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Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage
capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates.
Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is
assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore
solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer
rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also
at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory
by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge
transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane
of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the
charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of
reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the
two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore
dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for
strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid
for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on
the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to
allow us to derive analytical approximations for the steady-state and early transients. We also present numerical
solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge,
and reaction rates in response to an applied voltage.
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I. INTRODUCTION

Porous electrodes are found throughout electrochemistry
and are often favored over flat electrodes for many reasons
[1–4]. For instance, when a gas or solid reactant phase, an
electrolyte phase, a catalyst phase, and a conductor must be
brought together in intimate contact, as in most fuel cells and
rechargeable batteries, only a porous structure can possibly
fulfill this challenging requirement. When only a liquid or a
gas phase contacts the electrode, porous electrodes are used to
increase the surface area for charge transfer, thereby reducing
the electrode overpotential (or interfacial resistance), as in
fuel cell applications [5,6]. Porous electrodes are also used to
increase the charge storage capacity of capacitive electrochem-
ical cells, such as double-layer (DL) supercapacitors, which
store electrons [7–11], capacitive deionization cells, which
store ions for water desalination [2,12–24], and capacitive
energy-harvesting cells, which exploit the reverse process to
extract energy by alternating contact of electrodes with water
of low and high ionic strengths [25–29].

Classical porous electrode theories couple ion transport
in the electrolyte phase to either DL charging [2,24] or
Faradaic charge-transfer reactions [1,3,4], but electrochemical
technologies are increasingly involving both processes at the
same time. Faradaic reactions are the defining feature of
all electrochemical cells, and they can play an important
role in capacitive cells. In desalination and energy-harvesting
applications, parasitic Faradaic reactions can diminish the

efficiency of the process and, thus, must be understood and
must be quantified. In capacitive energy storage, Faradaic
reactions can have a beneficial effect, boosting the energy
density of the porous electrode by combining surface-based
DL capacitance (storing electrostatic energy) with volume-
based pseudocapacitance from Faradaic reaction products
(storing chemical energy) [7,28,30,31]. These gains in energy
density, however, come at the expense of losses in power
density, and a general mathematical model would help to tailor
this delicate balance for specific applications.

In this paper, we develop a modified porous electrode theory
that simultaneously describes diffuse DL charge and Faradaic
reactions. The equations are highly nonlinear and contain
multiple length and time scales due to the different physical
effects involved, ranging from macroscopic ion transport
to nanoscale effects of diffuse charge on charge-transfer
reactions, see Fig. 1. We present analytical and numerical
results for both steady-state conduction (e.g., relevant for
fuel cells) and transient charging dynamics (e.g., relevant for
capacitive deionization or energy storage as well as impedance
spectroscopy measurements). For simplicity, we focus on
relatively dilute aqueous electrolytes, allowing us to neglect
ion volume (steric) effects and other nonidealities. To illustrate
the approach, here, we focus on the simplest case of a Faradaic
reaction where the product species is neutral and at fixed
chemical potential as for a metal ion plating out of solution.
Extensions can be made to include the fact that the product
species must diffuse away as for redox flow batteries or is

061507-11539-3755/2011/83(6)/061507(17) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.061507


P. M. BIESHEUVEL, YEQING FU, AND MARTIN Z. BAZANT PHYSICAL REVIEW E 83, 061507 (2011)

outer 
electrolyte porous

electrode

hp

Dq(x,t)
w(x,t)

Stern layer

di use layer

Faradaic
reaction

micropores

macropores

counter 
electrode

x

o(x,t)

<< hp

D

c(x,t)

o(x,t)
c(x,t)

hp
mi >>hp

mi

o (t)
1

FIG. 1. Schematic of our porous electrode theory, which describes ion transport, diffuse charge, and Faradaic reactions across a hierarchy
of three length scales: (i) left, the macroscopic continuum where the volume-averaged variables, such as the bulk concentration c(x,t) and
electrostatic potential φ(x,t), are defined; (ii) middle, the macropores in the pore-particle interphase with thin DLs (dashed lines) whose
extent λD (the Debye screening length) is much smaller than the mean pore thickness hp, and which are characterized by their mean charge
density q(x,t) and excess salt concentration w(x,t) per area; and (iii) right, the nanoscale diffuse charge distribution, separated from the
electron-conducting phase by dashed lines, by a molecular Stern layer (dashed lines) across which Faradaic electron-transfer reactions occur,
and occurring either in thin DLs, in the macropores (upper right) or in charged micropores (lower right) of thickness hmi

p � λD with strongly
overlapping DLs.

intercalated in a host solid compound, where its chemical
potential increases, making it progressively more difficult for
the reduction to proceed, as for batteries and pseudocapacitors.

The basic assumptions of our model are as follows. We
consider a symmetric binary electrolyte with a reactive cation
and an inert anion, each being monovalent. In steady state
and in the absence of convection, the fluxes of the inert ions
vanish, and they remain in Boltzmann equilibrium in the mean
electrostatic potential. Since the product species is neutral,
the current is carried only by the reactive ion in the electrolyte
phase, both within the pores of the electrode and in solution. In
this situation, the flux of the reactive ion directly corresponds to
the electron current in the external circuit, which significantly
simplifies the mathematical description. We stress, however,
that in all dynamic processes involving electrolytes, all ions
play a part in carrying the current, and in the model, we
need to include the physical mechanisms that determine the
contributions of the various ions to the current at different
positions and at different times. As we will show, the key
element in this respect is consideration of the structure of the
electrostatic double layer (EDL) that forms at the matrix-pore
interface within the structure of the porous electrode. For
example, taking the classical Helmholtz (H) model where
a dielectric capacity (representing solvent molecules on the
surface) separates the electrode from the plane containing
the countercharge, then, counterions are the only species
compensating the electron charge. However, due to their
thermal motion, ions are not confined into a single plane,
but instead, diffuse countercharge is distributed in a thin ion
cloud next to the interface for which the equilibrium structure
is described by the Boltzmann distribution (for ions as point
charges). For a planar semi-infinite dilute electrolyte volume,
this diffuse layer (or diffuse part of the DL) is described

by the Gouy-Chapman (GC) model. Including a dielectric
layer in between the diffuse layer and the charged surface
to model a Stern layer (or compact part of the DL) results in
the Gouy-Chapman-Stern (GCS) model for the DL. The GCS
model can be used in the limit that the Debye length (a measure
of the extension of the diffuse part of the DL) is small compared
to the typical pore size. Examples would be electrodes made
of conductive metallic foams or close-packed structures of
metallic wires with pore sizes typically above 1 μm.

In many cases, it is important to describe the possibility that
the EDLs overlap within a finite pore thickness comparable
to the Debye length, as in the case of nanoscale cylindrical
or slitlike pores [29,32]. In the limit that the EDLs overlap
strongly, i.e., the limit that the Debye length is much larger
than the typical pore size, it is possible to assume a constant
electrostatic potential in the pore space. This is the Donnan
approach, generally used to describe the ion concentration
in homogeneously charged structures, such as gels and
membranes. In the present paper, we will make use of a
modified Donnan (mD) model in which, compared to the
classical Donnan approach [33,34], two modifications are
made: First, a Stern layer is included in between the ionic
charge and the electron charge, and second, we include that
there is a small nonelectrostatic attractive potential μatt for the
ion to go from the macropores located in between particles
(transport pathways) into the micropores of porous particles
[35]. This term μatt is required to describe data for charge
and salt adsorption in porous electrodes, as a function of
applied cell voltage and ionic strength [35]. This model can
also be viewed as the simplest limit of more sophisticated
DL models, which capture specific ion-surface interactions
and density oscillations induced by ion-ion correlation effects
by introducing a suitable external potential near the surface
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[36–38]. That ions have a nonelectrostatic attraction into
microporous materials, such as activated carbons, is supported
by the fact that these materials absorb salt even without
applying a voltage. In the present paper, we will use the
same value of μatt for both ions, but, in general, they will be
different, also differing between different cations, which can
be a method to model observed differences in cation adsorption
in porous carbon materials [39]. Another interesting difference
between porous electrode theory using the GCS model or the
mD model is that, when the GCS model is used, only one type
of macroporosity is considered, p, where the anion and cation
concentrations are the same, with the EDLs modeled as excess
surface adsorptions onto a (volumetrically distributed) area;
while using the mD model, there are two porosities to consider
in the porous electrode theory: the macroporosity pmA (similar
to p in the GCS model) and the microporosity pmi [40]. In the
micropores, cation and anion concentrations can be different,
as we will describe using the mD model, leading to an influx of
electronic charge to compensate the difference between cation
and anion number in the micropores. Both the macro- and the
microphases locally have a mean potential, differing from one
another by the Donnan potential �φd.

Compared with the Helmholtz model, both in the GCS
and the mD models, charge is screened not only by the
adsorption of counterions, but also by the expulsion of coions.
In dynamical situations, the normal current into the EDL thus
has two independent contributions, both from counterions
and from coions. The relative contribution of each ion is
determined by the choice of EDL model. Note that, although
we will make use of the GCS and mD models in this paper,
the general framework as we will present can also be applied
using other more complicated models for the DL, e.g., those
considering partial DL overlap, ion volume effects [38,41–43],
or ion-ion correlations [44].

The structure of this paper is as follows. In Sec. II, we
present our porous electrode theory, including Faradaic charge
transfer, and derive a simple dimensionless formulation. In
Sec. III, we analyze the early-time dynamics and the steady
state in response to a suddenly applied voltage between the
electrode and the bulk solution. In Sec. IV, numerical results
are presented to illustrate the predictions of the theory and
to test our analytical results for the transient and steady-state
profiles of salt concentration, electrical potential, charge
density, and Faradaic current. The main text of this paper uses
the GCS model, while the mD model is derived and is applied
in the Appendix.

II. THEORY

In this section, we describe the porous electrode theory,
which includes ion transport both within the pores of the
electrode and within the solution phase outside the electrode, as
well as charge formation at the matrix-pore interface (i.e., at the
internal electrode surface) and Faradaic charge transfer there.
We only describe the cathode and assume that only cations
react Faradaically within the electrode. We only consider
transport in one dimension across a planar electrode, which
is in contact with free solution on one side (x = 0) and is
blocking for the electrolyte and ions on the other side (x = 1).

In a full calculation of an electrochemical or capacitive cell,
the complete solution phase must be considered, including

possible in- and outflow of solution into the cell [35,45–47].
Here, to simplify matters and to focus on the problem of the
electrode, we only describe ion transport toward the electrode
through a thin planar layer in front of the electrode, going by
various names in the literature, such as the advection-diffusion
layer, the Nernst layer, the (stagnant) diffusion layer, or the
mass transfer film. We will use the term stagnant diffusion
layer (SDL). The thickness of the SDL depends on the extent
of turbulence and mixing in the bulk solution [46,48,49].
The SDL is obviously a theoretical simplification of the full
problem of diffusion and dispersion of ions in the solution
phase, but the concept of an SDL has proven very useful in
various problems, e.g., in the field of ion-exchange membranes
[50,51] and electrodialysis [45,46,49]. Following Ref. [24],
we will use a generalized SDL description [Eq. (4) below],
which not only describes the steady state as do the classical
expressions for the SDL [46,48,49], but also is applicable
generally for transient situations. Furthermore, for the situation
that the electrolyte is motionless, i.e., not flowing through the
cell, this generalized SDL model is an appropriate description
for the full electrolyte space between two (porous) electrodes.
For a symmetric system, Eq. (4) can then be used with ∂2c/∂x2

= 0 at the midplane between two symmetric electrodes.
Additional assumptions are that we only consider a 1:1

salt (such as NaCl) and assume the diffusion coefficient of
the anion and cation in solution D to be equal. Within the
electrode, the diffusion coefficients De will be lower than in
solution, but again we take the same value for the anion and the
cation. The equations can easily be generalized to describe the
case of different diffusion coefficients [45]. We neglect surface
conductance, i.e., the enhanced ion transport in the diffuse
part of the DL along a charged interface. Within the solution
phase and within the macropores in the electrode, we assume
that the concentration of cations equals that of the anions,
which is the local salt concentration c. Assuming a much lower
resistance for the electrons in the matrix phase than for the ions
in solution, we can consider the matrix phase potential φ1 to be
constant, i.e., ∂φ1/∂x = 0. Important parts of the general theory
are similar to the material in the theory section of Ref. [24],
where a purely capacitive cell was considered without Faradaic
charge transfer.

A. Ion transport in the quasineutral macropores

Within both the SDL and the pores of the electrode
(both phases have locally equal concentrations of anions and
cations), we assume that the ions are ideal point charges so
that we can use the Nernst-Planck (NP) equation to describe
the ion flux as a function of both a concentration gradient and a
migration term due to the electrical field. For the pore solution,
the NP equation can be written in dimensionless form as

ji = −1

2

(
∂ci

∂x
+ zici

∂φ

∂x

)
, (1)

where ci is the dimensionless ion concentration ci = Ci /C∞
of cations or anions (i = +,−), where C∞ is the constant
ionic strength of the bulk solution outside the SDL, and φ is
the dimensionless electrostatic potential scaled to the thermal
voltage VT = kBT/e. The dimensionless position coordinate x
is given by x = X/Le, with Le the thickness of the electrode.
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In Eq. (1), the reduced ion flux ji is given by ji = Ji/Jlim with
the diffusion-limited current given by Jlim = 2DeC∞/Le.

Based on i = j+−j− and c = c+ = c−, the ion current i
follows directly from Eq. (1) as

i = −c
∂φ

∂x
. (2)

Equations (1) and (2) are valid for the pore space (i.e.,
we define currents based on the open pore fraction), while to
make them valid in solution phase (i.e., in the SDL), the right-
hand side in both equations needs to be multiplied by a factor
dsdl = D/De.

Outside the electrode, in the SDL, for each ion, a local mass
balance can be set up, which is given by

∂ci

∂t
= −2

∂ji

∂x
, (3)

where dimensionless time t relates to time τ according to
t = τDe/L

2
e . Because we have c+ = c− at each position, we

can sum Eq. (3) and can implement Eq. (1) for the two ions to
obtain

∂c

∂t
= dsdl

∂2c

∂x2
, (4)

in the SDL, where c without a subscript is the local time-
dependent salt concentration c = c+ = c−.

At the macroscopic solution-electrode interface (i.e., at the
outside of the electrode, where x = 0), the following boundary
conditions apply. Because the electrode is not fully accessible
to the aqueous solution and the ions, a correction because of the
porosity p must be included because concentrations, currents,
etc., within the electrode are based on the open macropore
volume. At the interface between the solution (the SDL) and
the electrode, we have continuity in concentration: csdl = ce =
c0 and potential φsdl = φe = φ0. The current i on either side
is the same but for the porosity correction, thus, isdl = pie.
Similarly, we have continuity in salt flux, thus, dsdl

∂c
∂x

∣∣
sdl

=
p ∂c

∂x

∣∣
e
.These are the four boundary conditions that apply at the

solution-electrode interface. At the outer boundary of the SDL
(at its edge with the bulk solution), in the present calculation,
we have c = 1 and φ = 0, while at the inner boundary of the
electrode (where x = 1), which we assume to be blocking for all
ions, we have ∂c

∂x
= 0 and i = 0. Different boundary conditions

are also possible at the outer edge of the SDL, e.g., ∂2c/∂x2 = 0
for the case of two symmetric and oppositely placed electrodes
in a motionless electrolyte, while a dynamic model can also
be used where c is a function of time at the edge of the SDL,
e.g., because of salt adsorption into the electrodes [51].

Within the electrode, the diffusion equation, Eq. (4), must
be modified to include the rate of salt adsorption, jsalt (=
Jsalt/J∗ where J ∗ = Jlimλ0

D/Le), into the DLs at the matrix-
pore interface. Equation (4) then becomes

∂c

∂t
= ∂2c

∂x2
− εjsalt, (5)

where the parameter ε is the ratio of Debye length λ0
D over

the characteristic pore thickness hp, i.e., ε = λ0
D/hp. The

Debye length λ0
D = κ−1 relates to the ionic strength of the

bulk solution C∞ (in mM) according to κ2 = 8πλBNavC∞,
where λB is the Bjerrum length, which, at room temperature

in water is λB ∼ 0.72 nm. The effective pore thickness hp is
defined as the ratio of the pore volume to the pore surface area
and is given by hp = p/a, where a is a specific surface area or
pore surface area per total electrode volume, which has units
of inverse length [24]. Thus, Eq. (5) describes the variation of
concentration c with depth x in the electrode (axial direction),
whereas jsalt describes how at each position salt is removed
from the pores and either is adsorbed in the DL on the electrode
surface or is consumed by Faradaic reactions. Finally, a local
charge balance describes how the (axial) ion current i decreases
with depth due to charge transfer to the DLs at the matrix-pore
interface,

∂i

∂x
= −ε jcharge, (6)

where jcharge = Jcharge/J
∗ describes the charge-transfer rate

from the pore solution into the interface. This finalizes the
macroscopic description of transport in the axial macroscopic
direction through the macropores of the electrodes.

At this point, the reader might already wonder how jsalt and
jcharge are calculated because, so far (and throughout the theory
section below), at no point is an explicit equation given for
either of the microscopic fluxes j directed from the macropore
into the EDL. There is no inconsistency, however, since these
fluxes are implicitly defined by the full set of model equations.
Since we assume that, at each point in the electrode, the EDL is
in quasi-equilibrium with the local concentration and potential
in the macropore, the microscopic fluxes j are slaved to the
local quantities c, φ, �φD, and �φS (thus, also to w and q).
The completeness of the model becomes explicit below in
Sec. II D, where the microscopic flux variables are eliminated
in a more compact mathematical formulation of the model.

B. Diffuse charge in the DLs

Next we apply the GCS model to describe the DL formed
at the internal electrode area (which is solved at each position
x in the electrode) to calculate jsalt and jcharge. The GCS
model assumes that the DL is locally flat and thin (compared
to the internal length scales of the pores) and remains in
quasi-equilibrium, despite the passage of the normal ionic
current, which is valid for thin DLs as long as the current
is not large enough to significantly deplete the local bulk
salt concentration. For a detailed mathematical justification
of the model in the present situation of electrodes sustaining
Faradaic reactions, see Refs. [52,53]. Similar analyses of the
quasi-equilibrium approximation have also been performed for
transient currents to nonreacting metal electrodes [54,55] and
steady currents to ion-exchange membranes [56]. In all of these
cases, the GCS model of the DL emerges as the leading-order
approximation of the full Poisson-NP equations describing
diffuse charge in a dilute electrolyte in the asymptotic limit of
thin DLs, ε → 0. In the Appendix, we explain and use the mD
model for the structure of the EDL, valid in the opposite limit,
namely, for strongly overlapped DLs.

The GCS model distinguishes between a potential across
the Stern layer �φS and a potential across the diffuse layer
�φD, which together compensate the potential difference
between the electrode matrix φ1 and the pore solution φ, thus,

�φ = φ1 − φ = �φD + �φS. (7)
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This simple equation is an essential element of the model,
expressing how the potential in the macropores φ is directly
linked to the potential in the electron-conducting matrix phase
φ1 at the same location and time via the local voltage drop
across the EDL, which, in turn, is related to the local charge
density and Faradaic reaction rate. The GCS model for the
structure of the EDL is described by three equations: (i) the
diffuse-layer charge-voltage relation,

q = −2
√

c sinh
1

2
�φD, (8)

where q is a dimensionless surface charge density of the
diffuse part of the DL (multiply by 2, λ0

D, and C∞ to obtain
the dimensional surface charge density), which is positive
when there is an excess of cations over anions (and, thus,
the electrode matrix is negatively charged); (ii) an equation
similar to Eq. (8) for the salt adsorption w given by [18,24,54]

w = 4
√

c sinh2 1

4
�φD, (9)

which can again be multiplied by 2, λ0
D, and C∞ to obtain the

dimensional total ion adsorption density; and (iii) a relation
between the voltage difference across the charge-free Stern
(inner or compact) layer �φS and the charge density q, as if
the Stern and diffuse layers were two capacitors in series [54],

q = −�φS/δ, (10)

where δ = λS/λ
0
D in which λS is an effective thickness of the

Stern layer [52].
In recent years, the same Stern boundary condition has

also been used extensively in other dynamical situations
with time-dependent normal currents, such as capacitive
charging of blocking electrodes [24,41,54], fluctuations of
ion-conducting biological membranes [57,58], induced-charge
electro-osmotic flows [38], and electrofluidic gating [59]. In all
of these situations, the dimensionless parameter δ controls the
voltage drop across the Stern layer relative to that of the diffuse
layer and has two important limiting cases [52]: (i) In the GC
limit δ → 0, the Stern layer is negligible, and the diffuse layer
carries all of the DL voltage, as in Gouy’s model of the DL.
(ii) In the H limit δ → ∞, diffuse charge can be neglected, and
the DL voltage is dropped across the molecular Stern layer, as
in the earliest DL model proposed by Helmholtz.

The charge-transfer rate into the matrix-pore interface,
jcharge, relates to the charge density q according to

∂q

∂t
= jcharge − jF, (11)

where jF is a dimensionless Faradaic reaction rate to be
discussed below. Note that here jF is defined positive when
the ion current runs from electrolyte into the electrode (i.e., at
the cathode).

Similar to Eq. (11), the salt adsorption rate jsalt relates to
salt adsorption w according to

∂w

∂t
= jsalt − jF. (12)

This equation is valid for the situation in which, at the
electrode, a monovalent cation reduces to a neutral species,
which diffuses away or plates out as a metal ion, or is stored

in a solid pseudocapacitor phase. When there are divalent ions
involved in the reaction, this equation, and many others above,
must be modified. For a purely capacitive process, where
jF = 0, Eqs. (11) and (12) simplify to equivalent surface
conservation laws for planar interfaces [54,55], while for
porous electrodes, in this case, they are similar to Eqs. (8)
and (9) of Ref. [24].

C. Faradaic reactions in the DLs

To describe the kinetics of the Faradaic reaction, we apply
the generalized Frumkin-Butler-Volmer equation, which, for a
one-electron reaction, can be represented in dimensional form
as [47–53,60–73]

JF = KRCO,rp exp
(− 1

2�φS
) − KOCR,rp exp

(
1
2�φS

)
,

(13)

where we have assumed the transfer coefficients to be
αO = αR = 1

2 , and where KR and KO are kinetic rate con-
stants for the reduction and oxidation reactions, respectively,
while CO,rp and CR,rp are volumetric concentrations of the
reactants/products in the oxidized and reduced state, at the
reaction plane (equated with the Stern plane). The ratio
KR/KO contains thermodynamic information, independent
of kinetics. Namely, assuming equilibrium (JF = 0) and
after implementing the Boltzmann equilibria, CO,rp =
CO,∞ exp[−(z + 1)�φD] and CR,rp = CR,∞ exp(−z �φD)
(where z is the charge sign of the reduced species), we obtain
the Nernst potential, i.e., the equilibrium potential difference
across the full interface, �φeq = ln(KRCO,∞/KOCR,∞). Thus,
at equilibrium, the total voltage drop across the interface �φ

of Eq. (7), equals the Nernst potential �φeq. For nonideal
solutions, we can replace concentrations c by activities a,
both in Eq. (13) and in the Boltzmann equation given above,
as in Ref. [74], although, generally, the reaction rates must
also be modified to account for nonidealities in the transition
state [75]. As reviewed in Ref. [71], Eq. (13) extends standard
descriptions of Faradaic charge transfer in porous electrodes
[1,4,76], where the charge-transfer rate depends only on the
difference in potential between the conducting matrix and in
the pore solution �φ = φ1 − φ (�1 − �2 in the classical
terminology) without considering the structure of the DL
and changes in the local ion concentration at the surface.
In the GC limit (δ → 0,�φS = 0), Eq. (13) reduces to the
classical Chang-Jaffe boundary condition, which postulates
standard first-order reaction kinetics at the electrode surface,
independent of the local voltage or electric field [77–79].

Considering the specific case of a cation reacting to a neutral
species (z = 0) of constant chemical potential (as for the case in
which the cation plates out of solution), replacing dimensional
quantities J, K, and C by their dimensionless equivalents j,
k, and c (by dividing JF by J∗, KR and KO by 2DeλD

0/Le
2,

and C by C∞) and implementing for the cation Boltzmann
equilibrium cO,rp = c exp (−�φD), we obtain

jF = kRc · exp
(−�φD − 1

2�φS
) − jO exp

(
1
2�φS

)
, (14)

where, additionally, kOcR,rp has been replaced by the constant
jO. This expression vanishes when the total DL voltage �φ

equals the equilibrium Nernst voltage, �φeq = ln(kRc/jO),
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so it is convenient to introduce the dimensionless surface or
interfacial overpotential η = �φ − �φeq and to express the
dimensionless Faradaic current in the form

jF = jO exp

(
−qδ

2

) [
exp (−η) − 1

]
. (15)

This formula expresses the generalized Frumkin-Butler-
Volmer model for electrochemical reaction kinetics in the
case of symmetric electron transfer (α = 1

2 ) and shows
that the reaction rate depends not only on the overpotential,
but also on the interfacial charge density. An important
difference with most prior theories is that the interfacial charge
density q is not an arbitrary fitting parameter but instead
is determined uniquely and self-consistently from the local
interfacial voltage, normal current, and bulk salt concentration.

In order to gain a simple physical understanding of the
kinetic model and to facilitate our mathematical analysis
below, it is instructive to again take the GC and H limits
[52,71],

−jF ∼
{

jO[1 − exp(−η)], GC limit

2
√

jOkRc sinh
(η

2

)
H limit

(16)

In the H limit (δ → ∞, q → 0), diffuse charge is neg-
ligible, and the Faradaic current takes the standard Butler-
Volmer form for symmetric electron transfer to a quasineutral
bulk solution in direct molecular contact with the electrode.
In the GC limit (δ → 0, �φS → 0), however, the Frumkin
effect of diffuse charge dominates, and the DL acquires the
current-voltage characteristics of a Schottky diode. For large
positive overpotentials η � 1, analogous to reverse bias of a
semiconductor diode, the active cations are strongly expelled
from the diffuse part of the DL by a large excess positive
charge on the electrode (relative to the equilibrium charge,
which may be positive or negative), thereby eliminating the
reduction reaction (cation removal) and leaving only the
constant oxidation reaction (cation production). For large
negative overpotentials η � −1, analogous to forward bias
of a diode, the active cations are strongly attracted to the
surface, and their concentration increases exponentially with
(negative) voltage, thereby amplifying the reduction reaction,
which dominates the current.

D. Mathematical formulation

Equations (1)–(14) provide a complete description of tran-
sient DL charging and Faradaic charge-transfer reactions in a
porous electrode, given all the stated assumptions. Following
Ref. [24], it is convenient to reformulate the full set of 14
equations as simply two partial differential equations (PDEs),
in this case, for the macropore concentration c and the DL
charge density q, by eliminating the microscopic fluxes jcharge

and jsalt using analytical properties of the GCS model. First,
we derive a PDE for the salt concentration c, which expresses
mass conservation, by combining Eq. (5) with Eq. (12),

∂ctot(c,q)

∂t
= ∂2c

∂x2
− ε jF(c,q), (17)

where ctot = c + εw is total mean concentration of ions in the
pores, equal to the sum of the bulk salt concentration plus the

excess density of ions (of either sign) stored in the DLs per
pore volume, which can be expressed as

ctot(c,q) = c + ε(
√

4c + q2 − 2
√

c), (18)

using a simple formula for w(c,q) in the GCS model [24,29].
Similarly, we can use Eqs. (8), (10), and (14) to express the
Faradaic current density as

jF(c,q) = jO

{
exp

[
�φeq + 2 sinh−1

(
q

2
√

c

)
+ 1

2
qδ

]

− exp

(
−1

2
qδ

)}

= kRc · exp

(
qδ

2

)
·
⎡
⎣− q

2
√

c
+

√(
q

2
√

c

)2

+ 1

⎤
⎦

−2

− jO · exp

(
−qδ

2

)
. (19)

Next, we obtain a second PDE for the charge density
q, which expresses charge conservation, using Eqs. (1), (6),
and (11),

ε
∂q

∂t
= ∂

∂x

(
c
∂φ(c,q)

∂x

)
− εjF(c,q), (20)

and finally, we use Eqs. (7), (8), and (10) to eliminate the pore
potential,

φ(c,q) = φ1 + 2 sinh−1

(
q

2
√

c

)
+ qδ. (21)

Substituting Eqs. (18), (19), and (21) into Eqs. (17) and
(20), we arrive at two self-contained nonlinear coupled PDEs
for c(x,t) and q(x,t), which constitute the most compact
mathematical form of our porous-electrode model, including
both capacitive charging and Faradaic reactions. Note that,
even in the absence of Faradaic reactions (jF = 0), these
PDEs are not equivalent to Eqs. (15a) and (15b) in Ref. [24],
except in the GC limit, since we have also included the effect
of the Stern-layer capacitance. Although this is a significant
complication for the mathematical analysis, it allows us to
systematically control the effects of the diffuse charge on both
capacitive charging [54,55] and Faradaic reactions [52,71] by
varying the parameter δ.

III. ANALYSIS

A. Dynamical regimes

To illustrate the predictions of the general theory, we
analyze the response to a suddenly applied voltage φ1 on
the porous electrode (relative to the bulk solution), starting
from an equilibrium state at t = 0. This canonical problem
has previously been studied for flat [54,55] and porous [24]
blocking electrodes without Faradaic reactions, and it is
directly relevant for capacitive energy storage or desalination
systems. It also underlies important experimental methods in
electrochemistry, such as potentiostatic intermittent titration
(stepwise charging of an electrode) and chronoamperometry
(transient current analysis following a voltage step). This
problem is also convenient to explore the basic physics of
the system since it has no imposed scales for time or current,
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thus leading to a complex multiscale nonlinear response. In
contrast, impedance spectra are modeled by linearizing the
transport equations for small voltages (as we do below, only
for early times) and by seeking a sinusoidal response at a
single time scale, selected by the imposed ac frequency [79].
Multiple time scales do arise in response to a suddenly applied
constant current, but the imposed flux boundary condition (in
one dimension) constrains the nonlinear dynamics somewhat
more strongly than the case of a constant voltage, at least
below the diffusion-limited current, since the current must
remain uniform across the quasineutral bulk region [72].

There are two fundamental time scales that determine the
evolution of the potential and concentration: (i) the small RC
time scale t = O(ε), which governs the transient DL charge
density in Eq. (20), and (ii) the long diffusive time scale t =
O(1), which governs the transient bulk salt concentration in
Eq. (17). The former corresponds to the supercapacitor regime
analyzed in Ref. [24] for blocking porous electrodes, where
the bulk salt concentration remains nearly uniform, c = 1 +
O(ε), and the porous electrode acts like an RC transmission
line carrying current through a nearly constant bulk resistance
into the DLs. Restoring dimensions, the characteristic charging
time scale can be written as

τc = ε
L2

e

D
=

(
λ0

Dhp

D

)(
Le

hp

)2

, (22)

which is the product of RC time for capacitive charging of a
characteristic unit pore space [54], whose length is comparable
to its thickness, and the square of the number of such pore
spaces across the electrode thickness. The crucial difference
with Ref. [24], however, is that we consider Faradaic reactions,
which contribute charge-transfer resistances in parallel with
the DL capacitances, as shown in Fig. 2. We also consider the
effects of the Stern layer, contributing an extra capacitance and
coupling the charge to the reaction rate. As shown below, these
effects alter the transient response of the porous electrode,
including the charging time scale.

At the diffusion time scale L2
e/D, when t = O(1), the

concentration is significantly perturbed, analogous to the
desalination regime of Ref. [24] but with the important
difference that a nontrivial steady state is reached, since we
assume that the reduced state of the cation, being the product
of the Faradaic reaction, is kept at constant chemical potential.
For the moment, this approach neglects backdiffusion out of

the electrode of the (possible neutral) product species or its
intercalation in the solid phase, such as for the case of Li-ion
batteries and pseudocapacitors, where for the reduced species,
only a finite number of sites is available, which (possibly at
only very long time scales) leads to the decrease of the Faradaic
reaction rate back to zero. As such, we refer to this phase
of the dynamics approaching a steady direct current as the
fuel cell regime. Mathematically, this regime is difficult to
describe, even if Eqs. (17) and (20) are linearized for small
applied voltages, since the concentration varies together with
the charge density. This leads to a linear PDE for the vector
(c,q) with 2 × 2 matrix coefficients, whose solution by Fourier
methods is possible but is cumbersome to the point of hindering
physical insight. The steady state is more tractable, as we will
analyze in Sec. III C, also allowing for a nonlinear response
to a high voltage. Transients in the full problem require a
numerical solution as described in Sec. IV.

B. Early-time linear response (supercapacitor regime)

For large overpotentials, the concentration becomes signif-
icantly perturbed close to the SDL-electrode interface as soon
as the charging process proceeds into the porous electrode over
a significant macroscopic distance. (See Sec. IV C below.)
For small overpotentials |η| � 1 and early times t = O(ε),
however, the concentration remains close to its initial value,
c ∼ 1, and we can linearize the reaction kinetic equation (15),
using

jF ∼ −jO exp
(− 1

2qeq,0δ
)
η = −jexη, (23)

where jex is the (dimensionless) equilibrium exchange current
density. Here, qeq,0 is the equilibrium charge density before the
voltage is applied (when c = 1), which satisfies the following
transcendental equation,

2 · sinh−1
(

1
2qeq,0

) + qeq,0δ = −�φeq,0, (24)

where �φeq,0 = ln (jO/kR) is the equilibrium DL voltage in
the initial state with c = 1. Linearizing the transient charge
density around this value, we can use Eqs. (7), (8), and
(10) to relate ∂q/∂t to ∂η/∂t and, thus, to obtain a linear
reaction-diffusion-type PDE for the early-time dynamics of
the overpotential,

∂η

∂t̃
= ∂2η

∂x2
− Da · η. (25)

φ1

φ

FIG. 2. Equivalent circuit (RC transmission line [80]) for the linear response of the porous electrode in our model including both capacitive
charging and Faradaic reactions. The quasineutral solution in the macropores acts as a series of resistors coupled to the electrode by parallel
elements, each of which consists of two parallel elements, namely, a charge-transfer resistance and a DL capacitance (consisting of the diffuse
and Stern layer differential capacitances in series [54]).
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In this equation, we have rescaled the dimensionless time
according to

t̃ =
⎧⎨
⎩
[

1 +
(

1

2
qeq,0

)2
]−1

+ δ

⎫⎬
⎭ t

ε
, (26)

which shows how the RC charging time is affected by the Stern
layer in our model by dividing τc in Eq. (22) by the factor in
curly braces, effectively putting the Stern-layer capacitance in
series with the diffuse-layer capacitance. In Eq. (25), we also
have defined an effective Damköhler number (Da),

Da = ε jO · exp

(
−1

2
qeq,0δ

)
, (27)

which measures the importance of Faradaic leakage currents
(analogous to a homogeneous reaction consuming the overpo-
tential) compared to capacitive charging of the DLs (analogous
to diffusion of the overpotential) in the RC transmission-line
equivalent circuit shown in Fig. 2.

Before we solve Eq. (25) for the transient overpotential, let
us consider several analytically tractable limits of Eqs. (24),
(26), and (27) to better understand the basic scales for linear
response. First, suppose that the equilibrium charge density is
small, in the sense that the diffuse-layer voltage is much lower
than the thermal voltage. In that case, we can linearize Eq. (24)
to obtain

qeq,0 ∼ �φeq,0

1 + δ
and Da ∼ ε k

δ/[2(1+δ)]
R j

(2+δ)/[2(1+δ)]
O

(small equilibrium charge). (28)

The first expression shows that the initial equilibrium
charge and voltage are related as if the DL consisted of two
capacitors in series, since δ can be interpreted as the ratio of
the constant capacitance of the diffuse layer (at low voltage) to
that of the Stern layer [52,54]. The second expression shows
that parasitic Faradaic currents are small, Da = O(ε ), and
do not significantly hinder the diffusive propagation of the
overpotential in the equivalent RC transmission line. Without
any restrictions on the equilibrium charge density, we can also
obtain simple formulas in the limiting cases of the GCS DL
model,

qeq,0 ∼ −2 · sinh

(
1

2
�φeq,0

)
=

√
jO

kR
−

√
kR

jO
and

Da ∼ε · jO (GC limit), (29)

and

qeq,0 ∼ −�φeq,0

δ
and Da ∼ε

√
kRjO (H limit). (30)

Again, the initial equilibrium charge-voltage relation can
be interpreted in terms of capacitors in series, only now,
either the nonlinear differential capacitance of the diffuse layer
in the GC model or the constant capacitance of the Stern
layer in the H model dominates. From Eqs. (28)–(30), we
conclude that, unless the reactions are very fast, the effective
Da number is typically small, O(ε), for thin DLs, so that the
Faradaic reaction contribution can be treated as a small regular
perturbation for early times t̃ = O(1).

The linear response PDE, Eq. (25), can be solved exactly
using Laplace or Fourier transforms in infinite space. For our
problem with a finite domain and a mixed boundary condition
for the SDL,
∂η

∂x

∣∣∣∣
x=0,t̃

= Bi · (η|x=0 − η0),
∂η

∂x

∣∣∣∣
x=1,t̃

= 0, η|x,t̃=0 = 0

(31)

we can obtain an exact solution as a generalized Fourier series
given by

φ(x,t̃)

η0
= 1 −

∞∑
n=0

A2
nλn sin λn

λ2
n + Da

· {1 − exp
[− (

λ2
n + Da

) · t̃
]}

· cos[λn · (x − 1)], (32)

where λn tan λn = Bi, A2
n = 4λn

2λn+sin(2λn) , and η0 = φ1 − �φeq,0

is the initial overpotential, just after the voltage is applied, but
prior to any charge relaxation. Here, Bi = dsdlLe

pLsdl
is an effective

Biot number measuring the characteristic rate of diffusion in
the SDL compared to that in the porous electrode.

Deriving the current requires some care. One cannot use
Eq. (2) and differentiate the Fourier series (32) term by term
because it represents a discontinuous initial condition and,

thus, is not uniformly convergent over the domain (
∼
t � 0, 0 �

x � 1). On the other hand, the series can be integrated term by
term, so we can safely obtain the total current ie by integrating
the charge flux in space over the electrode as follows, where the
Faradaic current density is linearized using Eq. (23) and the
capacitive (displacement) current density is linearized using
the initial state DL capacity C0:

ie =
∫ 1

0
jcharge dx =

∫ 1

0

(
jF + dq

dt

)
dx

=
∫ 1

0

(
−jexη + C0

dφ

dt

)
dx (33)

= −η0
∞∑

n=0

A2
n(sin λn)2

λ2
n + Da

· (jex
{
1 − exp

[− (
λ2

n + Da
) · t̃

]}
+C0

{
1 + (

λ2
n + Da

)
exp

[− (
λ2

n + Da
) · t̃

]})
,

where jex = jO exp( 1
2�φ

eq
S ) ≈ jO exp( 1

2�φ
eq,0
S ) and C0 =

ε

δ+sech(
1
2 �φ

eq,0
D )

. In the limit where mass transfer is fast enough

within the SDL so as to neglect its concentration gradients (Bi
= ∞), Eq. (32) simplifies to

φ(x,t̃)

η0
= 1 −

∞∑
n=0

(2n + 1) · π

(n + 1
2 )2π2 + Da

·
(

1 − exp
{
−
[(

n + 1
2

)2
π2 + Da

]
· t̃
})

· cos
[(

n + 1
2

) · π · (x − 1)
]
. (34)

In the same limit Bi = ∞, there also is a simple analytical
similarity solution to Eq. (25),

η(x,t̃) = η0 · exp(−Da · t̃) · erfc

(
x

2
√

t̃

)
and

ie(t̃) = −c
∂φ(x,t̃)

∂x

∣∣∣∣
x=0,t̃

= −η0 · exp(−Da · t̃) ·
√

1

πt̃
,

(35)
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which is valid for early times, before the diffusion layer
propagates across the electrode, and is much more accurate
in this regime than any truncation of the Fourier series in
Eq. (34).

The physical interpretation of this dynamical regime is
that the porous electrode acts like an RC transmission line
(Fig. 2). The quasineutral macropores act like a chain of
resistors, connected in series to the DLs, described by circuit
elements consisting of the DL capacitance in parallel with
the Faradaic charge-transfer resistance. This is a classical
model [80], but here we systematically derive it from a general
nonlinear formulation and provide analytical formulas for the
circuit elements in terms of the microscopic model parameters.
In contrast to the case of an ideally polarizable electrode
with capacitive charging, where the overpotential satisfies
a diffusion equation [24], our PDE for the overpotential,
Eq. (25), is of the reaction-diffusion type with an additional
decay term to describe local capacitor discharging due to
Faradaic reactions.

At longer times t = O(1), for high applied voltages, the
dynamics become highly nonlinear as the concentration varies
together with the electric field and diffuse charge in the pores.
The time scale is controlled by the diffusion of salt, in response
to ion consumption by Faradaic reactions. Analytical solutions
are no longer possible, so for the full problem, numerical
calculations are required, as described below.

C. Steady-state nonlinear response (fuel cell regime)

Once the system reaches steady state, it is again possible
to gain analytical insight. First, it is useful to note that all
nonreactive ions attain a Boltzmann equilibrium distribution
in steady state. In the present calculation, these ions are
monovalent anions, and, thus, we have both in the SDL and in
the pores of the electrode ln (c) = φ at each position. At the
solution-electrode interface, we have the classical steady-state
expressions,

c0 = 1 − ie/Bi, φ0 = ln(1 − ie/Bi), ln (c0) = φ0 (36)

for the salt concentration and potential, as a function of the
total current ie. Note that, in the electrode, the percentage of
ie that is carried by the ions decreases with position x, starting
at 100% at x = 0 where the ion current i(x) equals ie, going
down to zero at the backside of the electrode. Simultaneously,
the current carried by the electrons in the matrix progressively
increases such that ie is always constant across the electrode.

In the steady state, the left-hand side of Eq. (5) is zero, and
together with setting jsalt equal to jcharge, which is true because
only the reactive cation is being transported in the steady state,
we arrive for the concentration profile inside the electrode at

∂2c

∂x2
= εjcharge, (37)

which can be solved together with ln (c) = φ and Eqs. (7), (8),
and (10) to complete the steady-state model. In Eq. (37), we
immediately can replace the charging current jcharge by jF of
Eq. (14).

For small values of q/(2
√

c), we can derive a single second-
order differential equation in concentration c, given by

ε−1 ∂2c

∂x2
= kRc · exp

{
1 + 1

2δ
√

c

1 + δ
√

c
(ln c − φ1)

}

− jO exp

{
− 1

2

δ
√

c

1 + δ
√

c
(ln c − φ1)

}
. (38)

In the GC limit of δ = 0, Eq. (38) can be simplified to

ε−1 ∂2c

∂x2
= kRc2 exp (−φ1) − jO, (39)

while in the opposite H limit of δ = ∞, we obtain

ε−1 ∂2c

∂x2
= kRc

3
2 exp

(− 1
2φ1

) − jOc− 1
2 exp

(
1
2φ1

)
. (40)

Equations (39) and (40), although derived here from
Eq. (38), which is only valid for small values of q/

(
2
√

c
)
,

are generally valid, also in the nonlinear (large q) regime.

1. Exact solution for steady linear response

For low values of the initial time overpotential η0 and for
concentrations c that consequently remain close to unity, Eqs.
(39) and (40) can both be simplified to

∂2c

∂x2
= −Da · η0, (41)

with Da defined by Eq. (29) or (30) for the GC or H limit,
respectively. This second-order ordinary differential equation
has a Dirichlet boundary condition at the inner edge of the
electrode, namely, at x = 1, we have ∂c/∂x = 0, while at the
edge with the SDL, where x = 0, we have a Robin mixed
boundary condition, given by ∂c/∂x = −(1 − c) Bi, which
follows from the combination of Eq. (2) with the steady-state
result of Eq. (36). The solution for pore potential φ is
given by

φ (x)

η0
= 1

2
− Bi · (ϑ1−(1/2)x + ϑ (1/2)x

)
2 Bi · (1 + ϑ) − ln (ϑ) · (1 − ϑ)

, (42)

where ϑ = exp(2
√

2 Da). Comparison of Eq. (42) with the
full numerical results, both in the GC limit [Eq. (39)] and
in the H limit [Eq. (40)], gave an exact agreement as long
as the initial overpotential η0 was sufficiently low, as shown
in Fig. 4.

Note that this result is not equal to the early-time dynamic
equation, Eq. (32), when we take the limit of t̃ → ∞, because
Eq. (32) always fails at some point before we approach
the steady state because in the steady state, the gradients
in salt concentration, no matter how small, are responsible
for half of the current, an effect that is not considered
in Eq. (32).

2. Approximate solutions for steady nonlinear response

Next, we derive analytical solutions for both the GC and
the H limits when, deep within the electrode, concentrations
are close enough to zero, e.g., because the electrode potential
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φ1 is sufficiently negative. For the GC limit, integrating
Eq. (39) once results in

ε−1/2 ∂c

∂x
= −

√
2

3
kRc3 exp (−φ1) − 2jOc + w2, (43)

where the integration constant w2 follows from the boundary
condition of ∂c/∂x = 0 at x = 1, thus, w2 = 2jOc1 −
2
3kRc3

1 exp (−φ1), where c1 denotes c(x = 1), i.e., the con-
centration at the interior edge of the electrode. To integrate
Eq. (43) analytically, w2 must be small as well as the second
term on the right-hand side of Eq. (43), 2jOc. In that case,
integration of Eq. (43) results in

cGC (x) =
{

1√
c0

+ x

√
εkR exp (−φ1)

6

}−2

, (44)

where c0 denotes c(x = 0), i.e., the concentration at the SDL-
electrode interface.

For the H limit, integrating Eq. (40) once results in

ε−1/2 ∂c

∂x
= −

√
4

5
kRc5/2 exp(−φ1/2) − 4jOc1/2 exp(φ1/2)+w2,

(45)

where the integration constant w2 now is given by w2 =
4j0c

1/2
1 exp (φ1/2) − 4

5kRc
5/2
1 exp (−φ1/2). Again, assuming

w2 to be small as well as the second term in Eq. (45), we
now obtain

cH (x) =
{

1
4
√

c0
+ x

√
εkR exp(−φ1/2)

20

}−4

. (46)

Having solved for concentration c(x), by any one of the
Eqs. (43)–(46), pore potential φ(x) follows from ln (c) = φ,
and w(x) and q(x) follow from Eqs. (7)–(10). (Note that, in the
H limit, δ = ∞, there is no salt adsorption by the DLs, w = 0.)
The full problem of electrode and SDL requires combination

with Eq. (36) for the SDL and an additional relation for the
total current ie to be evaluated at the SDL-electrode interface,
which, based on i = −∂c/∂x, follows from Eq. (43) or (45)
by multiplying the right-hand side with −ε1/2, neglecting
the second and third terms, and implementing c = c0. The
term x

√
εkR in Eqs. (44) and (46) takes the following form

with dimensions restored, X
√

KR/(2hpDe) i.e, the steady-
state concentration profile depends on the dimensional rate
constant KR, the inverse specific electrode area hp, and on ion
mobility De.

IV. NUMERICAL RESULTS

A. Early-time dynamics

In Sec. IV, we give results of numerical and analytical
example calculations based on the general theory of Sec.
II and the analytical results derived in Sec. III. We start
with an example calculation for the early-time dynamics,
showing the voltage in the pores of the electrode after a
sudden application of a voltage difference between the metallic
(electron-conducting) matrix phase of the electrode (where the
potential is φ1) and the electrolyte bulk (outside the SDL).
Figure 3 shows the development of the pore potential profile φ

and total current ie in time as a function of the dimensionless
time t̃ and the effective Bi and Da numbers. Figure 3(a)
presents general results independent of the value of �φeq,0 =
ln(kR/jO), but let us first discuss the situation that kR = jO (i.e.,
�φeq,0 = 0). Then, before and right after the application of the
potential difference η0, the potential in the pores remains equal
to the voltage in the matrix phase (thus, φ = η0), because DLs
have not yet been formed to sustain any potential difference
between matrix and pore. Thus, the total voltage drop between
matrix and bulk electrolyte is fully transferred to the SDL.
Immediately after applying the voltage difference, near the
outer surface of the electrode, counterions start to flow from
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FIG. 3. Early time dynamics in response to a small applied voltage. (a) Evolution of the pore potential as function of position in the electrode
as predicted by Eq. (32) for Bi = 2 and Da = 2 at different values of the dimensionless time t̃ . (b) Total current development predicted by
Eq. (33) (Bi = 2 and Da = 2) when a small voltage (φ1 = −1) is applied.
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the SDL into the electrode, to be adsorbed in the nearby DLs,
and vice versa for coions, and it is here, near the electrode
outer edge, that DLs first start to be formed with the result
that the pore potential moves toward the value in the bulk
electrolyte (which we have arbitrarily set to zero). Unless
Faradaic reactions are zero, equilibrium will never be reached,
and, thus, a gradient in pore potential will remain. Note that
because the analytical equation (32) does not consider the salt
concentration in the pores to change in time, it will inevitably
break down after some time.

In the case of �φeq,0 
= 0, then even before perturbing the
system (i.e., at equilibrium), the matrix potential φ1 already
has an offset of �φeq,0 relative to the pore potential φ because
DLs are already formed. Shifting the matrix potential further,
namely by an amount η0, initially leads to the pore potential to
be shifted by the same amount and leads to the same transport
phenomena of ion diffusion and migration into and out of the
electrode as when �φeq,0 would have been zero. The DLs can
now be of a higher charge than they were initially, or likewise,
they can be of a lower charge or have been charge reversed,
dependent on the signs and magnitudes of �φeq,0 and η0.

Total current evolution in Fig. 3(b) shows that it begins at
a large value in response to a suddenly applied high voltage.
As time proceeds, the current dramatically drops off to a final
steady-state current.

B. Steady state

Next, calculation results will be presented for times beyond
O(ε), namely, of O(1) and beyond. We will describe the profiles
across the electrode of concentration c, potential φ, charge
density q, and salt adsorption w. In Sec. IV B, we give results
for the steady state, and compare numerical and analytical
results, while in Sec. IV C, the transient approach to the steady
state is described.

We will not show concentrations and potentials in the SDL
in much detail, for which the behavior is rather straightforward
and described, e.g., in Ref. [24]. Calculation results are based
on the following parameter settings: λB = 0.72 nm, C∞ =
10 mM, and, thus, λD

0 = 3.03 nm. We take a Stern capacity of
1 F/m2, which translates to λS = 0.69 nm (when we assume
that the dielectric permittivity in the Stern layer is equal to
that of water), and, thus, δ = 0.23 will be used in the next two
sections (unless we discuss the GC limit of δ = 0 or the H
limit of δ = ∞). Furthermore, the porosity equals p = 0.5, and
the internal surface area is assumed to be a = 2 × 107 m2/m3,
which results in hp = 25 nm, and ε = λD

0/hp = 0.121 (unless
otherwise noted). Finally, we assume Lsdl = Le = 100 μm and
dsdl = D/De = 1, which results in Bi = 2 (unless otherwise
noted). We consider a cathode biased negatively compared to
the bulk solution (i.e., φ1 < 0), where the cations reduce to
a neutral species that plates out of solution (i.e., the chemical
potential of the product is taken as a constant).

First, we show results for the H and GC limits, which are
generally described by Eqs. (39) and (40). For low values of
η0, both equations simplify to Eq. (41), which has Eq. (42) as
the solution. Figure 4 presents results for the analytical linear
solution Eq. (42), which is equally valid in the GC as in the H
limit. Numerical results are presented for the H limit, and we
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FIG. 4. (Color online) Steady-state pore potential φ (scaled to
η0) as a function of position in the electrode according to Eq. (40)
(bullets, H limit, no further assumptions) and according to Eq. (42)
(solid line, both GC and H limits, linearized, i.e., pore concentration
c ∼ 1). For sufficiently small values of φ1, all steady-state curves will
collapse onto the limiting curve (solid line), Eq. (42).

observe how the profile of pore potential starts to deviate from
that predicted by Eq. (42) with progressively larger η0.

Next, we continue to discuss the GC and H limits, using
Eqs. (39) and (40) but now going to the other extreme, namely,
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FIG. 5. (Color online) Steady-state profiles of salt concentration
in the porous electrode for different values of the ratio ε of the
Debye length to the mean pore size. Comparison of analytical results
[Eqs. (44) and (46)] with full numerical calculations [Eqs. (39) and
(40)] in the GC limit (pink line, triangles) and H limit (blue lines,
bullets). Transport in the stagnant diffusion layer is assumed to be
fast (Bi = ∞), and other parameter values are η0 = −10; kR = jO =
0.033 (GC limit) or kR = jO = 1 (H limit).
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FIG. 6. Numerical results for the steady-state profiles of salt concentration c, pore potential φ, diffuse-layer charge density q, and salt
adsorption w in the electrode as a function of the applied potential φ1 (kR = jO = 0.033; δ = 0.23). For these kinetic rate constants, the electrode
is uncharged at equilibrium (i.e., �φeq,0 = 0).

based on taking such negative values of φ1 that concentrations
become close to zero at the inner edge of the electrode. For
this limit, the analytical results of Eqs. (44) and (46) have
been derived. Indeed, in Fig. 5, for a length ratio of ε = 0.5,
we observe a nearly perfect fit of the analytical expressions
to the full numerical solution of Eq. (38). Reducing the
value of ε, the salt concentration deep within the electrode
increases, and we observe a progressively larger deviation
of the analytical expression from the exact result. However,
it is interesting to note that the gradient ∂c/∂x at x = 0
[which is proportional to the measurable total current via
Eq. (2) and the anion equilibrium condition c = exp(φ)]
is still rather well predicted, even at the lowest value of ε

considered.

Next, in Fig. 6, we show results for arbitrary values of δ,
thus, we are not in either the GC or the H limit. Figure 6
shows steady-state profiles for concentration c, electrostatic
potential in the pores within the electrode φ, local DL
charge density q, and DL salt adsorption density w as a
function of position x and applied electrode voltage φ1. The
rate constants are taken to be equal; thus, at equilibrium
throughout the electrode, the DL is uncharged and, thus, w =
0. However, in the steady state, the DL is highly perturbed
from this uncharged state with manifestly nonzero values
for q and w. The more negative the applied voltage φ1, the
more depleted of salt the pore solution within the electrode.
Simultaneously, the profiles for charge and salt adsorptions q
and w do not vary in a straightforward manner as a function
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FIG. 7. (Color online) Numerical results for the profiles of salt concentration c, pore potential φ, diffuse layer charge density q, and salt
adsorption w in the electrode as a function of time (direction of arrow, first solid then dashed, and finally solid, 0.001 < t < 3). Filled circles
denote the initial condition, and open triangles denote the steady state. The applied voltage (relative to solution) is φ1 = −12, δ = 0.23,
kR = 0.033, and jO/kR = 0.01, i.e., �φeq,0 = ln (kR/jO) ∼ 4.6. With these settings, the DLs are initially negatively charged and then eventually
become positively charged after the voltage is applied. This sign reversal, coupled to nonlinear dynamics of ion transport at two different time
scales (for capacitive and Faradaic charging) leads to the complicated nonmonotonic transient seen in the figure. A movie of this simulation is
available as supporting online material [81].

of φ1. The most conspicuous effect is that the profiles of
q and w become steeper upon increasing the magnitude
of φ1.

Note that the calculation results of Fig. 6 cannot be
compared with any of the analytical expressions for the steady
state because Fig. 6 is based on an intermediate value of δ

(namely, δ = 0.23), whereas the two analytical expressions
are only valid in the GC and H limits, and furthermore
because the salt concentration in the pores does not remain
close to unity and neither goes to zero deep within the
electrode.

C. Full numerical results for the dynamics
from startup to steady state

In this final section, we return to describing the dynamic
evolution of profiles of c, φ, q, and w toward the steady
state, after a sudden application of an electrode potential φ1.
Compared to Sec. IV A, full numerical results are presented
here, and we use parameter settings for which no analytical
results seem readily available. In particular, we use high
values of the equilibrium DL potential �φeq,0, high values
of electrode voltage φ1, and use an intermediate value of δ

such that neither the GC nor the H limit can be assumed.
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FIG. 8. (Color online) (a) Ion current profiles in the electrode as a function of time. Arrows show the direction of time, solid curves for
0.001 < t < 0.015, dashed curves for 0.015 < t < 0.6. Ion current at position x = 0 equals the total current ie. (b) Total current ie versus time t.

Some unexpected, and yet typical, simulation results are
presented in Fig. 7 and as a movie online [81]. In this case,
we have an equilibrium DL that is initially negatively charged
(excess of anions), which turns positive after applying the
voltage, see Fig. 7(c). As a consequence of this reversal of
sign, we see in Fig. 7(a) that starting from c = 1, first the ion
concentration in the pores increases fairly uniformly across the
electrode by almost 50% due to the sudden expulsion of ions
from the DL (the opposite process of capacitive desalination
as counterions suddenly become coions). Only later does
the salt concentration start to go down significantly to the
steady-state profile, where concentrations are, on average,
only 10% of the initial value. Initially, this decrease is
due to capacitive desalination or electrostatic attraction of
counterions (previously coions), and, in the last stage, it is due
to the depletion of active ions by steady Faradaic reactions.

This example clearly illustrates how complex the physics
of ion transport and adsorption in a porous electrode can be,
and how the dynamical behavior can be very different from
the steady state. Panels (c) and (d) of Fig. 7 show how charge
q starts off at negative values, steadily increases, and goes
through a maximum before decreasing again and stabilizing at
the steady-state profile. Meanwhile, salt adsorption w (which
is never negative) first decreases to reach zero at the moment
that charge q flips sign (which happens earlier near the outside
of the electrode and later deeper within the electrode), after
which it increases steadily to a maximum before decreasing
again and settling in the steady-state profile.

For this example, Fig. 8(a) shows how the ionic current i(x)
within the porous electrode gradually decreases with depth and
becomes zero at the backside of the electrode. Simultaneously,
the current carried by the electrons in the conductive matrix
phase progressively increases in this direction so that the total
current ie (which equals the ion current at x = 0) remains
constant at each depth in the electrode. The ionic current

initially spreads away from the SDL interface due to diffusive
transmission-line propagation of the overpotential. Once the
ionic current spreads across the electrode, it relaxes toward
the steady state, where Faradaic reactions are continuously
fed by the diffusion and electromigration of the active species.
The total current ie, plotted as function of time t in Fig. 8(b),
exhibits a monotonic decay, reminiscent of linear diffusion
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FIG. 9. (Color online) Macropore concentration profiles within
the electrode as a function of time using the mD model. Starting
at concentrations c = 1, after applying a voltage of φ1 = 20, first
a local dip in concentration develops which flattens out (solid lines
and arrow), while concentrations deep within the electrode reach
a minimum (t ∼ 0.8), after which the salt concentration in the
macropores slowly increases again (dashed lines and arrow).
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models that are applied routinely to interpret such data, e.g., in
chronopotentiometry for general electrochemical cells [82] or
the potentiostatic intermittent titration technique for batteries
[83]. This example illustrates how the complex spatiotemporal
relaxation of ionic current within a porous electrode [Fig. 8(a)]
can be difficult to discern in the experimentally accessible
macroscopic current-voltage response [Fig. 8(b)] without a
detailed mathematical model.

In situations where there is no sign change of the interfacial
charge, the dynamics is somewhat simpler. The early stage
of the dynamics corresponds to the capacitive desalination
process described in Ref. [24], where fast RC charging of the
DLs is followed by slower depletion of the salt concentration
due to DL salt adsorption, which propagates diffusively from
the surface into the depth of the porous electrode. Due to
Faradaic reactions, however, the present model also captures
a later stage of the nonlinear dynamics, where active ions
are continuously depleted and are fed by diffusion until a
steady-state profile is reached.

V. CONCLUSION

For electrochemical and capacitive cells, we propose a
porous-electrode theory that can incorporate any (mathe-
matically explicit) DL model to describe the dynamics of
charge formation and salt storage. In the limit of large pores
relative to the Debye length, the GCS model is a valid
approach to describe excess salt and charge storage at the
electron-conducting matrix-aqueous solution interfaces within
the porous electrode, while in the other limit of strongly
overlapped DLs, an mD model can be used. Furthermore,
the theory describes Faradaic charge transfer based on the
generalized Frumkin-Butler-Volmer equation, which describes
the charge-transfer rate as a direct function of the local Stern-
layer potential difference and local ion concentration. Within
the macropores of the electrode and in the outside aqueous
solution, ion transport is described by the NP equations
combined with local electroneutrality. Both within the GCS
model and in the mD model, charge and salt adsorption
in the DLs are analytically related to the diffuse-layer (or
Donnan) potential. For both EDL models, the porous electrode
theory can be reduced to two coupled nonlinear PDEs for
the bulk salt concentration and DL charge density within the
porous electrode. For the GCS model, we have shown that
analytical results are possible for small time scales, when the
system behaves like an RC transmission line (supercapacitor
regime), and Faradaic reactions play the role of leakage
currents through charge-transfer resistance in parallel with
the DL capacitance. Analytical results are also presented for
various limits of the nonlinear response of the system in
steady state (fuel cell regime). Numerical solutions of the
full model are presented for the steady state as well as for
the transient development toward the steady state of profiles
of salt concentration, potential, and surface charge density.
These results are directly relevant for capacitive cells used for
charge storage (supercapacitors) or salt removal (capacitive
deionization). The model can be extended to include volume
constraints and other nonidealities for highly concentrated
(liquid or solid) solutions, as well as diffusion and volume

limitations of reaction products, which arise in applications to
batteries and hybrid pseudocapacitors.
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APPENDIX: POROUS-ELECTRODE THEORY
FOR THE MODIFIED DONNAN MODEL

In this Appendix, we describe the incorporation of the mod-
ified Donnan (mD) model for the structure of the EDLs into-
porous electrode theory [35]. We will neglect Faradaic reac-
tions in this section. The mD model is valid when the EDLs are
strongly overlapped (Debye length much exceeding the pore
size), which can be a good approximation for the EDL structure
in the micropores of activated carbon particles. An important
difference compared to porous-electrode theory using the GCS
model is that now we must consider two types of porosities,
first of all, a macroporosity pmA (corresponding to the porosity
p used in the main text), and second, a microporosity pmi in
which the mD model applies. We define pmA and pmi on the
total electrode volume. The micropores are the pores with sizes
of no more than a few nanometers inside the porous (e.g.,
activated carbon) particles, which are the main constituent
of the electrode. The macropores (interparticle pore space)
are the pathways for ion transport (sizes above 1 μm) in be-
tween the particles where the anion and cation concentrations
are the same. It must be noted that, formally, the definition
of macropores is for pores >50 nm and the definition of
micropores for pores <2 nm. The bidisperse distribution into
micro- and macropores [39] is a useful starting point for the
description of many electrode structures, e.g., manufactured
from activated carbon particles (typical particle size, e.g.,
1–20 μm) with large transport pathways (macropores)
in between the particles and small micropores inside
the particles. Ion transport is considered to be lim-
ited to the macropores. This distinction in micro- and
macroporosity resembles that made in Ref. [1], but
note that microporosity pμ as defined there is relative
to the carbon particle volume not the total electrode
volume.

The mD model is based on chemical equilibrium for each
of the ion types between the macropores and the micropores
[33,34], resulting in a Boltzmann distribution, extended to
include a nonelectrostatic attraction of the ion into the
micropore μatt. This attraction term will generally be different
for all ions. In the theory below, however, we will set the
value of μatt equal for the anion and the cation. In the Donnan
approach, there is a mean common electrostatic potential in the
micropores, the difference with the potential in the macropores
φ given by the Donnan potential �φD. The concentration of
ion i in the micropore volume is given by

ci,mi = c · exp (−zi · �φD + μatt) , (A1)

where c is the dimensionless macropore salt concentration
(similar to the main text defined by c = C/C∞), and where
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zi =+1 for the cation and zi =−1 for the anion. The micropore
dimensionless charge density qmi = 1

2

(
ccation,mi − canion,mi

)
relates to the Stern layer potential drop across an inner
or compact layer separating the ion-containing electrolyte
volume in the micropores from the electron-conducting matrix
according to

qmi = −eμattc sinh �φD = −�φS/δmD. (A2)

where the dimensionless ratio δmD is analogous to δ in
Eq. (10) in the main text, with δmD given by δmD = 2FC∞hp,mi

VTCSt
.

In Eq. (A2), hp,mi is the volume-area ratio for the microp-
ores, F is the Faraday constant, and CSt is the Stern layer
capacity. As Eq. (A2) shows, in the mD model CSt/hp,mi is
a lumped parameter, namely the volumetric Stern capacity,
i.e., the mD model does not explicitly consider a volume-area
ratio. Furthermore, we define a dimensionless salt adsorp-
tion wmi = 1

2 (canion,mi + canion,mi) = ceμatt cosh �φD. Follow-
ing Sec. II D, Eq. (17), we set up an ion balance for the
total ion concentration (summing over both porosities), and
making use of w2

mi = q2
mi + (ceμatt )2, we arrive for the mD

model at

∂

∂t

[
pmA · c + pmi ·

√
q2

mi + (ceμatt )2
] = pmA

∂2c

∂x2
. (A3)

Likewise, in the mD model, the local charge balance of
Eq. (21) is given by

pmi
∂qmi

∂t
= pmA

∂

∂x

(
c
∂φ

∂x

)
. (A4)

Equations (A1)–(A4) give a full description of porous-
electrode transport in combination with the mD model,
together with Eq. (7), which relates pore and matrix potentials
(φ and φ1) to �φD and �φS.

In Fig. 9, we give an example calculation using pmi = pmA

= 0.30, μatt = 1.5 kT, and δmD = 1.25 (based on CSt/hp,mi

= 0.12 GF/m3 and C∞ = 20 mM, all numbers from Ref.
[35]). We take equal diffusivities in the macropores and in
the SDL (dsdl = 1) and set the thickness equal, Lsdl = Le. In
Fig. 9, we show the macropore salt concentration after a sudden
application of an electrode (matrix) voltage of φ1 = 20 (relative
to the bulk solution outside the SDL; note that the sign of
the applied voltage makes no difference in this calculation)
similar to Fig. 4(b) in Ref. [24] but now using the mD model
and including the Stern layer (which was not considered in
the calculations in Ref. [24]) and going to deeper desalination
within the electrode. First, a local minimum develops in the salt
concentration near the outer edge, which flattens out when the
minimum in salt concentration is reached around t ∼ 0.8 (cmin

∼ 0.001), after which concentrations slowly increase again
(gray curves) to finally go back to c = 1 (final curve shown is
for time t ∼ 10).
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