[1 + (τ0ω)2]3
+ O(a2)

]
. (C8)

From Eqs. (C7) and (C8), we find that the effects of the kinetic
coupling and the shear rate can be represented by an effective

coupling constant, a(τ0γ̇ )2. We show ε′(γ̇ ,ω) and ε′′(γ̇ ,ω) by
Eqs. (C7) and (C8) in Fig. 5. We can observe that the dielectric
loss ε′′(γ̇ ,ω) for τ0ω � 1 decreases as the effective coupling
constant a(τ0γ̇ )2 increases. On the other hand, we can observe
that the rheo-dielectric response functions are insensitive to
the shear rate for τ0ω � 1. These are qualitatively similar to
experimentally observed rheo-dielectric behavior of entangled
star polymers [20].

APPENDIX D: ANISOTROPIC VERSION OF THE
CONVECTIVE CONSTRAINT RELEASE MODEL

As we discussed in the main text, the convective constraint
release (CCR) model isotropically accelerates the dynamics
of a polymer chain. In order to reproduce the rheo-dielectric
response behavior, we need to modify the CCR model to be
anisotropic. In this appendix, we consider a simple anisotropic
version of the CCR model, as a possible modification for the
CCR model.

The key feature of the CCR model is that the characteristic
relaxation time is accelerated by the product of the velocity
gradient tensor and the chain conformation tensor. To make
the CCR model anisotropic, here we employ the following
mobility tensor:

�CCR(γ̇ ) = 1

ζ0
1 + β ′

CCR

2kBT
[κ · (〈RR〉 − 〈RR〉eq)

+ (〈RR〉 − 〈RR〉eq) · κ t ], (D1)

where β ′
CCR is a positive constant of the order of unity and the

velocity gradient tensor κ is given by Eq. (6). Equation (D1)
is similar to Eq. (44) but the scalar diadic product κ : 〈RR〉 is
replaced by second rank tensor products. For the steady state
under shear, the ensemble average 〈RR〉 is replaced by the
steady-state average 〈RR〉ss, and we can obtain the steady-
state probability distribution explicitly. The anisotropic CCR
model (D1) has the Gaussian form steady-state probability
distribution (21) with the following covariance matrix:

C(γ̇ ) ≡ R̄2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 +
√

β ′
CCR(τ0γ̇ )2 + 1 − 1

β ′
CCR

√
β ′

CCR(τ0γ̇ )2 + 1

√
β ′

CCR(τ0γ̇ )2 + 1 − 1

β ′
CCRτ0γ̇

0

√
β ′

CCR(τ0γ̇ )2 + 1 − 1

β ′
CCRτ0γ̇

1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (D2)

It is straightforward to show that Eqs. (21), (D1), and
(D2) satisfy the steady-state condition (20). The steady-state
viscosity is expressed as follows:

η(γ̇ ) = η0
2
[√

β ′
CCR(τ0γ̇ )2 + 1 − 1

]
β ′

CCR(τ0γ̇ )2
. (D3)

Equation (D3) is a monotonically decreasing function of γ̇ 2,
and thus the anisotropic CCR model shows the shear thinning
behavior. Equation (D3) is similar to that for the steady-state
shear viscosity in the original CCR model. At the high shear

rate region, Eq. (D3) approaches to the following asymptotic
form:

η(γ̇ ) → η0
2√

β ′
CCRτ0γ̇

(γ̇ → ∞). (D4)

As in the original CCR model [55], Eq. (D4) becomes
consistent with the Cox-Merz rule when we set β ′

CCR = 4.
We can straightforwardly show that the first normal stress
difference coefficient by the anisotropic CCR model is also
similar to one by the original CCR model.
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The steady-state covariance matrix (D2) looks similar to
the steady-state covariance matrix for the anisotropic mobility
model (22). In fact, the anisotropic CCR model reduces to the
anisotropic mobility tensor model (11). Substituting Eq. (D2)
into Eq. (D1), we have

�CCR(γ̇ ) = 1

ζ0

⎡
⎢⎣

√
β ′

CCR(τ0γ̇ )2 + 1 0 0

0 1 0

0 0 1

⎤
⎥⎦ . (D5)

This has the same form as the power-law-type anisotropic
mobility tensor model [Eqs. (11) and (12)] with τc = √

β ′
CCRτ0

and α = 1. Then it is clear that the anisotropic CCR model

successfully reproduces essential properties of our anisotropic
mobility tensor model. However, it should be noted that the
anisotropic CCR mobility tensor (D1) depends on 〈RR〉 in
the presence of the external perturbation field. Because 〈RR〉
generally depends on the applied perturbation field implicitly,
the anisotropic CCR mobility tensor gives additional contri-
butions for linear response functions. Thus the linear response
properties of the anisotropic CCR model will be slightly
different from the ones of our anisotropic mobility model. We
should carefully calculate the contribution from the mobility
tensor to get the linear response functions for the anisotropic
CCR model. (Fortunately, even if the mobility tensor depends
on the perturbation field, the path integral formulation shown
in Appendix B is still valid.)
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