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Thermodynamic phase-field model for microstructure with multiple components and phases:
The possibility of metastable phases
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A diffuse-interface model for microstructure with an arbitrary number of components and phases was developed
from basic thermodynamic and kinetic principles and formalized within a variational framework. The model
includes a composition gradient energy to capture solute trapping and is therefore suited for studying phenomena
where the width of the interface plays an important role. Derivation of the inhomogeneous free energy functional
from a Taylor expansion of homogeneous free energy reveals how the interfacial properties of each component
and phase may be specified under a mass constraint. A diffusion potential for components was defined away
from the dilute solution limit, and a multi-obstacle barrier function was used to constrain phase fractions. The
model was used to simulate solidification via nucleation, premelting at phase boundaries and triple junctions, the
intrinsic instability of small particles, and solutal melting resulting from differing diffusivities in solid and liquid.
The shape of metastable free energy surfaces is found to play an important role in microstructure evolution and
may explain why some systems premelt at phase boundaries and phase triple junctions, whereas others do not.
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I. INTRODUCTION

Developing an understanding of microstructure formation
in multiphase, multicomponent systems is a challenge for
industrial development of advanced alloys, yet interesting
from a philosophical perspective due to the formation of
complex patterns for which no theory exists [1]. Compared
to two-phase binary systems, multiphase and multicomponent
systems have additional degrees of freedom that introduce
inherent complexity. Multiphase systems have the ability
to form phase triple junctions, transient phases [2], and
metastable phases at grain boundaries or triple junctions (i.e.,
interfacial premelting) [3,4].

Additionally in multicomponent systems, adsorption of
components to interfaces or triple junctions is possible.
Consider Fig. 1, which illustrates a hypothetical ternary phase
diagram. A and B denote the bulk composition of two phases
in equilibrium, and a diffuse interface between A and B
corresponds to a curve connecting the points. At equilibrium
there can be only one curve. In binary systems, the interfacial
profile is constrained to lie on the dotted line that represents
a linear combination of the components. In a ternary system
however, the additional component permits complex pathways
that depend on the free energies of the phases, the presence
of metastable phases, and the energy-minimizing path through
composition space.

In this work we develop a multicomponent, multiphase
model that treats the diffuse interface in a thermodynamically
consistent way, allowing us to investigate premelting and
the effects of metastable phases on interfacial composition

in multiphase systems. The model includes a (
→∇ c)2 in the

free energy functional as a natural way to model the correct
amount of solute trapping [5]. We present a careful derivation
of the model in order to cast the multiphase, multicomponent
problem within a thermodynamic framework, and derive
component diffusion equations that obey the Gibbs-Duhem
and Nernst-Einstein relations. Subtle differences are clarified
between the chemical potential and the diffusional potential.

These differences become important in multicomponent sys-
tems. Specifically, the driving force for diffusion is sometimes
defined as δF

δci
[6–9], but this definition is incorrect for a

multicomponent system that obeys a mole fraction constraint.
Phase-field has emerged as an important method for model-

ing microstructure evolution because of its ability to simulate
complex geometries while incorporating thermodynamic and
kinetic data. A phase-field model assumes that interfaces in
microstructure are diffuse at the nanoscale and can be rep-
resented by one or more smoothly varying order parameters,
eliminating the need to explicitly track boundaries. Nonlinear
diffusion and curvature-driven physics are incorporated, and
creation, destruction, and merging of interfaces are handled
implicitly. A substantial amount of literature has been written
on phase-field models and is summarized in recent review
papers [10–14].

Phase-field models may be classified into two categories
based on their philosophical treatment of a diffuse interface.
In the approach pioneered by Cahn and Hilliard [15], the
interface is a coarse-graining of the underlying atomistic
representation. The width of the interface in the model is
identical to its physical width, which may be as small as a
few nanometers. This approach produces a thermodynamically
consistent description of the interface but makes simulation
of realistically sized microstructures problematic. Microstruc-
tural features are often on the order of micrometers or larger,
several orders of magnitude larger than the interfacial width.
This presents a computational challenge for simulating large
microstructure. In principle, the problem could be addressed
with faster computers and improved numerical algorithms.

The second approach uses phase-field as a modeling tool
for solving the underlying free boundary problem without
explicitly tracking boundaries. It is numerically advantageous
to allow the computational interfacial width W to exceed
the physical width, but doing so introduces error that scales
with W [16]. The “thin interface” approach [17,18] was an
important development in this regard. With the appropriate
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FIG. 1. A hypothetical ternary phase diagram. A and B denote
the bulk composition of two phases in equilibrium. Diffuse interfaces
are curves that connect A and B.

choice of model parameters, thin interface models converge to
the Gibbs-Thomson relation in the limit where the interfacial
width is much smaller than a typical pattern size of the system.
As a result, convergence is on the order of W 2. Excessive solute
trapping occurs when the numerical width becomes large but
has been remedied with antitrapping currents [19]. Notably,
this approach has produced simulations of dendrites that are
quantitatively comparable to experiment.

Alloy phase-field models have been developed following
both philosophies and will be briefly reviewed. Wheeler,
Boettinger, and McFadden (WBM) [5,20,21] treated the
interface in a thermodynamic way but were limited to binary
systems with two free energy curves due to fundamental model
difficulties. Steinbach et al. [22,23] prompted development of
a series of models for multicomponent and multiphase systems
that have produced quantitative simulations on experimental
length scales [24]. However, these multiphase models are
not appropriate for studying phenomena where the interfacial
width plays an important role, such as solute trapping, interface
premelting, nucleation, or the appearance of transient phases.

A. The Wheeler-Boettinger-McFadden model

The WBM model [5,20,21] begins with the Cahn-Hilliard
free energy functional for a binary system [15] (see Sec. II A)
and introduces a nonconserved order parameter φ to indicate
which regions of the system are solid (φ = 1) and which are
liquid (φ = 0). At an interface between liquid and solid, both
φ and c vary smoothly from one phase to the other. The free
energy functional for the system is

F [c,φ] =
∫

V

[
f0(φ,c,T ) + 1

2
εc(

→∇ c)2 + 1

2
εφ(

→∇ φ)2

]
dV.

(1)

The homogeneous free energy density f0(φ,c,T ) promotes
phase separation in the absence of interfacial energies,
and εc and εφ are the composition and phase gradi-
ent energies, respectively. Phase and composition gradients
overlap at equilibrium to form an interface, and the
gradient-squared terms smooth the interface and introduce

interfacial energy. The (
→∇ c)2 term was omitted from the

(a)

(b)

FIG. 2. The WBM model assumes that the energy of interfacial
compositions is a weighting of the dashed regions of the free energy
curves, whereas Access models assume that the energies of interfacial
compositions lie on the common tangent line. (a) Molar free energy
for two phases, α and β. (b) An interpolating function is used to
smoothly connect the molar free energy curves.

original model for computational convenience [20] but was
later found to be necessary for modeling solute drag during
rapid solidification [5].

The WBM approach models a diffuse interface as an
interpolation between phases where the composition of phases
at the interface are equal. An interpolating function p(φ) is
used to connect the homogeneous free energy densities of the
phases:

f0(φ,c,T ) = p(φ)fliq(c,T ) + [1 − p(φ)]fsol(c,T ). (2)

Interpolation between two free energy curves is illustrated
in Fig. 2(b). p(φ) has a minimum at φ = 0 and φ = 1 and
provides a barrier for transition from one phase to the other.
Its form lacks a physical basis and is generally chosen for
numerical convenience. The WBM model requires that p(φ)
approach φ = 0 and φ = 1 with zero slope in order to prevent
the appearance of negative phase fractions.

Because there is no natural extension of p(φ) for an
arbitrary number of free energy curves, there have been few
attempts to develop a multiphase model following the WBM
approach. Folch and Plapp [16] derived a thin-interface model
that included an interpolating function for three curves, and
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Nestler et al. [25] developed a WBM-like nonisothermal
multiphase, multicomponent model. However, neither work
included a composition gradient energy or applied the correct
thermodynamic constraints to the component diffusion equa-
tions. These issues are addressed in Secs. II and III.

B. The Access multiphase model

Steinbach and coworkers developed the so-called Access
multiphase model, the first phase-field model capable of
simulating the interaction of an arbitrary number of phases
[22,23]. The original model did not include solute diffusion
and considered pairwise interactions between phases using
double-well interpolation functions and Allen-Cahn dynamics.
Modeling the dynamics of a multiphase system as the sum of
pairwise interactions was problematic, violating Young’s Law
at phase triple junctions, and was fixed with the introduction
of interface fields [23].

Tiaden et al. [26] added single-component solute diffusion
to the Access multiphase model. The interfacial region was
modeled as a blend of phases, each with a phase fraction φα

and unique composition cα , constrained so the concentration
of the system was c(x,t) = ∑

α φαcα . The diffusing species
was partitioned among the different phases, and Fickian
diffusion equations were solved in each phase. The diffusion
equations were coupled to phase evolution equations driven by
a difference in free energy between phases, determined from
a local linearization of the phase diagram.

The dilute solution limitation of the Tiaden model was re-
moved in an extension by Kim et al. [27] for single-component
diffusion with the use of an interpolating function to link the
free energy curves. Kim also introduced a more sophisticated
condition of equal chemical potential to determine how to
distribute solute among the phases at a diffuse interface.

Grafe et al. [28] developed the first multicomponent
extension of the Tiaden model. The driving force for diffusion

was
→∇ cα

i , the concentration gradient of component i in
phase α, which is a dilute solution approximation. Solute
distribution was calculated with partition coefficients from
Thermo-Calc.

Eiken et al. [29] developed a multicomponent extension of
the Tiaden model which removed the dilute solution limitation
and allowed for easier inclusion of thermodynamic data. μ̃α

i =
∂Gα

∂cα
i

was chosen as the driving force for diffusion, although
μ̃α

i is the slope of the free energy curves and not the chemical
potential μα

i = ∂Gα

∂nα
i

(see Sec. III A). A very computationally
expensive quasiequilibrium calculation was necessary at each
time step to relieve the dilute solution approximation.

A two-phase multicomponent model with an antitrapping
current was presented by Kim [30], but to date an antitrapping
current has not been included in a model with both an arbitrary
number of phases and components.

C. Graphical interpretation

The fundamental difference between the WBM and Access
approaches is illustrated in Fig. 2(a), where free energy curves
and the common tangent construction for two phases α and
β are drawn. A diffuse interface must include compositions
between the equilibrium concentrations cα

eq and c
β
eq, but

the energy of these intermediate compositions is somewhat
ambiguous.

The WBM model assumes that each phase at an interface
has the same composition. At equilibrium, the free energy
of these interfacial points is then a weighted average of
the dashed portions of the free energy curves in Fig. 2(a).
The dotted line in Fig. 2(a) indicates a potential path when
a barrier in φ is added and corresponds to the dotted
path lying on the free energy surface in Fig. 2(b). When
the system is not at equilibrium, interfacial compositions
may lie anywhere on the surface of Fig. 2(a). �f denotes
energy at an interfacial point relative to a composite blend
of α and β at equilibrium. The gray shaded region is �f

integrated across an interface and represents the interfacial
energy contribution from intermediate compositions at the
interface. The contribution of the shaded area increases for
wider interfaces because more material with energy above the
common tangent construction must be introduced.

The Access approach for modeling interfaces is to assume
each phase has its own unique composition that cannot
be measured experimentally but which evolves toward its
equilibrium concentration. Interpolation between phases
at their equilibrium concentration produces intermediate
compositions with energies that lie on the common tangent
line with a barrier only in φ, prohibiting the appearance of
metastable phases which lie above the common tangent.

The gray line in Fig. 2(b) illustrates an Access interface that
connects the common tangent points of the free energy curves.
Because the barrier in φ is the only contributor to �f , widening
the interface for computational convenience does not introduce
more material with energy above the common tangent.

II. THE MULTIPHASE FREE ENERGY FUNCTIONAL

A. Free energy of a binary system

In an influential paper that laid the foundation for phase-
field modeling, Cahn and Hilliard derived an expression
for the free energy of an inhomogeneous binary system
[15]. Their approach assumes that the free energy of an
infinitesimal volume in a nonuniform system depends both on
its composition and the composition of its nearby environment.
Total free energy cannot depend solely on local composition
because different spatial configurations with the same volume
fraction are not energetically equivalent; a heterogeneous
system has more interfacial area and will have a higher energy.

Starting with the homogeneous free energy density for
a binary system f0(c), they performed a Taylor expansion
in terms of the derivatives of composition to approximate

f (c,
→∇ c,∇2c, . . .). Morris [31] provides justification for ex-

cluding terms linear in | →∇ c|. For isotropic or cubic symmetry

(∂f/∂
→∇ c)0 = 0, and the free energy simplifies to an equation

with constant coefficients and even powers of
→∇ c:

f = f0(c) + κ1∇2c + 1
2κ2(

→∇ c)2 + 1
2κ3(∇2c)2

+ κ4∇4c + · · · . (3)

Cahn and Hilliard then argued that the derivative terms with
even powers ∇2c, ∇4c, ∇6c, etc., should vanish. Assuming
that the free energy density is influenced only by concentration
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within a small neighborhood, it is reasonable to truncate the
expansion. Keeping only terms up to second order produces
the Cahn-Hilliard free energy functional:

F [c] =
∫

V

f0(c) + κ(
→∇ c)2 dV, (4)

where κ is a gradient energy coefficient that penalizes the
formation of sharp interfaces.

B. Free energy of a multicomponent system

The approach of Cahn and Hilliard is now applied to a
system with an arbitrary number of components. A system
with M components has M − 1 independent mole fractions
that obey the following constraint:

M∑
i=1

ci = 1. (5)

The inhomogeneous free energy becomes a function of
each independent component as well as their derivatives:

f (c1,c2, . . . ,
→∇ c1,

→∇ c2, . . . ,∇2c1,∇2c2, . . .). The Taylor ex-
pansion [32] of the multicomponent f about a homogeneous
point f0 = f (c1,c2, . . . ,0,0, . . . ,0,0, . . .) is:

f (c1,c2, . . . ,
→∇ c1,

→∇ c2, . . . ,∇2c1,∇2c2, . . .)

= f0(c1,c2, . . .) +
(

∂f

∂
→∇ c1

)
0

→∇ c1 +
(

∂f

∂
→∇ c2

)
0

→∇ c2

+ · · · +
(

∂f

∂∇2c1

)
0

∇2c1 +
(

∂f

∂∇2c2

)
0

∇2c2

+ · · · + 1

2

(
∂2f

∂(
→∇ c1)2

)
0

(
→∇ c1)2+1

2

(
∂2f

∂(
→∇ c2)2

)
0

(
→∇ c2)2

+ · · · +
(

∂2f

∂
→∇ c1∂

→∇ c2

)
0

→∇ c1 · →∇ c2 + · · · + · · · . (6)

For simplicity only terms for two components up to second
order have been written out because higher-order terms will
be excluded. Once again only isotropic and cubic symmetry
of f is considered, allowing the tensors to be replaced

with constants, and terms in
→∇ c, as well as even deriva-

tives, are excluded. The Taylor expansion of f in terms
of the M − 1 independent components and their derivatives
is

f = f0(c1,c2, . . .) +
M−1∑
i=1

1

2
κi(

→∇ ci)
2 +

∑
j<i

M−1∑
i=1

κij

→∇ ci · →∇ cj .

(7)

This equation, which has been previously reported in literature
[6,7,33], may be simplified by combining the summation terms
as follows:

f = f0(c1,c2, . . .) +
M−1∑
i,j=1

1

2
κij

→∇ ci · →∇ cj , (8)

where κij is a symmetric matrix of gradient energy coefficients
discussed in Sec. II F. The free energy functional for a
multicomponent system is

F [{c}] =
∫

V

[
f0({c}) +

M−1∑
i,j=1

1

2
κij

→∇ ci · →∇ cj )

]
dV, (9)

where {c} denotes a set of M − 1 independent mole fractions.

C. Definition of a phase

A phase is a region of a microstructure with homogeneous
properties that is physically distinct from other regions of
the system, excluding geometric transformations that map
one region onto another. Phases in microstructure commonly
differ in composition and/or crystal structure, although many
other physical differences are possible. The volume fraction
of phases in equilibrium is predicted from thermodynamics,
but phase itself is not a thermodynamic state variable; phase is
a labeling device that identifies a unique thermodynamic state
function.

Each phase α is assigned a phase fraction φα that varies
between 0 and 1. φα = 0 designates areas where no α phase
is present, and φα = 1 corresponds to single-phase regions of
α. For a system with N phases, the phase fractions obey the
following constraint:

N∑
α=1

φα = 1. (10)

Microstructure (excluding grain boundaries, defects, etc.) is
composed of single-phase regions separated by interfaces, and
only at interfaces are more than one φ nonzero. The interface
between two phases is assumed to consist of a thin layer
across which the physical properties vary continuously from
one phase to the other, and a diffuse interface at equilibrium
represents a balance between free energy curves, composition
gradients, and phase gradients.

Because the thermodynamic potential of a multiphase
system is equal to the summation of potentials over all phases,
a linear weighting of the free energy densities by phase
fractions is used to represent the homogeneous free energy
of a multiphase system:

f0({c},{φ1,φ2, . . . φN }) =
N∑

α=1

φαfα({c}). (11)

This form reduces to fα({c}) when only the α phase is present,
yet can be constructed for an arbitrary number of phases.

Equation (11) does not provide an energy barrier for diffu-
sionless phase transformations, and without modification does
not correctly describe phase transitions of pure components.
A simple barrier between α and β of the form Wαβφαφβ is
suggested, although the multi-obstacle barrier introduced in
Sec. IV A permits any function to be used as a barrier. The
homogeneous free energy becomes

f0({c},{φ},T ) =
N∑

α=1

φαfα({c},T ) +
∑
β �=α

Wαβφαφβ, (12)
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where Wαβ > 0 captures the mean-field interaction between
phases and is analogous to a positive enthalpy of mixing for
phases.

D. Free energy of a multiphase, multicomponent system

For an N -phase, M-component system, f ({c},
{φ},{→∇ c},{→∇ φ}, . . .) is a function of M − 1 independent mole
fractions and N − 1 independent phase fractions. Because
f can describe nonequilibrium systems where metastable
phases are present, it is not necessary that the Gibbs
phase rule be obeyed.

Once again, isotropic and cubic symmetry of the free

energy is considered, terms in
→∇ c and even derivatives of

c are excluded from the Taylor expansion, and only terms
up to second order are kept. The full expansion about
the homogeneous free energy f0({c},{φ},{0},{0}, . . .) is not
algebraically difficult but has many terms and is not explicitly
written out here. It is analogous to Eq. (9) but with two
additional sets of terms. One set couples phase gradients
using gradient energy coefficients λαβ . The second set couples
composition gradients and phase gradients as follows:(

∂2f

∂
→∇ ci∂

→∇ φα

)
0

→∇ ci · →∇ φα. (13)

The coefficients of these terms form an M × N matrix ξiα

and introduce an additional energy penalty for overlapping
phase and concentration gradients. The total gradient energy
contribution for a multicomponent, multiphase system may be
written in compact form as

1

2
[
→∇ c

→∇ φ]

[
κij ξiα

ξαi λαβ

] [ →∇ c
→∇ φ

]
. (14)

For simplicity we assume that ξiα = 0 in this work.
The multiphase, multicomponent free energy functional then
becomes

F [{c},{φ}] =
∫

V

[
f0 +

N−1∑
α,β=1

1

2
λαβ

→∇ φα · →∇ φβ

+
M−1∑
i,j=1

1

2
κij

→∇ ci · →∇ cj

]
dV. (15)

The free energy curves are the driving force for phase
separation, and the gradient energy coefficients λαβ and κij

penalize gradients that develop, creating a surface energy.
κij penalizes phases for differing in composition, and λαβ

introduces additional energy not captured by the composition
gradients. This energy derives from some physical difference
between the phases other than composition. Equation (15),
which is the central equation of focus in this work, is a
first-order approximation of the free energy of a system with
an inhomogeneous distribution of phases and components. It
reduces to the Cahn-Hilliard equation for a two-component
system.

E. Surface energy

The surface energy of a diffuse interface is the excess grand-
canonical potential, the difference between the free energy
functional and the minimized free energy the system would
have if the properties of the phases were continuous:

σ = min F [{c},{φ}] −
∑

i

μe
i ni . (16)

The first term is the minimum of F found by application of the
Euler-Lagrange equation, and

∑
i μ

e
i ni is the homogeneous

free energy. μe
i is the chemical potential of component i at

equilibrium and is found by computing the tangent plane to
the free energy surfaces.

Surface energy in this model has two contributions. One
contribution comes from phase and composition gradients
which are present at the interface, and the other results
from composition deviating from its equilibrium value at the
interface as illustrated in Fig. 2(a).

F. Interpretation of the gradient energy matrices

Although Eq. (15) is a function only of the independent
gradients, it is necessary to specify the properties of the
dependent component and phase as well.1 For an N -phase,
M-component system, the phase-gradient energy matrix λ has
N − 1 rows and columns and the component gradient energy
matrix κ has M − 1 rows and columns. The gradient energy
coefficients coupling the implicitly defined N th phase (and
Mth component) are not explicitly defined in λ and κ but are
instead distributed across all of the coefficients. λ and κ are
dense versions of larger matrices,  and K , that have a direct
physical interpretation. The complete coupling of all gradients
can be written in matrix form:

1

2
[
→∇ φ1

→∇ φ2 · · · →∇ φN ]

⎡⎢⎢⎣
11 12 · · · 1N

21 22 · · · 2N

...
...

. . .
...

N1 N2 . . . NN

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

→∇ φ1→∇ φ2
...

→∇ φN

⎤⎥⎥⎥⎥⎦ .

(17)

The coefficients of  specify an energy penalty for every
possible pair of overlapping gradients. An analogous M × M

matrix K contains composition gradient energy coefficients
Kij that penalize overlapping composition gradients.

If the phase conservation constraint
→∇ φN = −(

→∇ φ1 +
→∇ φ2 + · · · + →∇ φN−1) obtained from Eq. (10) is substituted
into Eq. (17) and the matrix multiplication is performed, an
expression representing the gradient energy in terms of the
N − 1 phase gradients is obtained. The coefficients in this
expression are related to the λαβ that form the matrix λ.2

1We found that ignoring the dependent phase and component
produced an unexpected asymmetry in interfacial compositions that
was visible in composition maps like those in Fig. 6(c). A correct
treatment of the gradient energy matrices removed the asymmetry.

2The diagonal terms λαα are the coefficients of the squared terms,
and the off diagonal terms λαβ are equal to the coefficients of the
cross terms multiplied by 1

2 .
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Because of the dependence of the N th phase on all other
phases, elimination of the N th row and column of  distributes
the gradient energy coefficients for the N th phase across
all coefficients of λ. Thus λ will generally be a fully dense
matrix.

The physical basis for  and K requires that they be
symmetric positive-definite matrices.  and K must be
positive-definite because if they had negative eigenvalues,
there would be a coupling of gradients (in the direction of the
corresponding eigenvector) for which an increasingly sharp
interface lowers the free energy of the system, producing a
physically impossible negative surface energy and rendering
the evolution equations unstable. The simplification to reach
Eq. (8) and Eq. (15) also reveals that λ and k are symmetric.

G. Gradient energy coefficient selection

The free energy functions and gradient energy matrices
are coupled by Eq. (15) in a way that makes fitting gradient
energies to experimental systems potentially cumbersome.
At equilibrium, the surface energy of an interface is fixed
once the free energy densities and interfacial widths are
specified. Thus in principle the gradient energy coefficients
could be obtained by measuring the width of both the
composition and phase variations at all possible equilibrium
interfaces. For a system with N phases and M components,
there are potentially

(
N

2

) = 1
2 (N2 − N ) unique phase interface

widths and
(
M

2

) = 1
2 (M2 − M) unique compositional interface

widths. The number of unique widths correspond exactly to
the number of upper diagonal coefficients in κ and λ.

However, the shape of free energy functions may pre-
clude the formation of many possible interfaces, making it
impossible to determine gradient energy coefficients from
equilibrium observations. In this case some gradient energies
takes on a nonequilibrium role, and it may be possible to fit
the coefficients to equilibrium interface widths by assuming
that some of the gradient energies are zero. In the general
case that all gradient energies in Eq. (14) are nonzero,
determination of the coefficients is nontrivial. The number
of unique coefficients is significantly larger than the number
of equilibrium observables. A series of ab initio calculations
would be necessary to determine the coefficients. For each
coefficient, the increase in energy when a homogeneous system
is forced to incorporate a gradient must be calculated.

III. COMPONENT EVOLUTION

Component evolution equations are derived here for a
nonideal ternary system. Extension to a different number of
components follows the same approach but is algebraically
tedious. Parts of this derivation are drawn from work by
Nauman and Balsara [34] and Nauman and He [35,36].

The thermodynamic condition defining equilibrium in
phase-separating systems is the elimination of all chemical

potential gradients. Fickian diffusion with
→∇ c as the driving

force applies only to the special case of an ideal system where
there is no enthalpy of mixing. Systems which undergo phase
separation exhibit “uphill diffusion,” and Fickian diffusion
does not hold.

To derive component evolution equations for a system
characterized by a free energy functional, it is necessary to
begin with the generalized form of Fick’s first law as follows:

�Ji = −Mi

→∇ μ̂i , (18)

where �Ji is the flux of component i, Mi is its mobility, and
μ̂i is its diffusion potential. In principle �Ji might also depend
on the diffusion potential gradients of other components in
addition to i, but this is not considered here. Mi is related to
the diffusivity Di by the Nernst-Einstein relation:

Mi = Dici

RT
. (19)

If Di depends weakly on composition, ci will be the leading
term in the mobility expression. It is important that mobility
depend on ci for conserved quantities. If it did not, it would
be possible to have a flux of a component without any of that
component being present initially.

A. Generalized diffusion potential

The free energy functional F is a nonequilibrium general-
ization of Helmholtz free energy that includes contributions
from concentration and phase gradients. To describe kinetic
evolution in a nonequilibrium system, it is necessary to define a
potential that approaches the chemical potential at equilibrium.
Since F is a functional, the functional derivative defines an
inhomogeneous (or variational) chemical potential field that
becomes uniform at equilibrium:

μ̂i =
[

δF

δni(�x)

]
T ,V,nj �=i

, (20)

where ni(�x) is the number of moles of component i as a
function of position.3 Hat notation indicates that the inho-
mogeneous chemical potential μ̂i differs from the standard
definition of chemical potential as follows:

μi =
(

∂G

∂ni

)
T ,p,nj �=i

=
[
∂(min F )

∂ni

]
T ,V,nj �=i

. (21)

The inhomogeneous chemical potential is defined away from
equilibrium and approaches the classical chemical potential as
equilibrium is approached. At equilibrium F is minimized, μ̂i

is no longer a function of position, and μ̂i = μi .
The fundamental relation for the ternary free energy

functional F at constant temperature and pressure can be
written as

F̄ = F

n
= −P V̄ + μ̂1c1 + μ̂2c2 + μ̂3c3, (22)

where F̄ is a molar quantity, V̄ is molar volume, and n = n1 +
n2 + n3 is the total number of moles in the system. It can be
shown by standard thermodynamic arguments that the μ̂i obey
a generalized Gibbs-Duhem relation at constant temperature:∑

i

cidμ̂i = V̄ dP . (23)

3Throughout the rest of this paper, variational derivatives will be
written with the assumption that the function in the denominator
depends on �x.
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Application of the mole fraction constraint
[Eq. (5)] to Eq. (22) to eliminate c3 reveals that the
variational derivatives of F̄ with respect to ci are related to
differences in inhomogeneous chemical potentials:(

δF̄

δc1

)
T ,V,c2

= μ̂1 − μ̂3, (24a)(
δF̄

δc2

)
T ,V,c1

= μ̂2 − μ̂3. (24b)

These quantities are diffusion potentials and may be
interpreted as the energy change upon adding a small amount
of ci while simultaneously removing a small amount of c3.
Thus the equilibrium condition of constant inhomogeneous
chemical potential is equivalent to constant diffusion potential
for a system with a mass constraint.

B. Evolution equations

The derivation of evolution equations begins with the
observation that when individual chemical potentials are de-
fined, their gradients are related by the Gibbs-Duhem equation
[Eq. (23)]. If local thermodynamic equilibrium is assumed,
the Gibbs-Duhem equation relates gradients in chemical

potential
→∇ μ̂i instead of changes in chemical potential dμ̂i .

Local equilibrium implies that global intensive parameters
vary so slowly that small neighborhoods around a point can
be considered at equilibrium. Furthermore, for solids and
liquids, V̄ dP is generally very small and can be neglected for
simplicity. The Gibbs-Duhem relation for an inhomogeneous
ternary system then becomes:

c1
→∇ μ̂1 + c2

→∇ μ̂2 + c3
→∇ μ̂3 = 0. (25)

The mole fraction constraint [Eq. (5)] is used to eliminate c3,

and the equation is rearranged to put
→∇ μ̂1 on the left-hand

side:
→∇ μ̂1 = (

→∇ μ̂1 − →∇ μ̂3) − c1(
→∇ μ̂1 − →∇ μ̂3) − c2(

→∇ μ̂2 − →∇ μ̂3)

= (1 − c1)
→∇(μ̂1 − μ̂3) − c2

→∇(μ̂2 − μ̂3). (26)

The variational derivatives [Eq. (24)] can now be substituted
in place of the chemical potential differences:

→∇ μ̂1 = (1 − c1)
→∇ δF̄

δc1
− c2

→∇ δF̄

δc2
. (27a)

A similar procedure is used to find
→∇ μ̂2:

→∇ μ̂2 = (1 − c2)
→∇ δF̄

δc2
− c1

→∇ δF̄

δc1
. (27b)

The dynamics of component diffusion is governed by a
mass conservation law:

∂ci

∂t
= − →∇ · �Ji. (28)

Substitution of Eqs. (18), (19), and (27) produces component
diffusion equations for a ternary system:

∂c1

dt
= →∇ ·

{
D1c1

RT

[
(1 − c1)

→∇ δF̄

δc1
− c2

→∇ δF̄

δc2

]}
(29a)

∂c2

dt
= →∇ ·

{
D2c2

RT

[
(1 − c2)

→∇ δF̄

δc2
− c1

→∇ δF̄

δc1

]}
(29b)

The variational derivative δF̄
δci

is found by applying the Euler-
Lagrange equation to the free energy functional [Eq. (15)]:

n
δF̄

δci

= δF

δci

=
N∑

α=1

φα

∂fα

∂ci

−
M−1∑
j=1

κij∇2cj . (30)

IV. PHASE EVOLUTION

Phase fractions are not coupled by thermodynamic relation-
ships and are not conserved quantities since phases are created
and destroyed during phase transitions. Thus phase evolution
follows Allen-Cahn dynamics [37]:

∂φα

∂t
= −rα

δF̄

δφα

, (31)

where rα is a kinetic coefficient associated with how quickly
the α phase can transform to another phase at constant compo-
sition. δF̄

δφα
is found by applying the Euler-Lagrange equation

to the multiphase multicomponent free energy functional [Eq.
(15)]:

δF̄

δφα

= ∂f0

∂φα

−
N−1∑
β=1

λαβ∇2φβ (32)

with f0 defined in Eq. (12). The implicitly defined phase
fraction φN is a function of the other phase fractions such
that ∂φN

∂φα
= −1. Thus the driving force for phase separation

becomes fα − fN , where fN is the free energy density of the
implicitly defined N th phase.

A. A barrier function for phase fractions

The definition of the phase fraction as a positive quantity
less than or equal to 1 imposes a constraint on the phase evo-
lution equations which was not included in their derivation. In
fact, negative phase fractions would be energetically favorable
if they had physical meaning.4 Consider a single-component
system with a high-energy phase α and a low-energy phase β.
Converting α to β decreases free energy by fβ − fα . If negative
phase fractions are not prohibited, there is an arbitrage where
simultaneously producing more β and negative α lowers the
free energy without violating the phase fraction constraint.
The problem is that the global energy minima are unbounded
in φ. Phase-field models typically address this issue by
constructing f (c,φ) so it has minima at φ = 0 and φ = 1 and
penalizes φ < 0 and φ > 1. However, constructing such an
interpolation for an arbitrary number of phases is problematic.

Barrier methods are often applied to minimization problems
subject to inequality constraints. Constrained optimization
consists of minimizing the original potential plus the barrier

4In systems where borrowing is allowed, negative percentages have
meaning. Consider financial leveraging (e.g., taking out a loan to
make an investment). It could be profitable to, say, invest 150% of
your income by taking out a −50% loan if you expect the return on
the investment to be higher than the interest due on the loan.
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FIG. 3. The multi-obstacle projection for a three-phase system.
Black points indicate initial locations in phase space, and gray
arrows a possible trajectory in the absence of constraints. Constrained
evolution proceeds along the bent black arrows.
functions representing the inequality constraints. Logarithms5

and 1
x

functions are commonly used barriers but are not ideal
candidates for phase fractions which spend a lot of time in
the vicinity of φ = 0 where the barriers are undefined. Single-
phase regions in a multiphase system would be unstable for
instance, as would any evolution directed along the boundary
of the permitted region, corresponding to a phase transition.

A multi-obstacle barrier [25,38,39] is used here to constrain
phase fractions. The barrier is zero for permissible phase
fractions and infinite otherwise. The multi-obstacle barrier is
a generalization of the double-obstacle barrier used in Access
models. The double-obstacle potential was studied by Blowey
and Elliott [38] and found to be consistent with curvature-
dependent phase boundary motion in two-phase systems. An
algorithmic implementation of the barrier is presented here for
a system of N order parameters that obey a constraint like
Eq. (10).

The phases in an N -phase system form the vertices of
an N -simplex, and the feasible set of phase fractions lie on
or within this simplex. Enforcing that all N phase fractions
remain positive is enough to ensure that all N phase fractions
will also be less than 1 because of the phase fraction constraint
[Eq. (10)]. The multi-obstacle barrier is implemented by pro-
jecting a vector of phase fractions back onto the surface of the
simplex when one or more phase fractions become negative as
a result of advancing the evolution equations. For a two-phase
system there is only one independent phase fraction, and the
projection is trivial. If φ < 0, set φ = 0, but if φ > 1, set φ = 1.

Figure 3 offers a geometric description of the projection for
a three-phase system. Orthogonal axes are drawn to represent
the two independent phase fractions φ1 and φ2, and each
coordinate in the graph corresponds to a unique point in phase
space. φ3 = 1 at the origin, and φ3 = 0 corresponds to the
dashed line connecting φ1 = 1 and φ2 = 1. The constraint
that all three φ be positive restricts the feasible region to the
triangle with vertices at the origin, φ1 = 1, and φ2 = 1. Any
point outside of this triangle is nonphysical and is given an
infinite energy penalty by setting the offending phase fractions

5The c ln(c) terms in the ideal entropy of mixing are a barrier
function for components that has a thermodynamic justification.

to zero. In the case that φ3 becomes negative, the projection
is accomplished by moving in the (−1, − 1) direction until φ3

becomes zero.

Generalization of the projection procedure for an N -
phase system involves fixing violations and then recursively
projecting the system to lower dimensions to fix additional
violations. The implementation of this recursive procedure is
presented in the following algorithm.

Algorithm multiObstacle({φ1, . . . φN−1})
for φi = φ1 . . . φN−1 do

if φi < 0 then

φi = 0

end if

end for

φN ← 1 − ∑N−1
i=1 φi

if φN < 0 then

for φi = φ1 . . . φN−2 do

φi ← φi + φN

N−1

end for

multiObstacle({φ1, . . . φN−2})
φN−1 ← 1 − ∑N−2

i=1 φi

end if

V. RESULTS

Experiments have repeatedly shown that liquids can often
be supercooled before they solidify, but solids can almost never
be superheated [4,40,41]. Solids often begin to melt below
the bulk melting temperature, with liquid appearing first at
triple junctions and then at grain boundaries [3]. Explanations
have included the observation that grain boundaries and triple
junctions are high-energy sites that are less thermally stable
than the bulk [42], that free surfaces may premelt due to
atomic thermal vibrations [40], and that premelting may result
from a structural transition [43]. The results in this section
demonstrate premelting in nanostructures due to the shape
and position of metastable free energy surfaces, offering an
explanation for why some experimental systems form stable
liquid films at phase boundaries but others do not.

A four-phase ternary eutectic free energy landscape was
developed from a ternary regular solution model of the form:

f̄ (c1,c2) = �12c1c2 + �13c1c3 + �23c2c3

+ RT [c1 ln(c1) + c2 ln(c2) + c3 ln(c3)] , (33)

where c3 = 1 − c1 − c2 and � determines the enthalpic
contribution to free energy. The function has a min-
imum at (c1,c2,c3) = ( 1

3 , 1
3 , 1

3 ), and phases with differ-
ent equilibrium compositions were created by translating
Eq. (33):

f̄1(c1,c2) = f̄ (c1 + 1/3 − 0.9,c2 + 1/3 − 0.05)
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(a)

(b)

FIG. 4. (Color online) Ternary eutectic free energy surfaces,
viewed from below, and the corresponding phase diagrams. The
diffusing components are c1 (red), c2 (green), and c3 (blue), and
there are three solid phases: a red-rich phase, a green-rich phase, and a
blue-rich phase. A silver liquid phase appears in the center of the phase
diagram when �f̃m < 0. Two-phase regions in the phase diagram are
light gray, and three-phase regions are white. (a) Below the melting
point, �f̃m = 1.45. (b) Above the melting point, �f̃m = −.2.

f̄2(c1,c2) = f̄ (c1 + 1/3 − 0.05,c2 + 1/3 − 0.9)

f̄3(c1,c2) = f̄ (c1 + 1/3 − 0.05,c2 + 1/3 − 0.05) (34)

f̄4(c1,c2,T ) = f̄ (c1,c2) + 0.5266 + �f̄m.

These four surfaces are plotted in Fig. 4. The system is a
ternary eutectic in the sense that a silver liquid phase appears
in the center of the phase diagram above the melting point
and, on cooling, separates into three solid phases, each with a
limited amount of solubility. The energy of the liquid surface
minimum relative to the other surfaces is specified by �f̄m,
the free energy change on melting of the solid.6 The liquid
surface is calibrated so the minima of all four surfaces lie on
a common tangent when �f̄m = 0, corresponding to the bulk
melting temperature T = Tm.

Although the liquid surface in Fig. 4(a) lies above the
convex hull of the solid surfaces, there is a small region of
composition space at the center of the ternary triangle where
the liquid surface is lower in energy than any of the solid
surfaces at the same composition. Liquid in this region of
composition is metastable with respect to phase separation into
the three solid phases. The simulations that follow examine
the effect of such a metastable region on microstructure
evolution.

6If there are assumed to be no compositional effects that contribute
to asymmetry in latent heat �Hm, the change in free energy upon
solidification is related to undercooling �T = Tm − T according to

�fm ≈ �Hm�T

Tm

. (35)

The evolution equations [Eqs. (29) and (31)] were nondi-
mensionalized as follows:

D̃i = Di

τ

L2
κ̃ij = κij

V̄

RTL2
f̃ = f

V̄

RT
= f̄

RT

r̃α = rα

τRT

V̄
λ̃αβ = λαβ

V̄

RTL2
,

where L is the characteristic length scale, τ is the characteristic
time scale for diffusion in the liquid, RT is the characteristic
energy scale, and V̄ is molar volume. In this work Kij

and αβ were taken to be diagonal and constant, and the
following parameters were used: D̃i = 16, r̃α = 1, �̃12 =
�̃13 = �̃23 = −10, W̃αβ = 0.2, K̃ = ̃ = 8. A large negative
�̃ insures that phases have limited solubility and that there
is a large energy barrier between phases in composition
space. Choosing dimensional units of L = 1 nm, V̄ = 10 cm3,
τ = 1.6 × 10−9 s, n = 1 mol, and RT = 8.314 kJ/mol, the
diffusivity in the liquid is D = 10−4cm2/s, and the equilibrium
interfacial width is about 8 nm for c and 4 nm for φ. The
surface energy between solid phases is σss = 1.3 J/m2, and the
solid-liquid surface energy is σsl = 0.7 J/m2 at �f̃m = 0.

All simulations were performed on a computational grid of
512 × 512 points using a time-adaptive pseudospectral method
[44] that included Langevin noise. Because the simulations are
2D, the system is effectively a thin film.

A. Nucleation and growth

Nucleation and growth in a ternary eutectic was simulated in
Fig. 5. The undercooling of the system corresponds to �f̃m =
1.45 [Fig 4(a)]. The initial condition was homogeneous

FIG. 5. (Color online) Simulation of nucleation, growth, and
coarsening of a three-phase solid from a homogeneous metastable
liquid.
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FIG. 6. (Color online) Premelting is observed at triple junctions
and phase boundaries when a three-phase solid is heated to �f̃m =
.3, slightly below the melting point. (a) Just before the temperature
increase. (b) Shortly after the temperature increase, t̃ = 10. (c) The
liquid phase fraction of the system at t̃ = 10. Liquid is white and
solid is black.

metastable liquid of composition c = (0.35,0.31,0.34), and
as a result all three solid phases exist at approximately equal
volume fractions at equilibrium.

Langevin noise was added to the composition variables, and
circular seed nuclei were added to the phase variables. The
energy of these nuclei followed a Gaussian distribution, and
the radii were estimated using a classical nucleation approach
as described in Ref. [44]. The frequency and energy variance
of these nuclei was chosen so phase transformation occurs in
a reasonable amount of simulation time, and therefore is not
rigorous. Given the size of the system being simulated, the
nucleation rate is quite large, corresponding to a system with
a high density of heterogeneous nucleation sites.

Since the system is slightly enriched in c1 (red component),
the red-rich phase has the lowest nucleation barrier and is
observed to nucleate first, as predicted by the rule of Stranski

FIG. 7. (Color online) The shape of the liquid free energy
surface affects whether premelting occurs at phase boundaries.
The black lines denote a low energy path connecting the bulk
compositions of two phases. Phase boundary premelting occurs when
the black line traverses part of the liquid free energy surface. (a)
Premelting is observed at phase triple junctions and phase boundaries.
(b) Premelting is only observed at phase triple junctions.

and Totomanow. The growing nuclei then undergo secondary
nucleation at the growth front and blue and green solid phases
are observed to form. Figure 5 indicates that complex pattern
formation is possible when three-phase solidification is con-
fined to a 2D film and all phases occur at approximately equal
volume fractions at equilibrium. Eutectic colony morphologies
are expected in dilute ternary systems [45], but there is virtually
no theory for multiphase morphology in concentrated systems,
as noted in Refs. [1,24].

B. Premelting and metastable liquid

The completely solidified structure in Fig. 5 was then
brought to a higher temperature that was still below the
melting point and allowed to coarsen. Because isothermal
conditions are assumed, the temperature increase happens
instantaneously. Figure 6 shows the system just before and
just after the temperature increase. The magnitude of the
temperature increase was not large enough to produce a stable
liquid region in the phase diagram, but liquid was observed to
form anyway, pooling first at phase triple junctions and then
wetting phase boundaries as the temperature is increased. This
behavior is qualitatively similar to experimental observations
[3,4].

Raj [42] theorized that forming liquid at a triple junction re-
duces curvature and places the liquid under negative pressure,
creating a stable melt pocket. Here we find that the shape and
positions of the free energy surfaces also plays an important
role as well. The liquid surface lies above the convex hull of
the solid curves but below the solid surfaces themselves over
a large composition range. Premelting may be understood as
the system making use of these metastable liquid states, first
at triple junctions where the energy difference between the
solid and metastable liquid surfaces is largest and then at grain
boundaries where the difference is smaller but still favors liquid
over compositions far from the single-phase solid regions.

The composition maps7 in Fig. 6 reveal the effect of
the metastable liquid surface when temperature is increased.

7Phase-field simulations contain a lot of important information
that must be extracted from images of microstructure. To address
this difficulty, a composition map was developed to visually reveal
information about compositions in a ternary microstructure. The
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FIG. 8. (Color online) Solutal melting and resolidification of a rapidly solidified multiphase nanostructure held at �f̃m = 0.3, below the
melting point. The diffusivity in solid is 1/1000 the diffusivity in the liquid.

In Fig. 6(a), the composition variation at the diffuse solid
interfaces shows up as straight, diffuse lines that connect the
single-phase regions. But when liquid forms at phase triple
junctions and phase boundaries in Fig. 6(b), the interfacial
composition profiles bow inward toward the center of the
composition map. The liquid free energy surface attracts
interfacial compositions, and the trajectory of the interface
through composition space changes so as to accommodate the
low-energy liquid states.

The shape and location of metastable regions of free energy
surfaces offers a possible explanation for why premelting is
not always observed experimentally, or is sometimes observed
at triple junctions but not phase boundaries. When points

composition map is a triangle drawn to correspond to the phase
diagram, with c1 (red) at the top vertex, c2 (green) at the lower
left, and c3 (blue) at the lower right. For every composition in the
microstructure, a corresponding point is drawn on the composition
map. The color of each point matches the color of that composition
in the microstructure. For clarity, compositions that are in the liquid
phase are colored silver.

at a diffuse interface are forced to choose between several
high-energy states, the shape and position of free energy
surfaces become important, as illustrated in Fig. 7. When the
low-energy path does not traverse the liquid surface, the system
either does not premelt or must pay an energy penalty to adjust
its trajectory to accommodate liquid states. Furthermore,
thickening of liquid film with increasing temperature, which is
observed experimentally, may be rationalized as an increasing
traversal length along the liquid surface as it descends.

C. Instability of small particles

Coarsening theory predicts that the radius of shrinking
particles will smoothly decrease to zero. However, as Fig. 6(c)
illustrates, shrinking particles were observed to melt when
they reached a size of 10–15 nm, approximately twice the
width of the interface. The white pockets that are apparent in
Fig. 6(c) are locations where small particles melted. These
melt pockets exist temporarily and are eventually consumed
by the surrounding solid.

The melting of small particles is in agreement with the ana-
lysis of Wagner [46], who found that at a given undercooling,
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there is a critical radius below which nanocrystalline materials
become unstable and melt due to geometrical effects. Applying
the analysis to �f̃m = 0.3 and our simulation parameters, we
calculate the diameter of a critical particle surrounded by triple
junctions [42] to be 8.4 nm, which is comparable to what was
observed in our simulations. The discrepancy might be a result
of the assumptions of sharp interfaces, constant surface energy,
and an overly simple expression for �f̄m in the analysis. A
thorough understanding of the effect of diffuse interfaces on
the stability of multijunctions is left for future work.

D. Asymmetry from unequal diffusivity

A source of asymmetry between melting and solidification
is that diffusion in liquid is usually three to four orders of
magnitude faster than in solid. During melting the phase
that forms has high diffusivity, but during solidification the
phase that forms has low diffusivity. It has been shown that
the driving force for exchange of solute across the solid-
liquid interface disappears when the diffusivity of the parent
phase approaches zero [41,47]. During solidification some of
the driving force must be spent on trans-interface diffusion,
while during melting all of the driving force goes into interface
migration. When an alloy is cooled under nonequilibrium
conditions and diffusion in the solid is limited, the composition
of the solid formed initially at the core of the solidifying
structure is not the same as the composition at the outer edge
of the structure. Due to nonequilibrium solute distribution in
rapidly solidified supersaturated solids, solutal melting below
the melting point is possible.

Figure 8(a) shows a phase-field simulation of coarsening
performed with slow diffusivity in the solid. The diffusivity
of each component was a linear function of the liquid phase
fraction, and diffusivity in the solid regions was decreased
by three orders of magnitude. The structure that formed
consists of smaller, rougher particles that are less equiaxed.
The composition map in Fig. 8(a) reveals that solidification
occurred at compositions outside the stable single-phase
regions. Once the system has frozen into a supersaturated state,
evolution proceeds slowly because significant solid diffusion
is required.

Figures 8(b)–8(f) show the system shortly after being heated
to �f̃m = 0.3, which corresponds to a temperature below the
melting point. The temperature increase initially causes the
regions of supersaturated solid to melt. Large pools of liquid
form but eventually the solid surrounding these liquid regions
grows back into the liquid. When the liquid has resolidified,

the composition map appears qualitatively similar to that in
Fig. 6(b).

VI. CONCLUSION

A diffuse interface model for microstructure with an
arbitrary number of phases and components was derived from
basic thermodynamic and kinetic principles. Interfaces were
treated thermodynamically and nonlinear diffusion equations
for concentrated solutions were derived in accordance with the
Gibbs-Duhem and Nernest-Einstein relations. A composition
gradient energy was included for the first time in a multiphase
model to capture the effects of solute trapping, and an inho-
mogeneous diffusion potential was introduced as the driving
force for diffusion without a dilute solution approximation.
Inhomogeneous free energy for a multicomponent, multiphase
system was obtained from a Taylor expansion that produced
matrices of gradient energy coefficients. It was shown how
the properties of each phase and component may be specified
independently of the others, even when phase fractions and
mole fractions obey a mass constraint. A linear interpolation
between free energy surfaces was used to avoid problematic
pairwise interaction of phases, and a multi-obstacle barrier
permitted arbitrary barriers between phases.

The model is well suited for studying phenomena where
interfacial width is important, and captures details of melting
and solidification that have not previously been modeled with
phase-field methods. A nucleation barrier to solidification was
observed, and melting in solids was found to start below the
melting point at phase triple junctions and phase boundaries,
where pockets of liquid and stable liquid films formed.
Premelting was the result of low-energy pathways through
composition space provided by metastable portions of free
energy surfaces. Small particles were observed to be unstable
to heating as predicted by theory, and the large difference in
diffusion constants between solid and liquid was found to lead
to solutal melting in rapidly solidified alloys.
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