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Prediction of the operating point of dendrites growing under coupled thermosolutal
control at high growth velocity
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We use a phase-field model for the growth of dendrites in dilute binary alloys under coupled thermosolutal
control to explore the dependence of the dendrite tip velocity and radius of curvature upon undercooling,
Lewis number (ratio of thermal to solutal diffusivity), alloy concentration, and equilibrium partition coefficient.
Constructed in the quantitatively valid thin-interface limit, the model uses advanced numerical techniques such
as mesh adaptivity, multigrid, and implicit time stepping to solve the nonisothermal alloy solidification problem
for material parameters that are realistic for metals. From the velocity and curvature data we estimate the dendrite
operating point parameter σ ∗. We find that σ ∗ is nonconstant and, over a wide parameter space, displays first a
local minimum followed by a local maximum as the undercooling is increased. This behavior is contrasted with a
similar type of behavior to that predicted by simple marginal stability models to occur in the radius of curvature,
on the assumption of constant σ ∗.
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I. INTRODUCTION

Dendritic solidification has been a subject of enduring in-
terest within the scientific community, both because dendrites
are a prime example of spontaneous pattern formation and
due to their pervasive influence on the engineering properties
of metals. As dendrites are self-similar when scaled against
the tip radius ρ, the ability to accurately predict ρ is a
problem of central importance to the theory of dendritic
growth. However, the difficulty in theoretically calculating ρ

has been apparent since Ivantsov [1] showed that an isothermal
paraboloid of revolution, growing at velocity V into its parent
melt, undercooled by an amount �T, was a shape-preserving
solution to the diffusion equation, thus giving rise to the idea
of the parabolic needle dendrite. The analytical solution for
such a crystal is degenerate in that it relates the Peclet number,
and not the growth velocity, to undercooling, where the Peclet
number is defined as

Pt =Vρ

2α
, (1)

where α is the thermal diffusivity in the melt. Consequently, at
a given undercooling an infinite set of solutions are admissible,
subject to the condition Vρ = const. Such degeneracy is not
observed in nature, where a well-defined growth velocity can
always be associated with a given undercooling, thus sparking
the search for an additional mechanism to set the length scale
ρ for the dendrite.

One of the most enduring solutions to this problem is based
on a linear stability analysis of a plane solidification front
against the growth of small perturbations [2]. This theory
postulates that the dendrite grows at the largest value of ρ

which is stable against the growth of such perturbations, as
these would cause the tip to split, hence reducing ρ. This is
termed the limit of marginal stability. The principal prediction

*a.m.mullis@leeds.ac.uk

of this theory is that capillary forces break the Ivantsov
degeneracy via the relationship

ρ2V = 2αdo

σ ∗ , (2)

where do is a capillary length. σ ∗ is the so-called stability
constant, which for a plane interface is given by Mullins and
Sekerka [2] as σ ∗ = 1/(4π2) ≈ 0.0253.

This theory, particularly in its more sophisticated forms
due to Lipton, Glicksman, and Kurz (LGK) [3,4] and Lipton,
Kurz, and Trivedi (LKT) [5], was reasonably successful in
fitting experimentally determined velocity-undercooling data
[6]. Moreover, direct simultaneous measurement of V and ρ for
succinonitrile [7] yields an experimental value for σ ∗ in this
system of 0.0195, in close agreement with the theory. However,
despite this, to the best of our knowledge, there is no theoretical
basis for the marginal stability hypothesis, and agreement
with experiment, such as it is, must be considered fortuitous.
In particular, boundary integral methods [8,9] (microscopic
solvability theory) have shown that the Ivantsov equations have
no solution in the absence of crystalline anisotropy, and that
therefore the apparent agreement between marginal stability
theory and experiment is fortuitous. The full analysis reveals
that an equation similar to the one arising from marginal
stability is encountered but that σ ∗ is the anisotropy-dependent
eigenvalue for the problem which, in the limit of low Peclet
numbers, is found to vary as σ ∗(ε) ∝ ε7/4, where ε is a measure
of the anisotropy strength.

In recent years further progress has been made toward
understanding solidification phenomena [10] by the advent
of by phase-field modeling [11–13], particularly through the
formulation of the “thin interface model,” due to Karma
and Rappel [14]. In the thin-interface model, asymptotic
expansions of the solution on the solid and liquid sides of
the boundary are matched such that a solution is obtained,
which is independent of the length scale chosen for the
mesoscopic diffuse interface width. As a consequence of this,
the thin-interface model is capable of giving quantitatively
correct predictions for V and ρ during dendritic growth, from
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which a back-calculation of σ ∗ may be undertaken in order
to compare with earlier stability-based theories. Interestingly,
where calculation of σ ∗ has been undertaken away from the
limit of vanishing Peclet number, both phase-field [15,16] and
numerical solvability [17,18] models show that σ ∗ has not only
a material dependence, through the anisotropy strength ε, but
also a dependence upon the growth conditions. Specifically, for
both the thermally controlled solidification of a pure substance
[15,16] and the (slow) isothermal solidification of an alloy [19],
σ ∗ appears to decreases linearly with increasing Peclet number.
Moreover, in the limited number of cases where phase-field
models have been applied to alloy systems solidifying under
coupled thermosolutal control [19–22], σ ∗ has been found
to vary with undercooling, alloy concentration, and Lewis
number (=ratio of thermal to solutal diffusivity α/D), with this
variation in some cases being nonmonotonic. The variation of
σ ∗ with concentration appears to be borne out experimentally,
with a reevaluation by Li and Beckermann [23] of the data of
Chopra et al. [24] for the transparent succinonitrile-acetone
system, showing a variation in σ ∗ with concentrations of
between a factor of 2 and 4 depending upon the undercooling
considered.

This potentially makes the estimation of σ ∗ extremely prob-
lematic. Moreover, this is not simply an academic problem.
As pointed out by Rebow and Browne [25], the stability
constant is an intrinsic part of many alloy solidification
models, including cellular automaton [26,27], front-tracking
[28], and one-domain multiphase models of both the volume
[29,30] and ensemble [31] averaging types. In general, such
models have tended to use (either explicitly or implicitly)
the analytical value of σ ∗ as given by marginal stability
theory, although in principal other values, either calculated
or experimentally estimated [25], could also be used. This
offers the possibility that such rule-based models can to
some extent be tuned to the specific material system being
simulated and, given the linear dependence found between the
Peclet number and σ ∗ for systems under both pure thermal
or pure solutal control, even to the local growth conditions.
However, the complex, nonmonotonic variation observed in
σ ∗ with increasing undercooling means that for alloy systems
solidifying far from equilibrium where thermal effects cannot
be ignored, estimating the value of σ ∗ without detailed and
computationally expensive calculations is not possible.

In this paper we use a phase-field model of coupled ther-
mosolutal solidification to significantly extend our previous
analysis of the variation of σ ∗ as a function of undercooling,
presenting data in which the effect of varying alloy concen-
tration, Lewis number, and equilibrium partition coefficient
kE are systematically investigated. The model is based upon
the equations presented by Ramirez and Beckermann [19,20],
but we use advanced numerical techniques such as local
mesh adaptivity, implicit time stepping, and a multigrid
solver to obtain solutions over a much wider parameter space
than that explored by Ramirez and Beckermann. The model
is formulated in the thin-interface limit [32], wherein the
solutions are independent of the width of the diffuse interface
and are therefore quantitatively valid.

It is found that σ ∗ shows a dependence upon all of the
variables investigated, and we demonstrate that σ ∗ shows any
dependence upon kE . A model is proposed which accounts,

at least qualitatively, for all of the functional dependencies
observed in the behavior of σ ∗.

II. DESCRIPTION OF THE MODEL

The model adopted here is based upon that of Ref. [20] in
which, following nondimensionalization against characteristic
length and time scales W0 and τ 0, the evolution of the phase
field φ and the dimensionless concentration and temperature
fields U and θ are given by

A2(ψ)

[
1

Le
+ Mc∞[1 + (1 − kE)U ]

]
∂φ

∂t

= ∇ · (A2(ψ)∇φ) + φ(1 − φ2)

−λ(1 − φ2)2(θ + Mc∞U ) − ∂
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, (3)
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∂θ

∂t
= α∇2θ + 1

2

∂φ

∂t
, (5)

where, for fourfold growth, A(ψ) = 1+ε cos(4ψ), ψ being the
angle between the outward pointing normal to the solid-liquid
interface and the principal growth direction, L and cp are the
latent and specific heats, respectively, and λ is a coupling
parameter given by λ = D/a2 = a1W0/d0, with a1 and a2

taking the values 5
√

2/8 and 0.6267, respectively [32]. U and
θ are related to physical concentration c and temperature T via

U = 1

1 − kE

[(
2c/c∞

1 + kE − (1 − kE)φ

)
− 1

]
and

θ = �T − mc∞
L/cp

, (6)

where m is the slope of the liquidus line, which has a
dimensionless form

M = |m|(1 − kE)

L/cp

. (7)

The governing equations are discretized using a
finite-difference approximation based upon a quadrilateral,
nonuniform, locally refined mesh with equal grid spacing in
both directions. This allows the application of standard second-
order central difference stencils for the calculation of first and
second differentials, while a compact nine-point scheme has
been used for Laplacian terms, in order to reduce the mesh-
induced [33] anisotropy. To ensure sufficient mesh resolution
around the interface region and to handle the extreme
multiscale nature of the problem, local mesh refinement
(coarsening) is employed when the weighted sum of the gradi-
ents of φ, U, and θ exceeds (falls below) some predefined value.
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It has been shown elsewhere that if an explicit temporal
discretization scheme is used for this problem, the maximum
stable time step is given by �t � Ch2, where h is the minimum
mesh spacing and C = C(λ,Le,�T ), with C varying from
≈0.3 at Le = 1 to C � 0.001 at Le = 500 [34], leading
to unfeasibly small time steps at a high Lewis number.
Consequently, an implicit temporal discretization is employed
here based on the second-order backward difference formula
with a variable time step.

When using implicit time discretization methods it is
necessary to solve a very large, but sparse, system of nonlinear
algebraic equations at each time step. Multigrid methods
are among the fastest available solvers for such systems,
and in this work we apply the nonlinear generalization
known as FAS (full approximation scheme [35]). The local
adaptivity is accommodated via the multilevel algorithm
originally proposed by Brandt [36]. The interpolation operator
is bilinear while injection is used for the restriction operator.
For smoothing the error we use a fully coupled nonlinear
weighted Gauss-Seidel iteration where the number of pre- and
postsmoothing operations required for optimal convergence is
determined empirically. Full details of the numerical scheme
are given in Refs. [34,37].

We obtain from the model the two key parameters charac-
teristic of dendritic growth, namely, the velocity and radius
of curvature of the tip. The latter we obtain by fitting a
parabolic profile to the φ = 0 isoline using a fourth-order
interpolation scheme described in Refs. [21,34], as this has
generally been felt [19,38] to be more directly comparable
to analytical dendrite growth theories [5] than the curvature
obtained directly from the derivatives of φ at the tip.

In order to compare our results with analytical theories
for the solidification of deeply undercooled alloys, it is also
useful to be able to calculate the equivalent radius selection
parameter σ ∗ by using the values of V and ρ obtained directly
from the phase-field model. For a model with only a single
diffusing species, either heat in the case of the thermally
controlled growth of a pure material or solute in the case
of the isothermal solidification of a binary alloy, this is
straightforward: Rewriting Eq. (2) one has

σ ∗ = 2αdo

ρ2V
= do

ρPt
(thermal) or

σ ∗ = 2Ddo

ρ2V
= do

ρPc
(solutal), (8)

where D is the solutal diffusivity and Pc is the solutal Peclet
number (Pc = Vρ/2D, as distinct from the thermal Peclet
number Pt, which has already been defined above). However,
when both heat and solute are diffusing we should combine
both Peclet numbers. Following the methodology suggested
by Ref. [19] we write

σ ∗ = d0

ρ
[
ξTPt + 2ξcPc |m|c∞

L/cp

( 1−kE

1−(1−kE )�c

)] (9)

where �c is the local concentration “frozen in” at the interface
(taken as φ = 0) and which, as V and ρ, can be obtained
directly from the phase-field simulation, thus providing a route
for estimating σ ∗ in the coupled thermosolutal case without
recourse to the Ivantsov function. The value of σ ∗ thus obtained

may be compared with that defined in the stability models
proposed by LGK [3,4] by setting ξT = ξ c = 1, or to the model
of LKT [5], by applying the high undercoolings corrections
defined by

ξT = 1 − 1√
1 + 1

σ ∗Pt2

, ξc = 1 + 2kE

1 − 2kE −
√

1 + 1
σ ∗Pc2

.

(10)

Here we use the latter of the two methodologies, although,
as described above, we would stress that this is for comparison
purposes only and no recourse needs to be made to either
the Ivantsov function or to stability arguments to evaluate the
right-hand sides of either Eq. (9) or (10).

The convergence behavior of the model as λ is increased
has been studied by Ramirez and Beckermann [19] for an
explicit solver and by Rosam et al. [21] for the implicit
multigrid solver. In both cases the tests were conducted in
the rapid solidification regime, with � = 0.55. Ramirez and
Beckermann [19] expressed some concerns about convergence
as they found that the velocity V d0/α systematically increased
by ∼25% as λ was increased from 1 to 4. Conversely, Rosam
et al. [21] found that, when using an implicit multigrid solver,
V d0/α remained within a band of ±4% around its mean value
when λ was varied in this way, while the Peclet number was
constant to within ±2.5%.

III. RESULTS

The baseline parameter set for the simulations reported
here is given by Le = 200, kE = 0.3, Mc∞ = 0.05, λ = 1
(W0 = 1.13d0), and ε = 0.02. All simulations were run on a
[−1600:1600]2 domain with a minimum grid spacing of h =
0.78, equivalent, were a uniform mesh to have been used, of a
mesh size which is 212×212. From this starting point we have
conducted three sets of simulations varying the Lewis number
Le, alloy concentration (via Mc∞), and partition coefficient
kE in turn, with all other parameters being held at the values
given above.

For each parameter set a number of simulations have
been conducted, in each case covering the (dimensionless)
undercooling range � = 0.2–0.8. Below � = 0.2 we find that
the growth velocity for the dendrite is so slow that excessive
computation time is required in order to ensure that the dendrite
has attained steady-state growth. Above � = 0.8 the growth
velocity becomes so large that it is no longer possible to
ensure that the condition W0V /D<1 is satisfied [20]. Even
so, some of the solutions at higher growth velocities may only
be close to, rather than fully, converged for the value of W0

used here. However, using yet smaller values of W0 makes the
problem computational intractable as τ0 ∝ W 2

0 .
The first parameter we consider is the Lewis number, which

has been varied here over one order of magnitude, in the range
Le = 50–500. Note that the Lewis number is varied by varying
the thermal conductivity α with the solutal diffusivity D being
kept constant during all simulations. This is as D also controls
the coupling parameter λ via the relationship λ = D/a2 =
a1W0/d0, which in turn sets the width of the diffuse interface.

The two main quantities which represent the direct output
of the model are the dendrite tip velocity V and the radius of
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FIG. 1. Dendrite growth velocity as a function of undercooling,
as calculated by the coupled thermosolutal phase-field model, for
dendrites growing at varying Lewis number.

curvature at the dendrite tip ρ. As described above, the radius
of curvature reported here is the equivalent parabolic radius
of curvature. Plots for the (dimensionless) velocity and
radius of curvature as a function of undercooling, for Le =
50, 100, 200, and 500, are given in Figs. 1 and 2, respectively.

In all cases the velocity increases monotonically with
increasing undercooling, showing, to a good approximation,
a power-law dependence V ∝ �β , with β being in the range
1.8–2.7. In fact, this behavior is much as we would expect.
The analytical Ivantsov solutions for dendritic growth display
this type of power-law behavior for V in both two and three
dimensions, more or less independent of the assumptions
made for the variation of ρ (i.e., marginal stability, growth
at the extremum, and even constant ρ appear to yield growth
velocities displaying a power-law dependence on �). More-
over, although experimental data [39–42] is only available
for free dendritic growth in three dimesions, experimental
velocity-undercooling curves for a wide range of materials
show a very similar type of dependence. There is a consistent
trend for the growth velocity to increase with increasing Lewis
number, which, given that we control the Lewis number by
adjusting the thermal diffusivity, is to be expected.

FIG. 2. Radius of curvature at the dendrite tip as a function of
undercooling, as calculated by the coupled thermosolutal phase-field
model, for dendrites growing at varying Lewis number.

The calculated (parabolic) tip radius, as determined from
the phase-field model, as a function of undercooling is given in
Fig. 2. This may be compared (Fig. 3) with that which would be
expected from the LKT [5] marginal stability model with the
same input parameter set and a constant stability parameter σ ∗,
the value of which is taken here as 0.05. In all cases the tip ra-
dius as determined from the phase-field model passes through
a local minimum as the undercooling is increased, although at
low Lewis numbers this minimum is very poorly developed.
The undercooling at which the minimum occurs moves
systematically to lower undercoolings as the Lewis number
is increased, from a value of � = 0.75 at Lewis number 50 to
� = 0.28 at Lewis number 500. This behavior is, at least qual-
itatively, in agreement with marginal stability-type models.
However, the marginal stability model predicts that, in addition
to a local minimum, the tip radius should also display a local
maximum at yet higher undercooling, after which the tip radius
declines steadily with increasing undercooling. This behavior
is not observed in any of the phase-field simulations, with
the radius increasing steadily with undercooling in the high
undercooling regime at all Lewis numbers. Indeed, at Le =
500 the tip radius at � = 0.8 exceeds that at � = 0.2 by a
factor of 2, clearly at variance with marginal stability models.

The dependence of the dendrite tip radius upon undercool-
ing as predicted by marginal stability-type models, with its
characteristic local minimum followed by a local maximum,
has very much been a cornerstone of rapid solidification
theory for the past 20 years. However, experimental evidence
in support of the existence of either a local minimum, or
a local maximum, in the tip radius is scant. Transparent
analog- casting alloys, such as succinonitrile-acetone, in which
direct measurement of the dendrite tip radius is possible [24],
can only be undercooled by very small amounts so that the
predicted undercooling range in which a local minimum might
be observed is not accessible. In metallic systems only an
indirect estimate of the tip radius is possible, generally by
assuming that some characteristic microstructural length scale,
such as the grain size or dendrite trunk radius where observable
[43], scales as a constant multiple of the tip radius. However,
although there is plentiful evidence of an initial decrease in

FIG. 3. Radius of curvature at the dendrite tip as a function of
undercooling as predicted by marginal stability (LKT) theory on the
assumption of constant stability parameter σ ∗. Growth parameters
are the same as used in the phase-field model.
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FIG. 4. Values of the effective stability parameter σ ∗ as a function
of undercooling, as calculated by the coupled thermosolutal phase-
field model, for dendrites growing at varying Lewis number.

microstructural length scale in the low undercooling region, it
has proved almost impossible to make a continuous extension
of such an analysis into the high undercooling regime where
the presence of a local minimum might be inferred. Even
for systems where a single dendritic phase exists over the
whole undercooling range, such as Ni-Cu [39] or Cu-O
[44], the intervention of remelting and/or recrystallization
effects such as spontaneous grain refinement [43,45,46] make
the estimation of the original tip radius during dendritic
growth impossible. Given that the local minimum in the tip
radius moves to lower undercooling as the Lewis number is
increasing, we consider, on the balance of probabilities, that at
higher Lewis numbers than those studied here it may still be the
case that a local maximum in the tip radius will be observed.
However, from the results presented here, we conclude that
the occurrence of such maxima is nowhere near as ubiquitous
as suggested by marginal stability models.

The estimated value of the effective stability parameter σ ∗
as estimated from the phase-field results is shown in Fig. 4.
For all Lewis numbers studied the results show that as the
undercooling is increased, σ ∗ shows first a local minimum,
followed by a local maximum. The location of both this
minima and maxima shift to lower undercooling as the Lewis

FIG. 5. Dendrite growth velocity as a function of undercooling,
as calculated by the coupled thermosolutal phase-field model, for
dendrites growing at varying solute concentrations.

FIG. 6. Radius of curvature at the dendrite tip as a function of
undercooling, as calculated by the coupled thermosolutal phase-field
model, for dendrites growing at varying solute concentrations.

number is increased and, moreover, the amplitude of the
variation between the maximum and minimum value also
increases with Lewis number. In fact, we note that if we
were to make a qualitative comparison, considering only the
general shapes of the curves, there is a far greater similarity
between the marginal stability curve for the radius, calculated
on the basis of constant σ ∗ and the dependence predicted
here for the stability parameter σ ∗, than there is between the
marginal stability curve and the actual tip radius predicted by
the phase-field model. Of course, given that we are comparing
dissimilar quantities, this can only be a purely qualitative
comparison, yet the similarity in form is striking. A discussion
of the potential significance of this result is reserved for later;
we first consider the effect of alloy concentration and partition
coefficient.

The velocity data as a function of Mc∞ in the range Mc∞ =
0.02–0.10 is given in Fig. 5. Again we observe a power-law
dependence between the velocity and undercooling, although
now with a much narrower range of exponents (2.3–2.6).
As might be expected, dendrites of the most dilute alloy
grow most rapidly, with the solidification velocity showing a
systematic decrease as the alloy becomes more concentrated.

FIG. 7. Radius of curvature at the dendrite tip as a function of
undercooling as predicted by marginal stability (LKT) theory on the
assumption of constant stability parameter σ ∗. Growth parameters
are the same as used in the phase-field model.
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FIG. 8. Values of the effective stability parameter σ ∗ as a function
of undercooling, as calculated by the coupled thermosolutal phase-
field model, for dendrites growing at varying solute concentrations.

The corresponding dendrite tip radius data is shown in Fig. 6.
For the most part, at fixed undercooling the radius appears to be
largest in the most dilute alloys and to decrease with increasing
concentration, although the curves for Mc∞ = 0.02 and 0.035
cross at � = 0.65 so that at very high undercooling the largest
dendrites grow at Mc∞ = 0.035. For all values of Mc∞
studied a local minimum in the tip radius is observed while,
as in Fig. 2, none of the curves show a local maximum, which
is again at variance with the prediction of the LKT marginal
stability model operating with the same parameters set and
a fixed value of σ ∗ (see Fig. 7). Indeed, the correspondence
between the predictions of the LKT theory and those of the
phase-field model is even weaker than was the case with
the variation of Lewis number. LKT theory predicts that the
local minimum in the tip radius should move to progressively
higher undercoolings as the concentration is increased,
whereas in the phase-field model the local minimum occurs at
the highest undercoolings in both the most dilute and the most
concentrated alloys, with intermediate concentrations giving
rise to local minima at lower undercoolings. Moreover, the
LKT radius curves display a distinct, well-defined minimum
followed by an equally well-defined maximum. In contrast,
for all concentrations except Mc∞ = 0.02, the phase-field

FIG. 9. Dendrite growth velocity as a function of undercooling,
as calculated by the coupled thermosolutal phase-field model, for
dendrites growing at varying partition coefficients.

FIG. 10. Radius of curvature at the dendrite tip as a function of
undercooling, as calculated by the coupled thermosolutal phase-field
model, for dendrites growing at varying partition coefficients.

model displays a broad range of intermediate undercoolings
over which the radius is almost constant. The data for Mc∞ =
0.035 is a case in point, with the radius showing a variation
of no more than 13% over the undercooling range � =
0.3250–0.6875. However, if we now consider the equivalent
values of the effective stability constant σ ∗ recovered from
the phase-field model (Fig. 8), we again see a remarkable
qualitative similarity with the radius curves generated from
the marginal stability model. In particular, all the curves
display a minimum which shifts systematically to higher
undercooling as the concentration is increased. Moreover,
with the exception of the most concentrated alloy, in which the
minimum does not occur until � = 0.725, all curves display
a maximum, which similarly shifts to higher undercooling as
the concentration is increased.

Finally we consider the case of varying the partition
coefficient kE , two values of which have been studied, 0.3
and 0.15. For (isothermal) solute only simulations both V
and ρ (and hence Pc and σ ∗) are independent of kE . This
result is well known from the literature and is reproduced by
our models (reduction of the coupled thermosolutal model to
solute only is discussed in both Refs. [19] and [21]), with

FIG. 11. Radius of curvature at the dendrite tip as a function of
undercooling as predicted by marginal stability (LKT) theory on the
assumption of constant stability parameter σ ∗. Growth parameters
are the same as used in the phase-field model.
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FIG. 12. Values of the effective stability parameter σ ∗ as a
function of undercooling, as calculated by the coupled thermoso-
lutal phase-field model, for dendrites growing at varying partition
coefficients.

validation of the independence from kE being demonstrated
for a solutal undercooling of 0.4 and for kE = 0.01, 0.02,
0.05, 0.1, 0.3. No more than a 1% variation in either V or ρ

was observed. However, this is not the case in the coupled
thermosolutal model in which changing the value of kE alters
the relative influence of thermal and solutal control on the
growth (the dominant effect appears to be for the higher solute
concentration at the tip to give rise to a tip of smaller radius).

The velocity-undercooling curves for these two simulations
are shown in Fig. 9. At low undercoolings (� < 0.4) there is
very little difference between the calculated growth velocities
for each case, although above an undercooling of 0.4 the
more strongly partitioning system displays a systematically
higher growth velocity (due to the higher curvature of the
tip). As previously, the velocity-undercooling relationship is
approximated well by a simple power law, with the exponents
being 2.3 and 2.7 for kE = 0.3 and 0.15, respectively. The
radius of curvature at the tip, as calculated from the phase-field
model, is shown in Fig. 10, and may be compared with the
equivalent LKT marginal stability calculation, which is shown
in Fig. 11. As discussed above, the agreement in the case of
kE = 0.3 is poor, with the phase-field model displaying a
local minimum, but not a maximum, in the tip radius. In the
case of kE = 0.15 the agreement is rather better, although
this is probably due to the fact that in the more strongly
partitioning system the marginal stability model also displays
only a minimum tip radius and no maximum (within the
undercooling range studied). In both the marginal stability
and phase-field models it is also the case that the undercooling
at which the minimum occurs is shifted to higher values in the
more strongly partitioning system. The effective value of the
stability parameter σ ∗ estimated from the phase-field model
is shown in Fig. 12. The close correspondence between the
phase-field σ ∗ curve and the marginal stability curve for ρ

in the case of kE = 0.3 has been noted above. In the case
of kE = 0.15 the agreement is less good. The LKT radius
curve shows a very shallow minimum toward the top of the
undercooling range studied, whereas the phase-field σ ∗ curve
decreases monotonically over the whole of the undercooling
range studied. We do, however, note that marginal stability
predicts that there should be essentially no dependence upon

the partition coefficient at low undercoolings (� < 0.4), a trend
that is replicated in the phase-field data for σ ∗ but not for ρ.

IV. DISCUSSION

We have presented evidence above that suggests that if
we use a phase-field model of coupled thermosolutal growth
formulated in the thin-interface limit to calculate the radius of
curvature at the tip of a dendrite growing at high undercooling
into its parent melt, poor correspondence is obtained with the
much simpler LKT model based on the ideas of marginal
stability. This is hardly surprising as there is an extensive
body of evidence in the literature that suggests that at high
undercooling σ ∗ is very far from being constant. Perhaps one
of the most important results to highlight from this study is that,
although all of our radius curves display a local minimum as
the undercooling is increased, none display a local maximum.
The idea of the local minimum followed by a local maximum
in the tip radius has become common currency within the rapid
solidification community, possibly mistakenly so.

What may be more surprising is that if we make a qualitative
comparison, many of the trends observed in the marginal
stability radius curves are reproduced in the phase-field curves
for σ ∗. Below we discuss this similarity. We draw the analogy
between σ ∗ for the phase-field model and radius for the
marginal stability model, not because we ascribe any particular
validity to the ideas of the marginal stability model; we do not,
but because in the case of an analytical model it is easier to
understand where affects may arise in a way, that is not always
the case in a numerical model. Thus the analogy is to aid the
interpretation of the phase-field results and to attempt to elicit
a physical understanding which might otherwise be difficult to
extract from equations that can, by their nature, only be solved
numerically.

To begin to understand this similarity, we first consider
the rather simpler case of growth with just a single diffusing
species, in this case heat, as a dendrite of a pure material
grows into its undercooled parent melt. By simply setting the
concentration parameter Mc∞ to zero, the same phase-field
model as described above can be used to simulate growth in
this system, albeit in perhaps not the most computationally
efficient manner. The calculated value of σ ∗ resulting from
performing a set of such simulations is shown in Fig. 13. The
equivalent marginal stability calculation of the tip radius for
a system under thermal-only control is shown in Fig. 14. The
two curves display a superficial resemblance in that both show
a steady, monotonic decrease as the undercooling is increased,
although this is far steeper in the case of the marginal stability
radius than for σ ∗ from the phase-field model. Both curves
accord closely with what might be expected from other work in
the literature. Similar profiles would be expected if we were to
repeat this as a solute-only calculation, although for brevity this
is not reproduced here. Moreover, in the case of the marginal
stability calculation of the tip radius, it is well understood how
two similar curves, each showing a monotonic decrease, but for
different species (heat and solute) diffusing over very different
length and time scales, can give rise to the characteristic alloy
curve (e.g., Figs. 3, 7, and 11), which shows both a local
minimum and a local maximum. The initial, low undercooling
region of the curve is the result of the dendrite growing, at
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FIG. 13. Value of the effective stability parameter σ ∗ as a function
of undercooling, as calculated by the phase-field model, for a dendrite
growing under thermal-only control.

least to a first approximation, under solute-only control, with
the decrease in ρ being the result of increasing solutal Peclet
number. At intermediate undercoolings we have high solutal
but low thermal Peclet numbers, and growth control begins
to be transferred to thermal diffusion, with a commensurate
increase in ρ. Finally, at high undercooling, the effect of
solute diffusion on the growth becomes negligible and thermal
diffusion becomes the dominant process controlling growth.
The radius increase that was observed as control moves to
thermal diffusion is reversed, leading to a local maximum
in the radius followed by a steady decline as growth moves
into the high thermal Peclet number regime. The exact details
of where these transitions occur and the balance of thermal
versus solutal control depend upon the details of the model
assumed and the material parameters for the system being
considered, although the gross features are independent of the
mathematical model.

Of course, all of this assumes constant σ ∗. If we now
consider the case in which σ ∗ is not constant, we may apply a
similar argument, but now applied to the selection parameter
σ ∗, rather than the tip radius per se. Consequently, it will
be σ ∗ that shows the characteristic local minimum followed
by local maximum as the undercooling is increased. If we
then accept that it is σ ∗ and not the tip radius directly that is
determined by the competition between thermal and solutal
transport processes as the dendrite grows, we can now begin
to understand why the calculated tip radius shows the complex

FIG. 14. Radius of curvature at the dendrite tip as a function of
undercooling as predicted by marginal stability (LKT) theory on the
assumption of constant stability parameter σ ∗ for a dendrite growing
under thermal-only control.

behavior observed. In particular, the argument above, and
the results presented here, suggests that at sufficiently high
undercooling the behavior of σ ∗ will be to decrease with
increasing undercooling. As low σ ∗ may be associated with a
large tip radius, as described by Eq. (2), it follows that for a
sufficiently rapid decrease in σ ∗ the tip radius will continue
to increase with increasing undercooling, rather than display
a local maximum and then decrease, in much the fashion that
is observed in the simulations presented here. That is not to
say that this will occur in all cases; indeed, a parameter space
may well exist in which the decrease in σ ∗ is sufficiently slow
to permit the tip radius to also decrease as the undercooling
is increased. However, as observed here, that parameter space
may not be ubiquitous in the way assumed in marginal stability
theory.

The above hypothesis is presented as an argument which,
at least qualitatively, allows the results of the phase-field
simulation to be rationalized. We have not attempted to put a
mathematical framework around these arguments and, indeed,
do not know whether such a framework would be possible.
However, if it were possible to combine σ ∗ curves calculated
separately for thermally and solutally controlled growth within
an appropriate mathematical framework, this would offer the
intriguing possibility that σ ∗ (and hence characteristic length
scales and growth velocities) for a dendrite growing under
coupled thermosolutal control may be estimated without per-
forming simulations on the particular system being considered.
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