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Manifold of polar smectic liquid crystals with spatial modulation of the order parameter
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We revisit a theoretical approach based on the discrete Landau model of polar smectic liquid crystals. Treating
equilibrium structures on many length scales, we have analyzed different periodically modulated polar smectic
phases. Besides already known smectic structures, we have obtained a number of other phases which are stable in
a narrow range (that is why the phases can be termed as microphases) of model parameters and thermodynamic
conditions. The sequence of microphases represents a so-called “harmless staircase” of structures with oscillating
periods. We anticipate that the range of stabilities for various microphases can be extended (and therefore the
microphases can be easier to detect experimentally) by applying external electric fields or/and investigating
freestanding smectic films.
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I. INTRODUCTION

Liquid crystals discovered in 19th century are perhaps the
oldest well-defined and ordered representatives of soft matter
materials [1–3]. The vast majority of molecules that build
up liquid crystals are polar, however, the simplest liquid-
crystalline structures (nematics and smectic-A) constructed
of these molecules are nonpolar. In order to have a bulk
polar order, a liquid crystal must have a direction which
cannot be reversed by any symmetry operation. For example,
less symmetric tilted and chiral smectic-C liquid crystals
can form polar structures. A rich variety of structures and
strong response to external stimuli typical for liquid crystals
enable many practical applications ranging from information
displays (where liquid crystals are a cornerstone of the overall
display industry), to sensors, to photonic devices. Having
in mind these applications, the long story of investigations,
and the fundamental challenges of understanding of partially
ordered liquidlike systems, one might think that at least there
are answers to all fundamental questions. But it is not the
case. Liquid crystals (in particular, polar and chiral ones)
turned out to be much more difficult and interesting than
expected and we do not yet have a clear overall picture of the
properties of these systems. Even after more than 100 years
of research, it is not yet known whether all possible kinds
of liquid crystals have been discovered already and identified.
Especially the questions concern chiral polar smectic-C∗ liquid
crystals [1,4,5], for which unique and exotic types of ordering
were discovered recently [6–8].

Polar smectic-C∗ (SmC∗) type liquid crystals form layer
structures in which molecules tilt with respect to the layer
normal [1]. Their orientational structure may be described by
two-component vectors ξ i in each i layer (Fig. 1). Modulus ξ i

is the projection of the long molecular axis to the layer plane
and determines the polar angle θi , whereas the direction of ξ i

describes the azimuthal orientation (angle ϕi). The manifolds
of polar structures are formed by different orientations of ξ i in
the smectic layers (Fig. 1).

On the theoretical front, even simple structures and phase
diagrams of polar, chiral, and smectic-C liquid crystals are
sufficiently complex by the standards of classical condensed-

matter physics. The most general form of the problem is excep-
tionally involved and tedious. However, despite the apparent
intractability of the problem, all of these complications can be
subsumed by a phenomenological Landau model. As is typical
in any coarse-graining scheme, many microscopic details
pertaining to the physical system on a given scale become
condensed into a few effective parameters—Landau theory
coefficients. The strength of the phenomenological (heuristic)
arguments is their general validity. Aiming to clarify the issue
about all possible polar smectic structures, we have elaborated
the discrete Landau theory of phase transitions especially
designed for these types of liquid crystals [9]. It is in fact
the main message of our publications [9–11], that one needs
not invent a new phenomenological model. All of the essential
ingredients of the polar liquid crystals can be included into the
Landau free-energy expansion over the two-component order
parameter, introduced by de Gennes [1]. Once developed,
it becomes a paradigm in the physics of liquid crystals as
a kind of method to penetrate into the unknown domains
where microscopic theories are not yet known. However, one
should be careful to avoid oversimplifications. For the case
of polar and chiral smectics, this dangerous oversimplification
is to assume, e.g., in advance (prior to the minimization) that
one component of the de Gennes smectic order parameter
is constant and does not have space variation. The essence
of our approach in this paper is to study systematically all
possible structures with a spatially varying two-component
order parameter. It requires to minimize an appropriate energy
of polar smectic liquid crystals and to apply a multiscaling
analysis, i.e., to treat equilibrium structures on many length
scales. As a result, we have found, besides the already known
(predicted theoretically and identified experimentally) smectic
structures, a number of other phases which are stable in
a narrow range (that is why the phases can be termed as
microphases) of model parameters and thermodynamic con-
ditions. The sequence of microphases represents the so-called
“harmless staircase” (structures with oscillating periods known
in the magnetic systems with competing interactions). We
anticipate that the range of stabilities for various microphases
can be extended (and therefore the microphases can be detected
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FIG. 1. (Color online) (a) Orientation of molecules in a layer
of tilted smectic. Z is the layer normal. The vector ξ i determines the
molecular orientation (polar θi and azimuthal ϕi angles). (b) Different
values and orientations of ξ i in the layers form a manifold of polar
structures.

experimentally) by applying external electric fields and/or
investigating freestanding smectic films.

II. MODEL

In a discrete phenomenological Landau model of the phase
transitions, the set of ξ i is considered as a two-component order
parameter characterized by the modulus and phase ϕi . The
Landau expansion of the free energy F0 = F1 + F2 consists
of intralayer F1 and interlayer F2 interactions [9,12–14]. First
we take a limited number of terms that are necessary to obtain
all already experimentally observed structures. F1 is the usual
Landau expansion of the free energy:

F1 =
∑

i

[
1

2
α(T − T ∗)ξ 2

i + 1

4
b0ξ

4
i

]
, (1)

where a0 = α(T − T ∗) and b0 are Landau coefficients. Both
α and b0 are constant. In the absence of interlayer interactions,
T ∗ is the temperature of the transition to the nonpolar (SmA)
phase. Interlayer interaction is taken in the form

F2 = 1

2
a1

∑
i

ξ i · ξ i+1 + 1

8
a2

∑
i

ξ i · ξ i+2

+ b
∑

i

[ξ i × ξ i+1]2. (2)

The first term describes the interaction between nearest-
neighbor (NN) layers. The essential feature of the energy F2 is
the positive sign of the coefficient a2 in the interaction between
next-nearest-neighbor (NNN) layers. Layer polarization favors
an antiparallel orientation of ξ i in NNN layers that is
inconsistent with both synclinic (ϕi = ϕi+1) and anticlinic
(ϕi = ϕi+1 + π ) structures. Just this frustration leads to forma-
tion of manifold of polar structures. If the interaction between
the layers is restricted to only NNs, then there are no reasons
for nontrivial spatial modulations. The third term in Eq. (2)
is the free-energy barrier between the parallel and antiparallel
orientation of ξ i in polar phases. Its origin was discussed in
a recent review [5]. Chirality is usually presented in the free
energy by the Lifshitz term F = f [ξ i × ξ i+1]z. Free energy
(1) and (2) was constructed from terms allowed by symmetry
consideration for the two-component order parameter defined
above. The Landau free-energy expansion is a very useful

tool to determine structures and phase sequences. To find
all the possible equilibrium structures and phase diagrams,
one has to perform minimization of the Landau free energy
over the set of two-component order parameters ξ i . Needless
to say, the minimization in the general case is not feasible
analytically. Even numerical minimization is not a trivial
task. The method of numerical minimization of the free
energy was described earlier [9,15]. The initial structure of
the sample was taken as a random set of ξ i in the layers. The
structure with minimum energy was found by varying both the
phase and the modulus of ξ i in each layer of the sample using
the quasi-Newton algorithm [9]. This procedure was repeated
from 5 × 103 to 105 times, depending on the complexity of the
structure. Each time a random starting structure was selected.
This enabled to determine reliably the stable structures corre-
sponding to the global energy minimum. The number of layers
in the sample was several times larger than the periodicity of
the phases. For such a thickness the boundaries do not affect the
behavior inside the sample. Thus we were able to obtain in the
calculations both commensurate and incommensurate ground-
state structures. For commensurate structures simultaneous
calculations were performed also in samples with periodic
boundary conditions. Both approaches gave the same result.
In the following, we provide the results for phases stable in the
interval of parameters �(a1/a2) > 10−6 and �T > 0.03 K.
Calculation of phases with such a narrow stability range has
been performed.

III. RESULTS AND DISCUSSION

At high temperatures, due to the biquadratic interaction
term in (2), the barrier between synclinic and anticlinic ori-
entation is small (|ξ i | � 1). Correspondingly, an equilibrium
structure is formed due to competition between the two first
terms in Eq. (2). Near the temperature T0 of the transition to
the SmA phase, a short pitch helical structure incommensurate
with layer periodicity (SmC∗

α phase) exists at |a1/a2| < 1.
At low temperatures the energy barrier prevents deviation ξ i

from synclinic or anticlinic molecular orientation by a large
angle. As a result, the SmC∗

α phase is replaced by structures
commensurate with layer periodicity. The structure of the
unit cells depends crucially on the sign of ratio a1/a2. If one
changes the sign of the ratio a1/a2 and simultaneously replaces
synclinic configurations with anticlinic (and vice versa), the
minima of the free energy F0 remain the same. Thus, for each
|a1/a2|, two structures of equal energy exist which correspond
to different signs of a1/a2. The solid lines in Figs. 2(a) and
2(b) show the energy of the ground state for different values of
the ratio |a1/a2|. Due to the symmetry of Eq. (2) with respect
to sign of a1/a2, the energies are equal for the phases pointed
in the upper part of Figs. 2(a) and 2(b) for a1/a2 > 0 and in the
lower part of the figure for a1/a2 < 0 [e.g., SmC∗ and SmC∗

A,
SmC∗

d3 and SmC∗
d6—Fig. 2(a)]. At a1/a2 < 0 the ferroelectric

SmC∗ and two antiferroelectric SmC∗
d6 and SmC∗

d4 phases are
formed. At a1/a2 > 0, antiferroelectric SmC∗

A, ferrielectric
SmC∗

d3, and antiferroelectric SmC∗
d4 phases are equilibrium

structures [16]. The structures of the different phases are shown
in Fig. 3. The rectangles with dashed lines show the unit cells.
For simplicity of representation, we show flat structures in this
figure. Actually there is a deviation of ξ i from the flat structures
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FIG. 2. (Color online) Energies of ground states (solid lines) of
polar structures vs ratio a1/a2. F0/N is the energy per layer. For
positive and negative ratios a1/a2 different structures are formed.
Between SmC∗

d3 (SmC∗
d6) and SmC∗

d4 phases the set of microphases
is formed in a narrow range of ratio a1/a2. (b) is a magnification
showing the interval with microphases. The set of model parameters
is α = 0.01 K−1, T ∗ − T = 4.5 K, b0 = 1, a2 = 0.015, and b = 0.04.

which is related to the long helical pitch and distortion angles
between the molecules inside the unit cells. The influence of
chirality on structure and deviation from the flat structure will
be discussed later in this section. The SmC∗ and SmC∗

A phases
are the ground states in a wide range at a large ratio |a1/a2|.
The SmC∗

d4 phase is stable for positive and negative a1/a2 up
to a1/a2 = 0 as synclinic and anticlinic pairs are present in
this phase in equal proportions. In other structures, one of the
molecular orientations is dominant: synclinic (for a1/a2 < 0)
or anticlinic (for a1/a2 > 0).

The structures of the SmC∗, SmC∗
A, SmC∗

d4 and SmC∗
d3,

SmC∗
d6 phases are essentially different. The first three struc-

tures are formed by changing only the phase of the order
parameter. In the SmC∗

d3 and SmC∗
d6 structures not only

the phase but also the modulus of the order parameter ξ i

change along the structures [Figs. 3(b) and 3(e)]. The spatial
modulation of |ξ i | decreases the energy in these structures.
So, the Landau theory of the phase transition with a two-
component order parameter reproduces and rationalizes all
experimentally observed structures [5,8,17–20], including the
recently discovered SmC∗

d6 phase [Fig. 2(a)], and explains the
mechanism of their formation. Between SmC∗

d3 (SmC∗
d6) and

SmC∗
d4 phases a series of microphases are formed [Fig. 2(a)].

Investigations of their structures and phase sequence are
important for a theoretical and experimental understanding of

FIG. 3. (Color online) A schematic sketch of equilibrium polar
phases formed at different signs of ratio a1/a2. Rectangles show the
unit cells of the structures. In SmC∗, SmC∗

d4, and SmC∗
A phases the

modulus of the order parameter |ξ i | is equal along the structures.
The SmC∗

d6 and SmC∗
d3 structures are formed by the change of both

phase (ϕi) and modulus |ξ i | of the order parameter. For simplicity
of representation, planar “up-down” structures are drawn, and small
distortion angles between nearly synclinic orientations are not shown.

the underlying physics of the mechanisms responsible for polar
phase formation and potential applications of these unusual
liquid-crystalline phases.

Figure 2(b) shows the microphase region on an enlarged
scale. Most of the phase diagram is occupied by the SmC∗

d5
(SmC∗

d10) phase. Then the SmC∗
d14 (SmC∗

d7) microphase
follows. Structures and sequences of microphases are shown
in Figs. 4 and 5. The width of the SmC∗

d9 (SmC∗
d18) mi-

crophase is an order of magnitude smaller than the width
of the SmC∗

d14(SmC∗
d7). Two microphases are formed for the

same absolute value |a1/a2|. A distinct symmetry exists for
these microphases. Their unit cells have periods differing in
two times. The structures with a smaller period are ferrielectric,
and structures with a double period are antiferroelectric
(Fig. 4). In the ferrielectric microphases the periodicity of the
structure with respect to the phase and modulus of the order
parameter is the same. In the antiferroelectric microphases
the periodicity in orientations of ξ i is twice the periodicity
of the modulus |ξ i |. Although the corresponding microphase
stability regions are narrow, investigations of the structure and
other properties of these phases do not only have a purely
academic interest.

It is worth noting that the microphase sequence does not
show the “devil’s staircase” [1,4], which is very popular in
elastic and spin-modulated commensurate systems. For the
devil’s staircase sequence, the resulting curve, describing the

061705-3



DOLGANOV, ZHILIN, DOLGANOV, AND KATS PHYSICAL REVIEW E 83, 061705 (2011)

FIG. 4. (Color online) A schematic sketch of polar microphases
formed at different signs of the ratio a1/a2. The sequence of
microphases SmC∗

d5, SmC∗
d14, and SmC∗

d9 forms between the SmC∗
d6

and SmC∗
d4 phases. Microphases SmC∗

d10, SmC∗
d7, and SmC∗

d18 form
between the SmC∗

d3 and SmC∗
d4 phases.

dependence of the modulation wave vector on the parameter
controlling transitions (temperature in our case), is continuous
but nonanalytical. On the contrary, the microphases are the
special case of the so-called “harmless staircase” [21] with
oscillating periods (Fig. 5). Phase transitions in “harmless”
sequences are first-order phase transitions.

FIG. 5. (Color online) A schematic sketch of two staircases from
polar microphases formed between SmC∗

d3 (SmC∗
d6) and SmC∗

d4

phases vs |a1/a2|. The value |a1/a2| = 0.5 corresponds to the SmC∗
d3

(SmC∗
d6) phase. The arrow points to the direction of the increase

of |a1/a2|. In every staircase the width of the microphases rapidly
decreases with decreasing |a1/a2| [see Fig. 2(b)]. For simplicity of
representation of the staircases, the microphases are shown with equal
width. The range of the existence of the microphases is indicated in
Fig. 2 and in the text.

The formation of microphases follows a simple rule. If we
go from a SmC∗

d6 (SmC∗
d3) structure, every next microphase

is obtained by inserting two additional synclinic layers
between “three-up” or “three-down” clusters (a1/a2 < 0) and
between two “two-up–one down” clusters (a1/a2 > 0). So, the
quasicontinuous transition from SmC∗

d6 (SmC∗
d3) to SmC∗

d4
structure results by successively increasing the number of
two-layer clusters in the structure. Of course, we should keep in
mind that transitions between microphases are weak first-order
transitions. In our staircases, ferrielectric and antiferroelectric
microphases alternate (Figs. 4 and 5).

At first sight this staircase presents only a mathematical
interest because of the narrow intervals of stability and no hope
to observe the microphases in experiments. Fortunately it is
not the case, and this is a motivation for studying modulated
microphase structures. The width of the microphase stability
regions can be increased in an external field. Especially, this
refers to ferrielectric microphases with a1/a2 < 0 [Figs. 2(a)
and 4] because in an electric field they become more favorable
with respect to their neighboring antiferroelectric SmC∗

d6 and
SmC∗

d4 phases. Another possible way to observe and identify
the microphases is to study freestanding films. In the thin
films with the thickness comparable to the periodicity of the
microphases, the structure of the microphases can be dominant.
Naturally one should expect that microphases dramatically
affect the kinetic of the phase transition and the formation
of perfect structures. In the x-ray experiments [8] in some
region of the phase diagram between the SmC∗

d6 and SmC∗
d4

phases the authors were not able to determine periodicity. They
have observed only multiple and noisy x-ray peaks [8]. We do
believe that these x-ray scattering data are a manifestation of
microphases with their structures not yet completely formed.

The above described Landau theory supplemented by some
additional terms may well describe not only the possible
structures of polar phases but also the phase diagrams, i.e., the
phase transition sequences. It is sufficient to add a biquadratic
NN interaction b1

∑
i ξ

2
i (ξ i−1 · ξ i + ξ i · ξ i+1) and long-range

third-nearest-neighbor (TNN) interaction a3
∑

i ξ i · ξ i+3

[11,14]. The flexoelectric origin of the long-range interactions
was first explained by Čepič and Žekš [14]. For the formation
of different microphases, it is essential that the sign of a3

is negative [5]. One or a sequence of subphases can appear
immediately below the SmA phase or between the ferroelectric
SmC∗ and antiferroelectic SmC∗

A phases. Both cases are
described by the discrete Landau theory. Figure 6 shows the
calculated temperature dependence of the modulus of the
order parameter |ξ | when below the SmA phase different
subphases appear. The experimentally observed unusual phase
sequence SmA-SmC∗

α-SmC∗
d6-SmC∗

d4-SmC∗ [8] is obtained in
our calculations (Fig. 6) by choosing appropriate values of the
model parameters. The recently discovered SmC∗

d6 phase [8]
forms a spatially modulated structure with two values of the
modulus of the order parameter (Figs. 2 and 6). In microphases
several values of |ξ | form the periodicity (e.g., three different
values of |ξ | in the SmC∗

d5 microphase—Figs. 4 and 6).
The question could arise why, in spite of the analogy

of SmC∗
d3 and SmC∗

d6 phases (Fig. 2), the SmC∗
d3 structure

has been discovered long ago and is observed in numerous
compounds [4], whereas the SmC∗

d6 phase has been observed
only recently. The reason may be due to the effect of the TNN
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FIG. 6. Temperature dependence of the modulus of the order
parameter |ξ | when polar subphases form below the SmA phase.
The calculated sequence of phases SmA, SmC∗

α , SmC∗
d6, SmC∗

d4, and
SmC∗ corresponds to experimental observations [8]. The set of model
parameter is as in Fig. 2 and b1 = −8 × 10−4, a3 = −5 × 10−5, and
a1/a2 = −0.463. In the SmC∗

d6 phase and in the microphases |ξ i | has
different values along the structures.

interlayer interaction. As pointed by Čepič and Žekš [14],
the coefficient a3 in this term is negative, that is, favoring
parallel orientations of molecules in third nearest layers. This
interaction decreases the range of the SmC∗

d6 phase [11] and,
reversely, increases the stability range of the SmC∗

d3 phase. The
SmC∗

d3 phase can be more easiely observed. So, the results of
our calculations correlate with the experimental findings and
suggest that the TNN interaction in polar liquid crystals may
be essential.

At large |b1| and |a1| with b1 positive and a1 negative
the SmC∗ phase exists at high temperature and SmC∗

A at
low temperature (Fig. 7). Frustration leads to the formation
of intermediate structures between SmC∗ and SmC∗

A phases.
The relative temperature range of subphases depends on the
value of the TNN interaction. The larger is |a3|, the wider is
the temperature range of the SmC∗

d3 phase. TNN interaction

FIG. 7. Temperature dependence of the modulus of the order
parameter |ξ | when polar subphases form between the SmC∗ and
SmC∗

A phases. In the SmC∗
d3, SmC∗

d8, and SmC∗
d10 phases the

modulus of the order parameter |ξ | varies from layer to layer.
The SmC∗

d10 microphase exists in a narrow temperature range
of the order of 0.04 K. The set of model parameters is α = 0.01,
b0 = 1, a1 = −0.018, a2 = 0.018, a3 = −8 × 10−4, b = 0.02, b1 =
0.04, and f = 7.5 × 10−4.

FIG. 8. (Color online) Schematic representation of the orienta-
tions of ξ in the unit cell of different phases (left-hand side) and
the calculated values of the azimuthal angle (right-hand side). The
distortion angle δ is related to chirality. Different lengths of the arrows
in (a), (e), and (g) illustrate the variation of |ξ | from layer to layer.
The helical pitch is ∼400 layers (SmC∗

d3 phase), ∼300 layers (SmC∗
d4

phase), ∼230 layers (SmC∗
d8 microphase), and ∼500 layers (SmC∗

d10

microphase). The set of model parameters is as in Fig. 7; T − T0 =
−16.08 K (SmC∗

d3 phase), T − T0 = −10.68 K (SmC∗
d4 phase),

T − T0 = −19 K (SmC∗
d8 microphase), and T − T0 = −13.28 K

(SmC∗
d10 microphase).

not only changes the temperature range of the subphases,
but also can lead to the formation of new structures. The
SmC∗

d8 microphase appears (Fig. 7) due to the long-range
TNN interaction. Figure 8 shows the calculated orientations of
ξ i [Figs. 8(b), 8(d), 8(f), and 8(h)] and the schematic structure
of the intermediate phases [Figs. 8(a), 8(c), 8(e), and 8(g)].
The different lengths of ξ i in Figs. 8(a), 8(e), and 8(g) reflect
different values of the modulus of the order parameter in the
unit cells of the phases with periods of 3, 8, and 10 layers
(Fig. 7). We remind that in the clock model [5] the modulus
of the order parameter is constant in different layers. The
distortion angle δ shown in Fig. 8 depends nearly linearly on
chirality (Fig. 9).

Because many different theoretical models for the polar
smectic structures have been proposed in the literature (see,
e.g., a recent review in Ref. [5] and Refs. [9,12–14,22–27]),
the ability to discriminate those experimentally is crucially
important. However, the interpretation of the experimental
observations for many exotic polar smectic phases with various
molecular orientation is rather difficult. The fact is that
the different azimuthal orientation does not produce Bragg
reflections in conventional crystallography. The corresponding
orientational ordering can be detected only using resonant
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FIG. 9. Dependence of the distortion angle δ on chirality for
different phases. The set of model parameters is as in Fig. 7;
SmC∗

d4 (closed squares, T − T0 = −10.68 K), SmC∗
d10 (open squares,

T − T0 = −13.28 K), SmC∗
d3 (closed circles, T − T0 = −16.08 K),

and SmC∗
d8 (open circles, T − T0 = −19 K).

scattering techniques [16,18,28]. Unfortunately, from a strictly
technical point of view, only a limited number of resonant
elements can be used in resonant scattering, and these elements
are not common in organic liquid-crystalline materials. Any
opportunity to use nonresonant scattering methods is therefore
merited to be studied. Spatial variation of the modulus of
the order parameter [Figs. 3(b), 3(c), and 4] gives this
opportunity. The modulation can be detected by nonresonant
x-ray scattering [9,11,29]. A comparison of peak positions
and intensities with calculations in the framework of the
Landau theory allows us to describe completely the structure
of different phases.

Spatially modulated systems are very common in nature
(not only smectics but as well spin-density waves, charge-
density waves, adsorbed atoms, and so on). Commensurate
phases are structures where periodicity is a simple multi-
ple of the basic microscopic scale (for smectics it is the
interlayer spacing), and incommensurate phases where it is
not the case. Polar smectics-C are characterized by both
kinds (commensurate and incommensurate) of the modulated
structures. The beauty and the power of the Landau theory
is that the theory is a universal tool, independent of the
physical nature of the order parameter. It depends only on
the system dimension and number of components of the order
parameter. Among many other systems where the ordering
is described by a two-component order parameter. it is
worth mentioning superconductors. The two-component order
parameter for superconductors can be written in the following
compact complex form, � = � exp(iϕ), where � stands for
the superconducting gap, and ϕ for the phase of the order
parameter. This analogy is even more striking for layer (quasi-
two-dimensional) materials (including high-temperature su-
perconductors, which are stull puzzling to researchers). What
do we learn from this analogy? First we learn that there are
two characteristic lengths related to space variations of the
two-component order parameter (as in superconductors where
physics depends crucially on the relation between the so-called
coherence length, characterizing variations of the module
of the order parameter, and the penetration length, which
describes phase variations). Of course one has to be careful not

to extend this analogy too far. In superconductors the ordering
produces spontaneous violation of gauge invariance, whereas
in smectics we are dealing with rotational symmetry breaking.
The severity of the results depending on this difference is
not yet completely clear. This is one more motivation to study
liquid crystals where the physical meaning of both components
of the order parameter is very transparent: The module of the
order parameter |ξ i | is the projection of the nematic director
(average rodlike molecule orientation), characterized by the
polar angle θi , whereas the phase of the order parameter is the
corresponding azimuthal angle ϕi . The analogy with superfluid
helium is even more remarkable, because in this case the free
energies are formally identical (no gauge field conjugated to
the phase for noncharged systems, as helium-4). Furthermore,
unlike superfluid or superconducting systems, for the smectic
liquid crystals both components of the order parameter have
a very clear physical meaning as well as the fields conjugated
to these components (whereas there is no physical field
conjugated to the superconducting gap, or superfluid density).
It brings a possibility to use liquid-crystalline modeling of
various nontrivial textures existing in superconductors or
superfluids.

In conventional superconductors an arbitrarily small at-
traction between electrons (Fermi particles with half-integer
spins) with identical but opposing spins and momenta can
lead to the formation of pairs that have a bosonic nature.
This is the remarkable Bardeen-Cooper-Schrieffer (BCS)
phenomenon [30], yielding to the Bose condensed state
where both components of the order parameter are constant
(smectic-C phase in liquid-crystalline analogy). However,
in the realm of superconductivity there is still an illusive
state of matter that was proposed approximately 40 years
ago by Fulde and Ferrell [31] and Larkin and Ovchinnikov
[32] (the FFLO state). These scientists posed a question:
What happens with the BCS state if the two fermionic spin
states are not present in equal numbers in the system? In
conventional superconductors such a spin imbalance can be
created by applying an external magnetic field. At first glance
it might become more difficult for fermions to form Bose
pairs. However, it is not necessarily the case and the FFLO
state proposes a clever compromise with certain modulation
of the order parameter components. Although searches for
such exotically paired superconductors have been carried out
exhaustively in condensed-matter physics, in ultracold atomic
gases, and even in the Universe, unambiguous experimental
evidence remains elusive. However, polar smectic phases with
modulated layer electronic density discovered experimentally
[6] and described theoretically [9–11] can be considered as a
realization of the FFLO state in polar smectics.

IV. CONCLUSION

Polar smectic liquid crystals are a rich state of matter, which
is an active field of research, interesting in its own fundamental
physics rights and in perspective applications which may
still lie ahead. To date many experimental researches in
this field have been done and a set of incommensurate
and commensurate polar phases (SmC∗

α , SmC∗, SmC∗
A,

SmC∗
d3, SmC∗

d4, and SmC∗
d6) was unambiguously identified. In
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principle (i.e., with an appropriate choice of model parameters)
the discrete Landau theory described in this paper gives all
possible equilibrium structures of polar smectics (in contrast
to continuous models predicting naturally only two phases).
The structures, together with their evolution on temperature,
impressively agree with experimental observations. In this
research, theory, experiment, and numerical simulations have
to combine their efforts to get scientifically sounded results.
That such a conceptually simple theory can predict such
complex and subtle physical behaviors of polar smectics
is remarkable. It demonstrates the power of the Landau
model with two-component order parameters. We show that
the discrete Landau theory predicts not only already known
smectic structures, but as well a number of other phases
(called as microphases) which are stable in a narrow range
of model parameters and thermodynamic conditions. Polar
and structural pecularities of these microphases have been
described. The sequence of microphases represents a so-called

“harmless staircase.” We propose how to extend the range
of stabilities for various microphases by applying external
electric fields or by using freestanding polar smectic films.
We also explain why the SmC∗

d6 phase, which appears in the
theory with a frustrating interaction, has been experimentally
observed only recently. Besides, we have discussed striking
similarities as well as distinctive differences of the phenomena
in smectic liquid crystals and in other domains of condensed-
matter physics. In this sense polar liquid crystals can be also
useful model objects for studies of numerous systems with
competing interactions.
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