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Towards understanding the ordering behavior of hard needles: Analytical solutions
in one dimension
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We re-examine the ordering behavior of a one-dimensional fluid of freely rotating hard needles, where the
centers of mass of the particles are restricted to a line. Analytical equations are obtained for the equation of state,
order parameter, and orientational correlation functions using the transfer-matrix method if some simplifying
assumptions are applied for either the orientational freedom or the contact distance between two needles. The
two-state Zwanzig model accounts for the orientational ordering, but it produces unphysical pressure at high
densities and there is no orientational correlation. The four-state Zwanzig model gives reasonable results for
orientational correlation function, but the pressure is still poorly represented at high densities. In the continuum
limit, apart from the orientational correlation length it is managed to reproduce all relevant bulk properties of
the hard needles using an approximate formula for the contact distance. The results show that the orientational
correlation length diverges at zero and infinite pressures. The high-density behavior of the fluid of needles is not
resolved.
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I. INTRODUCTION

Orientational ordering is a very interesting property of
rodlike particles. In three dimensions hard-body models such
as the fluid of hard spherocylinders undergo a first-order
phase transition from an orientationally disordered (isotropic)
phase to an ordered one (nematic) with increasing density.
Onsager [1] showed that long-ranged order takes place at
vanishing packing fraction if the length-to-breadth ratio of the
hard body goes to infinity. This make it possible to examine
the isotropic-nematic (IN) phase transition of infinitely long
hard rods exactly using the second virial theory. Although
the real molecules have moderate shape and the IN transition
never takes place at vanishing packing fraction, the second
virial theory initiated considerable progress in the description
of isotropic, nematic, and more ordered mesophases [2].
Development of modern density functional theories (DFT)
such as the fundamental measure theory is still in the direction
to reproduce the exact results of Onsager for infinitely long
hard rods [3,4].

In two dimensions (2D), it is widely accepted that there
is no true long-range orientational order, but a transition of
Kosterlitz-Thouless (KT) type [5] takes place between an
isotropic phase and a “quasi” nematic phases, where the
orientational correlations decay algebraically. This type of
transition is shown by Monte Carlo simulations in the fluids of
hard needles [6,7], 2D hard spherocylinders [8], and zigzag
needles [9,10]. Theories such as the DFT are not able to
predict KT-type phase behavior, but they produce second-order
IN phase transitions, where the nematic order is long ranged
[11–13]. For example, the virial expansion cannot be truncated
at the second term even for the hard needles, where the particle
has finite length and zero diameter.

Theoretical examination of one-dimensional (1D) systems
has been proved very successful in the past 80 years. If only
nearest-neighbor interactions are present, the exact equation
of state and correlation functions can be derived. The famous
example is the 1D fluid of hard rods examined by Tonks

[14]. Now analytical results are also available for wide
classes of fluids with attractive interactions (see Ref. [15]
and the references therein) and even the pair potential can
be obtained analytically from the pair-distribution functions in
one dimension [16]. Making the pair potential anisotropic and
allowing the particles to rotate freely in two dimensions, it is
possible to extend the theoretical descriptions for the orien-
tational ordering properties in the case of nearest-neighbor
interactions. Several studies are devoted to the system of
rodlike hard particles in quasi one dimension such as the
rectangles, ellipses, and needles [17–25]. The results of these
studies are mainly based on the transfer-matrix method, which
terminates in an eigenvalue equation. The largest eigenvalue
is related to the Gibbs free energy, while the corresponding
eigenfunction to the orientational distribution function. For the
above-mentioned geometries, the eigenvalue problem cannot
be solved analytically, because the eigenvalue equation is a
complicate integral equation. The numerical calculations show
that the fluid of anisotropic hard bodies is orientationally
ordered even at very low densities, i.e., the system does
not form isotropic phase. The orientational order parameter
vanishes at zero pressure (density) and it goes to one for infinite
pressure.

Very recently Kantor and Kardar [24] have observed
diverging orientational correlation length in the systems of
hard needles at the extremely high pressure limit. They have
concluded that the diverging correlation length cannot be the
indicator of the onset of long-range order as the system is
ordered. Therefore this behavior is considered as a jamming,
where the particles can rotate only in the same rhythm. This
conclusion was based on some approximations. First, using a
saddle point argument they concluded that the contact distance
can be approximated as σ (ϕ,ϕ′) ∼ |ϕ − ϕ′|, where ϕ and
ϕ′define the orientations of two neighboring needles. On the
other hand, instead of solving exactly the model defined by the
above approximate contact distance, they used coarse-graining
for the angular variables (ϕ1,ϕ2, . . .) and analyzed the effective
continuum field theory of the approximate model. In our
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present work we re-examine the phase behavior of hard needles
to check the applicability of the above approximations. To
achieve this goal we propose few approximate models for hard
needles, which can be solved exactly. We follow two routes. In
the first route we impose some restrictions on the orientations
of the particles and we examine how the results change if the
number of possible orientations is increased. It is noteworthy
that the 2D system of hard needles with discrete set of
orientations undergoes a liquid-gas phase transition [26–28].
Consequently, discretization of the orientation may give rise
to unphysical results even for the 1D system of hard needles.
To avoid this problem, in the second route we determine
analytically the exact thermodynamics of the above-mentioned
model system proposed by Kantor and Kardar [24], and we
compare our results with the prediction of their field theory. We
also examine that how close our analytically solvable models
are to the system of the hard needles.

Our paper is organized as follows: the transfer matrix
method is reviewed shortly in the next section. Working
expressions are given for the order parameter and the ori-
entational correlation function. The results of the transfer
matrix method for the order parameter, equation of state,
and orientational correlation function are presented for the
approximate models in Sec. III. The resulting analytical
equations are analyzed in Sec. IV. Conclusions are given in
Sec. V.

II. TRANSFER MATRIX METHOD OF
QUASI-ONE-DIMENSIONAL SYSTEMS

We consider an isobaric ensemble of N particles in quasi-
one-dimensional space. Only nearest-neighbor interactions are
allowed, the particles’s centers are restricted to a line and all
particles can rotate freely in a plane (see Fig. 1). The interaction
potential between two neighbors is defined by

u(xi,i+1,ϕi,ϕi+1) =
{∞, xi,i+1 � σ (ϕi,ϕi+1)

0, xi,i+1 > σ (ϕi,ϕi+1)
, (1)

where xi,i+1 = xi+1 − xi is the distance between particles i and
i+1, xi and ϕi denote the position and the orientation of the
particle i, and σ is the orientation-dependent contact distance.
In hard-body systems Eq. (1) guarantees that overlap cannot
occur between the particles. Note that we use the x1 � x2 �

FIG. 1. Schematic representation of the quasi-one-dimensional
system of hard needles with length l. Hard needles rotate freely in a
plane, but the centers of the particles are restricted to a line. Overlaps
are not allowed between the needles.

· · · � xN order. The isobaric partition function of a 1D system
is

ZNPT = 1

�N

∫
dx1 . . . dxNdϕ1 . . . dϕN

× exp

(
−β

N−1∑
i=1

(u(xi,i+1,ϕi,ϕi+1) + Pxi,i+1)

)
,

(2)

where β = 1
kBT

(T being the temperature and kB the Boltz-

mann constant), � = 2πh̄2β/(mI )1/2 (m is the mass and I is
the moment of inertia of the particle) and P is the pressure.
For hard objects [Eq. (1)], the positional integrations can be
performed analytically in the partition function

ZNPT =
(

l

�

)N ∫
dϕ1 . . . dϕNK(ϕ1,ϕ2)

×K(ϕ2,ϕ3) . . . K(ϕN,ϕ1), (3)

where K(ϕi,ϕi+1) = exp(−βPσ (ϕi,ϕi+1))/βP l can be con-
sidered as an element of an infinite-dimensional matrix (K̂). In
this formalism the matrix product is defined as K2(ϕi,ϕi+2) =∫

dϕi+1K(ϕi,ϕi+1)K(ϕi+1,ϕi+2). Hereafter we neglect the
unimportant (l/�)N factor in the partition function and we
care only about the configurational part. Therefore the partition
function (configurational part) can be considered a trace of the
matrix K̂N , that is, ZNPT = TrK̂N = ∫

dφ KN (φ,φ). Since
the result of trace operation is independent of the used basis,
the partition function can be evaluated most conveniently in the
eigenfunction basis, where the matrix K̂ is diagonal. Denoting
the eigenvalues of K̂ in decreasing order as λ0> λ1 > λ2 . . . ,

Eq. (3) simplifies to ZNPT = ∑∞
k=0 λN

k , where the following
eigenvalue equation provides the eigenvalues∫

dϕ1K(ϕ,ϕ1)ψk(ϕ1) = λkψk(ϕ). (4)

In the thermodynamic limit (N → ∞) the largest eigenvalue
(λ0) has the most significant contribution to the partition
function, i.e., the natural thermodynamic function (Gibbs free
energy) has the following simple form: βG/N = − log λ0.
Moreover, the largest eigenvalue serves the equation of state
through the relation 1/ρ = ∂g/∂P , where g = G/N. It is
interesting to note that the eigenfunction (ψ0) corresponds
to the largest eigenvalue is related to the orientational distri-
bution function in such a way that f (ϕ) = ψ2

0 (ϕ). The order
parameter, which measures the orientational ordering of the
particles, is given by

S =
√

〈sin(2ϕ)〉2 + 〈cos(2ϕ)〉2, (5)

where 〈sin(2ϕ)〉 = ∫
dϕf (ϕ) sin(2ϕ) and 〈cos(2ϕ)〉 =∫

dϕf (ϕ) cos(2ϕ). In the disordered phase S is zero,
while it is equal to one in the perfectly aligned (nematic)
phase. It is also important to measure the orientational
correlation function, which account for the propagation of
the orientational fluctuations along the line. We define it as
g2(r) = 〈cos(2(ϕ(0) − ϕ(r)))〉 − S2. Without going into the
details [29], it can be shown that

g2(r) =
∞∑

k=1

(
λk

λ0

)rρ (
C2

k + S2
k

)
, (6)
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where Ck = ∫
dϕψ0(ϕ) cos(2ϕ)ψk(ϕ) and Sk = ∫

dϕψ0(ϕ)
sin(2ϕ)ψk(ϕ). To obtain the correlation function, the higher-
order eigenvalues and the corresponding eigenfunctions are
needed.

The standard procedure of the determination of the struc-
tural properties at a given pressure is the following: (i) It is
necessary to know the contact distance between two objects at
given orientations. In the case of geometric objects such as the
needle, rectangle, and ellipse, the calculation of σ (ϕ1,ϕ2) is
just a geometrical problem. Since the molecules are not really
hard objects, it is generally accepted that σ (ϕ1,ϕ2) can be
defined without having geometrical model for the molecule. In
this way σ (ϕ1,ϕ2) can be arbitrary function of the orientations
for the price of having molecular shape and packing fraction.
The only constraint for it is to be consistent with our physical
expectations. The well-known example for this is the “hard
Gaussian overlap” potential, where the particles do not have
geometrical shape, but they interact through the orientation
dependent contact distance [30]. (ii) One has to find the
eigenvalues and the eigenfunctions of the system from Eq. (4).

As an application of the above procedure, let us consider the
system of hard circles with diameter D. In this case the contact
distance does not depend on the orientations, i.e., σ = D,
the largest eigenvalue and the corresponding eigenfunction
are λ0 = exp(−βPD)/βPD and ψ0 = 1/

√
π , respectively,

if the orientations are allowed in the range 0 � ϕi � π (i
= 1,2). From the definition of the equation of state (β/ρ =
−∂ log λ0/∂P ), it is trivial to prove that βP = ρ/(1 − ρD),
which is the well-known equation of state of a 1D Tonks
gas [14]. Apart from this and some other simple cases [31]
where the eigenfunction is constant (isotropic phase), one has
to resort to numerical procedures to find the eigenvalues and the
eigenfunctions. For hard objects (e.g., needle) we have shown
that Eq. (4) can be solved by the standard iterative procedure
[32]. It is shown that the needles are always orientationally
ordered at any pressure and the most favorable orientation
(nematic director) is perpendicular to the line, which means
that hard needles are in the nematic phase. In the next section
we present new analytical results for the equation of state, the
order parameter, and the orientational correlation function. In
addition, the results of the approximate models are compared
with those of hard needles.

III. ANALYTICAL RESULTS

To avoid the lengthy numerical calculations we present
three analytically solvable models, which resemble more or
less the phase behavior of the quasi 1D hard needles. In the
first two models we use the exact hard needle contact distances,
but we restrict severely the orientations of the needles. In
the simplest model only two configurations are allowed, the
particle’s orientation can be parallel (ϕ = 0) or perpendicular
(ϕ = π/2) with the line of the center of masses. This is the
so-called Zwanzig approximation [28,33] and is referred to
as two-state Zwanzig (Z2) model in the following. In the
straightforward extension of the model, ϕ = 0, π/4, π/2, and
3π/4 orientations are allowed, i.e., the particles can occupy
four different states (four-state Zwanzig; Z4). The advantage
of Z2 (Z4) approximations is that the eigenvalue equation
[Eq. (4)] simplifies to a 2 × 2 (4 × 4) matrix equation, which

can be solved easily. In the third model we treat the orientation
as continuous variable without using the exact contact distance
of needles, instead an approximate V-shaped formula is applied
to solve Eq. (4) analytically. The benefit of the V model is that
we treat the orientational correlations correctly.

A. Two-state Zwanzig model

Let us use the label 1 for ϕ = 0 configuration (horizontal
state) and 2 for the ϕ = π/2 direction (vertical state). The
two-state system has a 2×2 symmetric transfer-matrix (K̂)
with three different excluded distances: σ (1,1) = l, σ (2,2) =
0 and σ (1,2) = σ (2,1) = l/2. The vertical state (ϕ = π /2)
is the most favorable, because there are no forbidden regions
along the line in this configuration, i.e., the system of parallel
needles could behave like an ideal gas. As a result the particles
tend to align each other in the direction of vertical state. The
explicit form of the transfer-matrix of the two-state Zwanzig
model is

K̂ = 1

P ∗

(
exp(−P ∗) exp(−P ∗/2)

exp(−P ∗/2) 1

)
, (7)

where P ∗ = βP l is the dimensionless pressure. The eigen-
function (ψ̂) is now a two-component vector satisfying the
eigenvalue equation:K̂ψ̂ = λψ̂ . Two eigenvalues come from
the eigenvalue equation det(K̂ − λ1̂) = 0. The resulting eigen-
values and the corresponding eigenfunctions in decreasing
order are as follows:

λ0 = 1

P ∗ (1 + exp(−P ∗)) and
(8a)

ψ̂0 = 1√
1 + exp(P ∗)

(
1

exp(P ∗/2)

)
,

λ1 = 0 and ψ̂1 = 1√
1 + exp(P ∗)

(− exp(P ∗/2)

1

)
. (8b)

Since the fraction of particles in the state i is equal to ψ0(i)2,
and the particles prefer the vertical state, the order parameter
equation [Eq. (5)] reduces to S = ψ0(2)2 − ψ0(1)2. Using
Eq. (8a) the order parameter can be written in a short form

S = tanh(P ∗/2). (9)

Using the largest eigenvalue (λ0), the equation of state
can be obtained from β/ρ = −∂ log λ0/∂P . The resulting
equation can be written in dimensionless form as

ρ∗ −1 = P ∗ −1 + 1/2 − S/2, (10)

where ρ∗ = ρl. Finally, it can be seen from Eq. (6) that there is
no orientational correlations in the two-state Zwanzig model,
because the second eigenvalue (λ1) is always zero.

B. Four-state Zwanzig model

In this model we have four different states. The correspond-
ing orientations are given by ϕi = (i − 1)π/4 (i = 1, . . . ,4),
i.e., the angle between the neighboring states is π/4. The
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PÉTER GURIN AND SZABOLCS VARGA PHYSICAL REVIEW E 83, 061710 (2011)

system possesses five different excluded distances and the
transfer-matrix is now given by

K̂ = 1

P ∗

⎛
⎜⎜⎜⎝

a2 a a a

a 1 b b2

a b 1 b

a b2 b 1

⎞
⎟⎟⎟⎠ , (11)

where a = exp(−P ∗/2), b = exp(−P ∗/2
√

2). The eigenvalue
equation is

∑4
j=1 K(i,j )ψ(j ) = λψ(i), where ψ(i) is ith

component of the eigenvector ψ̂ = (ψ(1),ψ(2),ψ(3),ψ(4)).
Again we obtain the eigenvalues from det(K̂ − λ1̂) = 0. It
can be shown that the second-largest eigenvalue is given by
λ1 = (1 − b2)l/P ∗, while the rest of them (λ0 > λ2 > λ3) can
be obtained from the following cubic equation:

(P ∗)3λ3 − (a2 + b2 + 2)(P ∗)2λ2

+ (1 − a2)(1 − b2)P ∗λ + 2a2(1 − b)2 = 0. (12)

As the eigenvalues are lengthy expressions, we do not
present them here (see Ref. [34] for details). The equation
of state and the order parameter are obtained from

1

ρ∗ = −∂ log λ0

∂P ∗ (13)

and

S =
√

(ψ0(1)2 − ψ0(3)2)2 + (ψ0(2)2 − ψ0(4)2)2, (14)

where ψ0(i)2 is the fraction of molecules in the state i (i =
1, . . . ,4). Note that there are orientational correlations in this
model, because the eigenvalues are not zero. We determine
g2(r) from Eq. (6) using the discretized equations for Ck and
Sk functions.

C. V model

The next step would be the eight-state Zwanzig model (rota-
tion with 22.5◦) with eight eigenvalues and eigenfunctions. The
eigenvalue problem results in an 8th-order polynomial without
having analytical expressions for its roots. However, this model
would be still far from the continuum limit. To overcome the
problem, one possible way is to use an approximate contact
distance between two needles. A very simple expression is
suggested by Kantor and Kardar [24] and used by Ansari [25]
to examine the high-pressure behavior of hard needles. In this
approximation the contact distance between two needles has
the following form:

σ (ϕ,ϕ′) = l|ϕ − ϕ′|/π. (15)

This equation is valid for parallel and perpendicular
configurations, but it does not give the right value for the
specific case of ϕ = ϕ′ = 0. We refer to this model as V
model, because the shape of the σ surface reminds us for a
V-shaped valley. Equation (15) can be also considered as a new
hard-body model, too, where we cannot allocate a geometric
shape to the particles. The advantage of the V model is that
we have managed to solve it analytically, the system is free
rotating and the orientational fluctuations are included. The

results of the eigenvalue problem [Eq. (4)] for the V model are
the followings. The eigenvalues are given by

λi = 2π

P ∗2 + κ2
i

, (16)

where λi satisfies the following transcendental equation for
even (i = 2 j) and odd (i = 2 j+1) indices

κ2j tan(κ2j /2) = P ∗, (17a)

−κ2j+1/ tan(κ2j+1/2) = P ∗. (17b)

The eigenvalues are in the decreasing order (λ0 > λ1 >

λ2. . .) if we search the solution in the following interval iπ <

κi < (i + 1)π . The corresponding eigenfunctions for even and
odd indices are given by

ψ2j (ϕ) =
√

2κ2j

π (κ2j + sin κ2j )
cos

(
κ2j

π
(ϕ − π/2)

)
(18a)

ψ2j+1(ϕ) =
√

2κ2j+1

π (κ2j+1 − sin κ2j+1)
sin

(
κ2j+1

π
(ϕ − π/2)

)
(18b)

From Eq. (13) it is easy to show that the equation of state
can be written in dimensionless form as

ρ∗ −1 = 2 (P ∗ + κ0κ
′
0)

P ∗2 + κ2
0

, (19)

where κ ′
0 = dκ0/dP ∗ ={P ∗(1/κ0 + 1/ sin(κ0))}−1. The order

parameter can be determined from Eq. (5) analytically. It
depends on the pressure through κ0 as follows

S = κ2
0 sin κ0(

π2 − κ2
0

)
(κ0 + sin κ0)

. (20)

Since the eigenfunctions are proportional to cosine and sine
functions, the integrals in the orientational correlation function
[Eq. (6)] can be performed analytically. However, the formula
is very complicated and does not give extra information, so we
disregard it in the presentation of g2(r) in this work.

IV. COMPARISON OF THE MODELS

The equation of state and the order parameters of the
Z2, Z4, V, and needle models are shown together in Fig. 2.
Pressures of the Z2, Z4, and V models are analytical [see
Eqs. (10), (13), and (19)], whereas that of needles (N) is
obtained by the numerical solution of the eigenvalue problem
[32]. Apart from the ideal gas limit, the curves of different
systems deviate substantially, but the densities of discrete
models (Z2 and Z4) get closer to each other with pressure. The
same phenomenon can be observed in the continuous models
(V and N). The high-pressure analyses of Eqs. (10) and (13)
show that both Z2 and Z4 systems behave as an ideal gas at
very high pressures (βP = ρ). In the case of the continuous V
model, the high-pressure limit of Eq. (19) is βP = 2ρ, which
is almost valid even at P∗ = 10 (P ∗ = βP l). The needles
always have slightly higher pressures, but they have probably
the same high-pressure limit. Note that the equation of state
of the 2D needle system fits the βP = 2ρ equation in the
nematic phase [6]. In the case of 1D needles we are not
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FIG. 2. (Color online) Equation of state (upper panel) and the
corresponding order parameter (lower panel) of four different models:
two-state Zwanzig (Z2), four-state Zwanzig (Z4), V, and needle (N)
fluids. The density and the pressure are dimensionless: ρ∗ = ρl and
P ∗ = βP l.

able to give a definite answer with our numerical method,
because the discretization of the orientations suppresses the
orientational fluctuations at very high pressure. Irrespective of
the number of discrete orientations, only the most favorable
orientation (σ = 0 in this case) is occupied in the limit of
βP → ∞, i.e., the system becomes ideal gas (βP = ρ). Using
256 different orientations for the representation of ψ(ϕ) in the
interval 0 � ϕ � π , we have obtained the ideal gas law from
P ∗ = 1000. This shows that the numerical procedures are not
useful for studying the high-pressure limit. It is noteworthy
that the Z4 model reproduces the equation of state of the

needles quite accurately up to P ∗ = 3, while the Z2 model
is reasonable only to P ∗ = 1.5. This shows that the local
orientational fluctuations are large at low pressure.

The order parameter curves also support the above state-
ments (Fig. 2). It can be seen that the order parameter is
overestimated by both the Z2 [Eq. (9)] and Z4 [Eq. (14)]
models, but the curves of the Z4 model are always closer
to the numerical results. The order parameter goes to 1 very
suddenly in the Z2 model and only the vertical orientation
is occupied. Therefore, the particles become parallel and the
system behaves as an ideal gas from P ∗ = 7 in Z2. The
order parameter of the Z4 model goes to one smoothly with
pressure, because the system has three orientational states
(π/4, π/2, and 3π/4) with zero contact distance, allowing
smaller fluctuations to be present. Therefore the Z4 model
does not behave as an ideal gas even at P∗ = 10. The high-
pressure limiting value of S for needles cannot be answered
by the numerical procedure because only those orientational
fluctuations are taken into account, which are larger than the
grid size of the discretized model. This problem is not present
in the V model, where ϕ is continuous variable and we have
analytical solution. The order parameter of the V model is
quite close to that of needles up to P ∗ = 1, but it starts to
deviate substantially with the pressure. Deeper inspection of
Eq. (20) reveals that the order parameter of the V model goes
toward to 1/2 with increasing pressure. This means that the
system never gets into the completely ordered state (S = 1),
but it becomes partially ordered even at infinite pressure. In the
case of needles we have observed much stronger tendency for
complete ordering. This result contradicts to the expectation
of Kantor and Kardar [24], because they predicted that the
V and the needle models should behave identically at very
high pressures. This can happen only if the order parameter
of needles saturates first and then goes down to the S = 1/2
limit of the V model. This would be unphysical, because the
ordering tendency of needles increases with the pressure. Even
if it goes to 1, it does not mean that the needles behave as
an ideal gas, because infinitesimal orientational fluctuations
are present giving extra factor in the equation of state, i.e.,
βP = 2ρ. We must mention that the field theory predicts
incorrectly that the limiting value of the order parameter is
one instead of 1/2 for the V model. This suggests that the
effective Hamiltonian proposed in Ref. [24] is not applicable
for these models.

The other important quantity, which characterizes the
ordering behavior of the system, is the orientational correlation
function. In the Z2 model there is no orientational correlation,
because the rotation of a particle from vertical to horizontal
direction reduces the free room available for the other particles,
i.e., it is not beneficial even for the vertical neighbors to
perform the same rotation. The same happens in the other
direction of rotation, because the rotation of a particle from
horizontal to vertical direction makes extra room for the
neighboring horizontal particles that feel no propelling force
rotate together with the first particle. Therefore, there are
no collective rotations in the Z2 fluid. The situation changes
dramatically in the Z4 model, because there are three directions
with zero contact distance. As a result, 45◦ rotation of
a particle among 45◦, 90◦, and 135◦ states stimulates the
neighbors to do the same rotations to maximize the free
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space available for the particles. Only the rotations to the
horizontal state do not boost the orientational correlation.
These results show that the number of discrete orientations
has to exceed 2 in order to have orientational correlations.
Equation (6) shows that the orientational correlation function
always decays exponentially at large distances in the Z4,
V, and N models. Writing the asymptotic behavior of the
correlation function in the form g2(r) ∼ exp(−r/ξ ), it can
be seen from Eq. (6) that the correlation length is equal to
ξ = (ρ ln(λ0/λ1))−1. The pressure dependence of this length
is depicted in Fig. 3. We can see that ξ diverges at vanishing
density in all cases. This is not surprising as the orientational
correlations indicate the onset of the orientational ordering
at zero density. With increasing density (or pressure) the
correlations weaken up to ρ∗ ∼ 1, which corresponds to
the average nearest-neighbor distance equal to the length
of the needle. For higher pressures the correlation length
increases again in all models. The Z4 and V models show
diverging correlation length with pressure. For example, it
can be derived from Eq. (16) that ξ ∼ 2βP l2/3π2 for the V
model. The high-pressure property of the correlation length
can be interpreted as an onset of orientational jamming, where
the orientation fluctuations bring about the large bunches
of particles to rotate in the same rhythm as the free room
available for the rotation of the particles decreases dramatically
with the pressure. Regarding the correlation length of the
needles (Fig. 3) suggests that the correlation length does
not diverge in the system of hard needles, i.e., its behavior
differs from that of the V model and it shows saturation.
As this result is based on the numerical solution of the
eigenvalue equation of needles, no definite conclusion can
be drawn for the correlations because of the neglected small

FIG. 3. (Color online) Orientational correlation length as a
function of pressure. Curves of the four-state Zwanzig (Z4), V, and
needle (N) fluids are shown. The correlation length and the pressure
are dimensionless: ξ ∗ = ξ/ l and P ∗ = βP l.

orientational fluctuations. Therefore, it is necessary to go
beyond the V model to give the right answer for this pending
issue. One possibility is to find new exactly solvable models,
which are closer to hard needles, while the other possibility
is to define a proper effective Hamiltonian for the field
theory calculations. The main conclusion of the above results
is that it is very problematic to predict the high-density
behavior of the needles due to the presence of infinitesimal
fluctuations.

V. CONCLUSIONS

We have proposed two possible paths to study the ordering
behavior of hard needles in quasi one dimension. In the first
two models (Z2 and Z4) the particles interacts exactly the same
way as the needles do, but the number of possible orientations
is limited to two or four directions. In the third model (V)
the particles are allowed to rotate freely in two dimensions,
but the pair interaction does not follow the rules of the hard
needles exactly. We have obtained the following important
results:

(i) The discretization of the orientations has series effect
on the equation of state, order parameter, and orientational
correlation at high pressures. Irrespective of the number of
possible orientations, the particles align parallel in the vertical
state (S → 1) and the system behaves as an ideal gas
(βP = ρ). This is due to the fact that discretizing the angular
variables (like we do it in Z2 and Z4 models), the infinitesimal
fluctuations allowed in the original model are not included.
Therefore the system of hard needles cannot be examined by
n-state Zwanzig model at very high pressures. Moreover, the
number of orientational states has to exceed two to obtain
orientational correlations.

(ii) The V model has allowed us to perform complete
analysis, but it can be considered as an approximate model
for hard needles. The model gives account of the orientational
ordering and the fluctuations even at the high-pressure limit.
It is proved exactly that the orientational fluctuations gives
an extra factor in the ideal gas law such that βP = 2ρ at
very high densities. Interestingly, the system is only partially
ordered even at very high pressures. The divergence of the
correlation length indicates that the particles have to rotate
together in large blocks at very high densities due to the lack
of free room available.

(iii) The phase behavior of hard needles cannot be described
by discrete models and the continuous V model at high
pressures. The numerical results with n = 256 orientational
states suggest that the orientational correlation length does not
diverge, but it saturates with increasing pressure.

In summary we have presented three analytically solvable
models that capture some of the properties of the hard needles.
In addition, the V model can be considered a new hard-body
model without having definite geometry like the hard Gaussian
overlap model [30,35]. The group of exactly solvable one-
dimensional models may be extended toward the direction of
3D objects by the same technique. Good start in this direction
is the recent study of Schwartz [36] for the system of hard
nonspherical beads on a line.
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