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We study random sequential adsorption (RSA) of coupled three-circle objects (consisting of two circular discs
of radius r2 touching the central one of radius r1 making an angle θ ) on a two-dimensional continuum substrate.
For all the objects corresponding to various values of radius ratios r2

/
r1 and angles θ , approach of instantaneous

coverage �(t) to the jammed state coverage �(∞), is found to obey a power law �(∞) − �(t) ∼ t−p , as expected
based on general arguments. However, the observed values of exponent p and jammed state coverage �(∞) are
found to vary with r2

/
r1 and θ . The interplay between the degree of nonconvexity |δ| and packing efficiency η

of the object governs the saturation coverage �(∞).
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I. INTRODUCTION

The random sequential adsorption (RSA) model [1] is one
of the most studied models in the context of irreversible
adsorption of macromolecules on a solid substrate. The RSA
model has been applied to explain adsorption of a variety of
entities ranging from simple gas molecules, latex spheres, and
colloidal particles to complex entities such as polymer chains,
bacteria, proteins, and DNA in physics, chemistry, and biology
[2]. Recently the model has been applied to a wide horizon
of problems such as data processing [3], adsorption-induced
diffusion, aggregation, unfolding of proteins [4], and particle
branching in impact ionization [5].

The RSA model considers random and sequential addition
of particles on a d-dimensional substrate such that at each time
step only one attempt of a single particle is tried for adsorption.
The attempt of adsorption is either discarded if the newly
adding particle overlaps with any of the already adsorbed ones,
or else the particle is rigidly fixed to the substrate. In this
model as the process of addition of particles proceeds with
time, the instantaneous surface coverage �(t) increases, and
the adsorption probability decreases due to exclusion effects
from preadsorbed objects until, eventually, it is impossible
to place any more objects without overlap. This condition,
associated with a zero probability of adsorption, is known
as the jamming limit, and the coverage in the jammed state
is called the jammed state coverage �(∞). The approach of
instantaneous coverage �(t) to this jammed state coverage
�(∞) is a matter of considerable interest for science and
technology. It has been established that a power-law approach
of �(t) to �(∞), namely, �(∞) − �(t) ∼ t−p in a late time
regime, is a universal behavior [6]. However, the value of
exponent p is found to be object shape dependent [7–10].
The RSA of objects with different shapes has been studied
previously with an emphasis on obtaining the exponent p value
that governs the RSA dynamics. By studying RSA of objects
of different shapes such as circular, elliptical, rectangular, and
sphero-cylindrical, researchers have put forward some laws
regarding the value of exponent p [8–10]. Feder [8] was
the first to relate the observed value of exponent p in the

case of RSA of two-dimensional circular discs to the object
dimensionality and to suggest the general law p = 1/d for
d-dimensional spheres on a d-dimensional continuum sub-
strate. Swendsen [9] further showed that the same should also
hold for RSA of objects of any arbitrary shape provided that
the objects are dropped with random orientations. However,
P. Viot and G. Tarjus [10] in their simulation results for RSA of
unoriented squares found that Swendsen’s conjecture p = 1/d

is not valid and stated the relation p ∼ 1/df , df being the
degrees of freedom of the adsorbing object.

In so far as the object shape is concerned the finite area
objects can be categorized in two classes, viz., convex-shaped
objects and nonconvex-shaped objects. Geometrically convex
shaped objects are singly connected objects in the sense that
the line segment joining any two interior points lies wholly
in the interior of the object, while nonconvex-shaped objects
are not singly connected. We pointed out in our recent work
[11] that the above mentioned laws regarding the value of
exponent p were arrived at by carrying out RSA of convex
shape objects only. We therefore examined RSA of nonconvex
objects for the first time to check the validity of the law p ∼
1/df using nonconvex coupled three- and two-circle objects
[11]. By carrying out computer simulations for these objects
on two-dimensional continuum substrate we showed that the
argument p ∼ 1/df is not valid for nonconvex objects. To
quantify the degree of nonconvexity, we defined a quantity,
termed as the coefficient of departure from convexity δ and
showed that the departure from the law p ∼ 1/df has a good
direct correlation with this quantity. It was observed that the
objects with different degree of nonconvexity have different
values of exponent p. This variation in p was also shown to get
reflected in the variation of the number of adsorbed particles
at any given time instant. This interesting fact was also shown
to be relevant to the issue of targeted drug delivery [11].

The coupled three-circle object considered in our previous
study consisted of three identical circular discs, each of radius
r(two circles touching the central one making an angle θ ).
The present paper is an extension of previous study wherein
we study RSA of a more general type of coupled three-circle
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FIG. 1. Coupled three-circle object shown with dotted lines, and
the solid thick curves show the convex shape of minimum area
enclosing the object.

object with variation in the relative size of the central circular
disc vis-à-vis the two coupling side circular discs (of the same
size) (Fig. 1).

II. MODEL

A plane continuum substrate of area A = L × L is con-
sidered. The object considered for adsorption is a coupled
three-circle object of area a. At each time step one object with
random position and orientation is tried for adsorption. The
object gets successfully adsorbed if it does not overlap with
previously adsorbed ones; otherwise it is rejected. In either
case, time is incremented by one unit. For fixed a/A ratio the
simulations are carried out for different sets of radius ratio
r2/r1 and angle θ . The range of values of r2/r1 studied is from
0.1 to 1, and θ values studied are θ = 180◦, 150◦, 120◦, 90◦,
and 60◦. For each set of values of θ and r2/r1, simulations are
carried out up to 2×108 time steps, and results are obtained by
averaging over 10 simulation runs. The a/A ratio is kept low
enough to minimize the finite size effects (a/A = 0.00004).
Also, periodic boundary conditions are applied to eliminate
boundary effects.

III. RESULTS AND DISCUSSION

Figure 2 shows a representative graph of coverage �(t)
versus time t for radius ratio r2/r1 = 0.5 and θ = 60◦. The

FIG. 2. Representative plot of coverage �(t) vs time t for radius
ratio r2/r1 = 0.5 and θ = 60◦. Inset graph shows variation of coverage
�(t) vs time t , on a log-log scale, in an early time regime.

FIG. 3. Plot of d�(t)/dt vs time t on a log-log scale.

graph shows a rapid increase in coverage value in the early time
regime indicating that almost all adsorption attempts succeed.
This is further evident from the slope value of the linear fit
being close to 1 (see inset). In the intermediate time regime
there is a slowing down in the rate of increase of coverage,
followed by the asymptotic regime in which the coverage
reaches a constant value �(∞).

Figure 3 shows d�(t)/dt versus time t plot on a log-log
scale. The linear nature of the graph in the asymptotic regime
confirms that the kinetics of adsorption follows the law
�(∞) − �(t) ∼ t−p. The slope of the best-fit line to the linear
part of the graph in this asymptotic regime gives the value of
the exponent when equated to −(p + 1).

Figure 4 shows the graph of exponent p versus radius ratio
r2/r1 for different values of θ . In general all the graphs follow
the trend that as radius ratio decreases form 1 to 0.1 (i.e.,
when the size of the two side discs goes on decreasing relative
to the size of central one), the value of exponent p approaches
0.5. This is along the expected lines, since when the radius
ratio becomes zero it will be the case of adsorption of a
single circular disc that has the value p = 0.5. Also it is to
be noted that when the radius ratio is less than or equal to 0.2,
values of exponent p are the same (within an error limit) for
different values of θ , and hence approach to the jammed state is

FIG. 4. Plot of exponent p vs radius ratio r2/r1 for different values
of θ .
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FIG. 5. (a) Convex shape circumscribing three-circle object with r2/r1 = 1. (b) Plot of absolute value of coefficient of departure from
convexity |δ| vs the object angle θ for the case of r2/r1 = 1. (c) Graphs of the coefficient of departure from convexity δ and the exponent p vs
the object angle θ for r2/r1 = 1.

independent of angle between the discs, when the radius ratio
is less than or equal to 0.2. This is because when the radius
ratio is small (� 0.2), the radius r2 of the side circular discs
is too small for the angular nature to play any role. Indeed,
the size of coupling discs then becomes less than the typical
average gap separation in case of RSA of circular discs, and
hence the role of coupling discs in affecting the kinetics of
RSA becomes almost insignificant.

It is also seen from the graph that for any given value of
radius ratio r2/r1, the values of the exponent p for θ = 180◦
and 60◦ are higher than that for the objects corresponding
to other values of θ , while those for θ = 120◦ are the least.
These differences get highlighted more and more as the radius
ratio approaches 1. This can be understood on the basis that
the shapes of the objects corresponding to θ = 180◦ and 60◦
are closer to convex bodies, namely, rectangle and triangle,
respectively, for radius ratio 1, while the shape of the object
with θ = 120◦ is far from a convex shape, an issue that is
already discussed in detail in our earlier work [11].

Now let us discuss the trend of variation of p with
radius ratio r2/r1 for each value of angle θ . The behavior
of the variation of exponent p in the case of an object
corresponding to θ = 120◦ is distinctly different than that for
the objects corresponding to other values of θ . For the objects
corresponding to θ = 120◦, there is monotonic increase in p

values with a decrease in the radius ratio r2/r1. On the other
hand, for the objects corresponding to the other values of θ ,
the exponent value first decreases as radius ratio decreases to
a certain value and then increases with further decrease in the
radius ratio. For the objects corresponding to θ = 60◦ and 90◦,

the values of p bottom out at r2/r1 = 0.6 and start rising as
r2/r1 decreases further. In the case of the object corresponding
to θ = 150◦ the bottom is at r2/r1 = 0.7, whereas in the case
of the object corresponding to θ = 180◦, it bottoms out when
r2/r1 = 0.9.

Let us now consider the case of objects with θ = 60◦ and
90◦. Out of these two objects, the object with θ = 60◦ has a
lesser degree of nonconvexity than that for other objects (θ =
90◦, 120◦, 150◦ and 180◦). For radius ratio 1, the object is more
convex, and it has a p value close to 0.33, i.e., 1/df . But as
the radius ratio decreases, its degree of nonconvexity increases,
and so there is a fall in p values up to r2/r1 = 0.6. The behavior
of p in this regime of radius ratio can be better explained as
follows: The object with θ = 60◦ and r2/r1 = 1 is closed,
and its crevices resemble the crevices in the case of a coupled
two-circle object [11]. In the case of coupled two-circle objects
there is crossover between the area of crevice and the area of
smaller circle at radius ratio 0.6 [for reference see inset of
Fig. 4(b) in Ref. [11]) The same effect is applicable in the case
of a coupled three-circle object with θ = 60◦. On the other
hand, for r2/r1 � 0.3, the size of two smaller side circles
becomes more and more insignificant, and the p value starts
rising rapidly, with the decrease in r2/r1, in order to reach
the value of 0.5, which happens to be the p value for RSA of
circular discs (when r2/r1 = 0).

The same reasoning is applicable for the variation of
exponent values of the objects corresponding to θ = 90◦.
However, in this case it has more of a degree of nonconvexity
as compared with the object corresponding to θ = 60◦, so its
p values are less than that for the object with θ = 60◦.
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(a) (b)

FIG. 6. Convex shape circumscribing three-circle object: Case (a) θ � 2 cos−1( r1−r2
r1+r2

) and Case (b) θ � 2 cos−1( r1−r2
r1+r2

).

In the case of object with θ = 150◦ and 180◦ the minimum in
the p value occurs at radius ratio 0.7 and 0.9, respectively, the
values being somewhat higher than that in case of the objects
with θ = 60◦ and 90◦, for which the minimum is at 0.6. This
may be because these objects are more open in the sense that
in the case of these objects, the attached circles are wide apart
from each other compared with that for other values of θ . Also
the object with θ = 180◦ has less degree of nonconvexity,
which would explain why p values for θ = 180◦ are higher
than that for θ = 150◦, as mentioned earlier.

The above discussion of the simulation results and analysis,
which basically involves the qualitative arguments, clearly
highlights that most of the behaviors can be understood on
the basis of the degree of nonconvexity of the object. To
strengthen the point, we now present the quantitative analysis.
For this purpose we quantify the degree of nonconvexity by
defining the “coefficient of departure from convexity,” δ. We
consider the closest convex shape of minimum area that
circumscribes the coupled three-circle object, as shown in
Fig. 5(a). We then define δ as the difference in the area of a
coupled three-circle object and the area of the circumscribing
convex shape per unit area of the coupled three-circle object
[11].

When r2/r1 = 1 [Fig. 5(a)],

δ(r2/r1,θ ) =
{
a −

[
4r2 + 4r2 sin(θ/2)

+ 4r2 sin(θ/2) cos(θ/2) + r2ψ1 + 1

2
r2ψ2

]}/
a,

where ψ1 = (π + θ )/2 and ψ2 = π − θ and a is the area of the
object, with θ expressed in radians. δ(r2/r1,θ ) is minimum (or
equivalently, the absolute value of coefficient of departure from
convexity |δ| is maximum) when θ = 120◦. Thus, the object
with θ = 120◦ has the highest degree of nonconvexity, i.e., this
object is the one that is farthest away from the convex shape
and hence has the lowest value of the exponent p. Figure 5(b)
shows the plot of the absolute value of the coefficient of
departure from convexity |δ| versus the object angle θ , and
Fig. 5(c) shows the graphs of the coefficient of departure from
convexity δ and the exponent p versus the object angle θ , for
r2/r1 = 1. An excellent overlap, especially for θ values less or
equal to 150◦, implies a good correlation between the plotted
quantities. In fact, the correlation coefficient is found to be

0.97, which can be termed the near perfect positive correlation
between δ and p.

When r2/r1 �= 1, for object area a, two different cases arise
as shown in Fig. 6:

Case (a). When θ � 2 cos−1( r1−r2
r1+r2

), we have δ(r2/r1,θ ) =
[a − (A + B + C + D + E)]/a, where A=2

√
r1r2(r1 +

r2),B=2r2(r1+r2) sin( θ
2 ),C= 1

2 (r1+r2)2 sin θ,D=r2
2 [(π+θ

2 )−
sin−1( r1−r2

r1+r2
)], and E = 1

2 r2
1 [(2π − θ ) − 2 cos−1( r1−r2

r1+r2
)], θ

being expressed in radians.
Case (b). When θ � 2 cos−1( r1−r2

r1+r2
), we have δ(r2/r1,θ ) =

[a − (F + G + H )]
/
a, where F = 4

√
r1r2(r1 + r2), G =

1
2 r2

2 [2π − 4 sin−1( r1−r2
r1+r2

)], and H = 1
2 r2

1 [2π − 4 cos−1( r1−r2
r1+r2

)],
θ being expressed in radians.

For a given value of r2/r1, the minimum value of δ(r2/r1,θ )
occurs when θ = 2 cos−1( 1

1+r2/r1
). Figure 7 shows the plots

of the absolute value of the coefficient of departure from
convexity |δ| versus the object angle θ for three representative
values of r2/r1, namely, r2/r1 = 0.7, 0.4, and 0.1, while
Figure 8 shows the graphs of the coefficient of departure from
convexity δ and the exponent p versus the object angle θ , for

FIG. 7. Plots of absolute value of coefficient of departure from
convexity |δ| vs the object angle θ for three representative values:
r2/r1 = 0.7, 0.4, and 0.1.
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FIG. 8. Graphs of the coefficient of departure from convexity δ and the exponent p vs the object angle θ , for r2/r1 = 0.7 (a), 0.4 (b), and
0.1 (c).

these three representative values of r2/r1. It is clearly seen
that for the case of r2/r1 = 0.7, δ and p follow the identical
trends and have good correlation with the coefficient value of
0.89. For the case of r2/r1 = 0.4, the correlation coefficient
is 0.43, signifying weak positive correlation between δ and p.
For the case of r2/r1 = 0.1, the correlation is negative and
weak but does not signify much as both δ and p do not show
any significant dependence on the object angle θ due to the
fact that size of the side circles is so small that they do not play
any significant role. In fact, what we have observed is that the
correlation goes on weakening with the decrease in the radius
ratio from 1 to 0.1 (see Table I).

TABLE I. Values of correlation coefficients for different values
of r2/r1.

r2/r1 Correlation coefficient

1 0.97
0.9 0.92
0.8 0.97
0.7 0.89
0.6 0.73
0.5 0.71
0.4 0.43
0.3 0.20
0.2 −0.45
0.1 −0.37

Figure 9 shows the graphs of the coefficient of departure
from convexity δ and the exponent p versus the radius ratio
r2/r1 for three representative values of object angle θ ; θ =
60◦, 120◦, and 180◦, respectively. It is quite clear from these
graphs that in each of these cases the trends followed by δ and
p are identical. This gets further established from the fact that
for θ = 60◦, 120◦, and 180◦, the correlation coefficients are
found to be 0.99, 0.93, and 0.98, respectively, indicating near
perfect positive correlation between δ and p. We have also
determined the correlation coefficients for the cases θ = 90◦
and 150◦, which are found to be 0.97 and 0.88, respectively.

FIG. 10. Jammed state coverage �(∞) vs radius ratio r2/r1 for
different values of θ .
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FIG. 9. Graphs of the coefficient of departure from convexity δ and the exponent p vs the radius ratio r2/r1 for three representative values
of object angle θ : θ = 60◦ (a), 120◦ (b), and 180◦ (c).

The above discussed quantitative analysis hence clearly
highlights the significant role of the coefficient of departure
from convexity δ in governing the late time regime dynamics
of RSA of nonconvex-shaped objects.

Jammed state coverage �(∞) is yet another quantity
that is of significance and has been studied extensively by
many researchers. Figure 10 shows variation of jammed state
coverage �(∞) versus radius ratio r2/r1 for different values
of θ . Before understanding how radius ratio r2/r1 influences
the jammed state coverage �(∞), we will first discuss the θ

dependence of the jammed state coverage �(∞).
For this purpose, consider the case of radius ratio r2/r1 = 1.

Figure 11 shows the plot of �(∞) as a function of θ

FIG. 11. Plot of jammed state coverage �(∞) vs the object angle
θ for radius ratio r2/r1 = 1.

FIG. 12. Plot of packing efficiency factor η vs the object angle θ

for the case of r2/r1 = 1.

for this case of r2/r1 = 1. As seen in the figure, �(∞)
goes on increasing for θ decreasing from 180◦ to 120◦,
then drops to minimum for θ = 90◦, and again increases,
becoming maximum when θ becomes 60◦. This behavior can
be understood as follows: In the case of elongated objects,
there is more wastage of the substrate space due to random
orientations of the adsorbed objects as compared with that for
compact objects. This results in a lower value of saturation
coverage for elongated objects. This influence is measured by
the packing efficiency factor, η, given by the ratio of the actual
area covered by the object to the area swept by the object in
complete rotation [12]. The plot of packing efficiency factor
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η versus θ , for the case of radius ratio r2/r1 = 1, is shown in
Fig. 12. There is clear monotonic increase in η as θ goes on
decreasing from 180◦ to 60◦, and hence if packing efficiency
factor η alone would have been the factor influencing the
jammed state coverage �(∞), then these two quantities would
have shown same trends. However, Figs. 11 and 12 clearly
show that this is not the case. This is due to the nonconvex
nature of the objects, which is measured by |δ|. It seems that in
case of nonconvex objects there is an interplay between η and
|δ| that governs �(∞). If the absolute value of the coefficient
of the departure from convexity, |δ|, is high, then as discussed
earlier the newly coming object can get adsorbed with closer
proximity when compared with the case of convex object [11].
Thus, the jammed state coverage is expected to be better in the
case of objects with larger value of |δ|. However, it is clearly not
that simple, because, in the case of convex objects, that area of
the convex object, which is outside the nonconvex object, gets
measured, but not in case of nonconvex object, while arriving
at the value of �(∞). Hence there is some wastage of space
in case of RSA of a nonconvex object. If the nonconvex object
getting adsorbed in the vicinity can go much closer to the
adsorbed object, then this wastage would be less, and would
be more otherwise. Of course, all this depends on the object
shape. In the case of a coupled three-circle object with radius
ratio r2/r1 = 1, for θ = 60◦ and 180◦, this type of wastage is
minimal and is maximum for θ = 90◦, whereas for θ = 120◦
and 150◦, the two side circles create a wide opening between
them, allowing more proximity to the newly arriving object,
when compared with θ = 90◦. Hence, for these θ values, this
type of wastage is moderate, i.e., lower than that for θ = 90◦
and more than that for θ = 60◦ and 180◦.

Coming to r2/r1 dependence of the saturation coverage, it
is clearly noticed in Fig. 10 that except for the case of θ =
60◦, in all other cases the trend is similar. In each of these
cases, �(∞) has a low value at r2/r1 = 1, and it goes on
gradually increasing with decrease in r2/r1. This trend is very
much expected since with decrease in r2/r1, the side circles
become smaller and smaller, thereby losing their significance.
In the case of an object with θ = 60◦, when r2/r1 = 1, the two
side circles touch each other, and wastage of space is minimal,
which results in a relatively higher value of �(∞) compared
with that in the case of other values of θ . However, as r2/r1

becomes less than 1, the two side circles do not touch each
other, and hence wastage starts increasing with a decrease
in r2/r1. Due to this reason, �(∞) goes on decreasing till
r2/r1 = 0.5. Below this value with r2/r1 approaching zero the

role of side circles becomes more and more insignificant, and
�(∞) tends to the value of that in the case of circular discs.

Last, we wish to add a comment: Tarjus et al. [13] have
shown that the configurations generated by the equilibrium
filling process (in which the adsorbed particles diffuse and
the system relaxes to equilibrium between the successive
additions) and RSA (in which the adsorbed particles get
rigidly fixed) differ in many respects. In the context of
rate of adsorption d�(t)dt being expressed as a series in
increasing powers of instantaneous coverage �(t), Widom [14]
demonstrated that the two processes are indistinguishable up
to second order in �(t), making the coefficient of �3(t) to be
most significant when it comes to differentiate between the two
processes. Schaff and Talbot derived exact analytic expressions
for the first three coefficients and have shown that at least for
the two-dimensional case, a virial-like expansion up to third
order describes the low- and intermediate-regime kinetics of
RSA with high accuracy [15,16]. They further extended the
work to higher dimensions also [16].

In the light of the importance of these works, it will be
interesting to carry out similar studies for RSA of nonconvex
objects. However, the present work has its focus on an
asymptotic regime and not on early and intermediate regimes,
and hence we plan to carry out these investigations as a separate
work, and if we are successful, our results will be presented as
a future communication.

IV. CONCLUSION

In conclusion, in the case of nonconvex objects like the
coupled three-circle object, the approach to a jammed state
is found to follow a power law �(∞) − �(t) ∼ t−pfor various
values of the radius ratio. We find that the observed values
of exponent p and �(∞) for various values of the radius
ratio r2/r1 and the angle θ show characteristic variation. The
interplay between the quantities’ packing efficiency factor
and the ability of the object to allow the other object to
get adsorbed in its proximity without overlapping it (i.e., the
coefficient of departure from convexity δ) governs the value
of �(∞).
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