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Collective thermoelectrophoresis of charged colloids
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Thermally driven colloidal transport is, to a large extent, due to the thermoelectric or Seebeck effect of the
charged solution. We show that, contrary to the generally adopted single-particle picture, the transport coefficient
depends on the colloidal concentration. For solutions that are dilute in the hydrodynamic sense, collective effects
may significantly affect the thermophoretic mobility. Our results provide an explanation for recent experimental
observations on polyelectrolytes and charged particles and suggest that for charged colloids collective behavior
is the rule rather than the exception.
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I. INTRODUCTION

Transport in macromolecular or colloidal dispersions is
mainly driven by interface forces [1–4]. Because of the rather
short-ranged flow pattern induced in the surrounding fluid,
these forces do not result in hydrodynamic interactions, in
contrast to diffusion and sedimentation. As a consequence,
nearby beads hardly experience each other and their transport
velocity is independent of concentration [5]; for the same
reason, free-solution electrophoresis of polyelectrolytes does
not depend on the molecular weight [6,7]. Similar results have
been obtained for thermal diffusion of high polymers [8–11].

Recent experiments on thermophoresis in charged colloids,
however, dress a rather different picture and indicate that the
single-particle description fails in several instances: Contrary
to expectation, the transport velocity due to a temperature
gradient,

u = −DT ∇T , (1)

was found to depend on the volume fraction of particle
dispersions and on the chain length N of macromolecular
solutions. (i) Data on sodium polystyrene sulfonate (NaPSS)
[12] and single-stranded DNA [13] at constant polymer content
but variable N reveal that the mobility DT becomes smaller for
larger molecules; e.g., in the range from 50 to 48 000 base pairs,
the mobility of DNA decreases by a factor of 5. These findings
are obtained at low concentration where the molecular mean
distance is much larger than the gyration radius. (ii) Regarding
particle suspensions, experiments on 70-nm silica beads [14]
and 26-nm latex spheres [15] in a weak electrolyte show that
at a volume fraction of 2%, DT is significantly reduced with
respect to the zero-dilution value.

In the present work we show that these experimental
findings arise from an interaction mechanism that has been
overlooked so far, i.e., the collective thermoelectric response
of the composite system. By treating the salt ions and the
dispersed colloid on an equal footing, we find that both the
thermoelectric field and the mobility DT vary with the colloidal
concentration. Depending on the electrolyte strength and the
valence of the macroions, collective effects may occur at low
dilution, that is, for particle dispersion with a negligible pair
potential and polymer solutions where neighboring chains do
not overlap.

Thermally driven motion of charged colloids is very
sensitive to the solvent composition. From previous work it

emerges that two rather different mechanisms contribute to
the velocity [15,16],

u = −μT ∇T + μE. (2)

The first term arises from the local particle-solvent interactions
in a nonuniform temperature. As pointed out by Ruckenstein
[17], the temperature gradient deforms the electric double layer
and induces a pressure gradient opposite ∇T . The resulting
thermo-osmotic surface flow toward higher T drives the
particle to the cold side; the overall picture is similar to electro-
osmotic effects in an electric field [18]. The coefficient μT ∝
εζ 2/ηT depends on the ζ potential, the solvent permittivity ε,
and viscosity η; different prefactors occur in the limits of small
and large particles [17–25]. This form agrees rather well with
the observed salinity dependence [26], yet fails in view of the
strong variation with T reported for various systems [12,13],
thus suggesting the existence of an additional, so far poorly
understood contribution to μT .

The present work deals with the second term in Eq. (2),
which accounts for the Seebeck effect of the charged solution
or, in other words, for electrophoresis in the thermoelectric
field E with the mobility μ = εζ/η. Due to their temperature-
dependent solvation forces, ions migrate along or opposite the
thermal gradient. As a consequence, surface charges develop
at the cold and warm boundaries of the vessel and give rise
to a macroscopic electric field E = −ψ∇T/T (see Fig. 1).
The thermopotential parameter ψ is related to the Seebeck
coefficient S = −ψ/T ; for electrolytes S attains values of
several 100 μV/K, which is one to two orders of magnitude
larger than in common metals [27].

II. THERMOPHORETIC MOBILITY

We consider a dispersion of negatively charged particles
or macromolecules of valency −Z and concentration n, in a
monovalent electrolyte solution of ionic strength n0 with a
constant temperature gradient ∇T . According to the general
formulation of nonlinear thermodynamics, the currents of
colloid and salt ions are linear functions of generalized
forces [28]; the latter can be expressed through thermal and
concentration gradients. The current of colloidal macroions is
given by

J = −D∇n + nu, (3)
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TABLE I. Reduced Soret coefficient α± of several salt ions
at room temperature. The values of the heat of transport Q∗

±
are taken from Ref. [30]. The parameters α± are calculated from
α± = Q∗

±/2kBT .

Ion Q∗
i (kJ/Mol) αi

H+ 13.3 2.7
Li+ 0.53 0.1
K+ 2.59 0.5
Na+ 3.46 0.7
OH− 17.2 3.4
Cl− 0.53 0.1

where the first term on the right-hand side accounts for normal
diffusion and the second term for transport with the drift
velocity [Eq. (2)].

The densities of small ions account for the counterions
released by the colloidal particles and the added salt. The
mobile ion currents

J± = −D±

(
∇n± + 2n±α±

∇T

T
∓ n±

eE
kBT

)
(4)

comprise normal diffusion with coefficients D±, thermal diffu-
sion with the reduced Soret parameters α±, and electrophoresis
with the Hückel mobility for monovalent ions. In Eqs. (3) and
(4) we have added an electric-field term; it is important to note
that E is not an external field but arises from the kinetics of the
mobile charges and is proportional to the applied temperature
gradient. A similar phenomenon occurs in a nonuniform
electrolyte, where the electric field is proportional to the
salinity gradient and to the difference of the ionic diffusion
coefficients D± [2,29].

The numbers α± describe the drift of positive and negative
salt ions in a temperature gradient. The values for the
most common ions have been determined by Agar from
thermopotential measurements of electrolyte solutions [30];
our notation and Agar’s heat of transport Q∗

± are related
through α± = Q∗

±/2kBT . Typical values range from α ≈ 0
for Li+ to α ≈ 3 for OH−; those of the most common ions are
given in Table I.

A. Steady state

Equations (3) and (4) provide the currents as functions of the
generalized thermodynamic forces, that is, of the concentration
and temperature gradients [28]. We are interested in the steady
state characterized by

J± = 0 = J. (5)

For later use we give the resulting relation for the electric field.
Inserting the drift velocity of Eq. (2) and superposing the three
equalities of Eq. (5) such that the concentration gradients result
in the gradient of the charge density, ∇ρ = e∇(n+ − n− −
Zn), and collecting terms proportional to E and ∇T , one has

E = e
2n+α+ − 2n−α− − ZnT μT /D

εκ2

∇T

T
+ ∇ρ

εκ2
, (6)

with the shorthand notation κ2 = e2(n+ + n− +
ZnT μT /D)/εkBT .

FIG. 1. (Color online) Thermoelectric effect in a colloidal suspen-
sion of charged particles in salt solution. In the example presented, the
Soret parameters are such that negative and positive ions accumulate
at the cold and warm boundaries, respectively. In the left panel,
vertical dashed lines indicate the thickness of the surface layers
of about one Debye length λ. This schematic view exaggerates
the surface layers, which are much thinner in real systems. The
right panel shows the spatial variation of the net charge density ρ,
the thermoelectric field E, and the thermopotential U ; dashed lines
indicate the zero of the ordinate. Note the nonzero surface charges
at the cold and hot boundaries. The present paper discusses the bulk
behavior only, where ρ = 0 and E is constant.

In order to determine the four unknowns ∇n±, ∇n, and
E, the three equations (5) need to be completed by a fourth
condition. It is provided by Gauss’s law

divE = ρ/ε, (7)

which relates E and the charge density ρ = e(n+ − n− − Zn)
and thus closes the above set of equations.

B. Small-gradient approximation

Equations (5) and (7) are nonlinear in the concentrations
and thus cannot be solved as they stand. The salt and
colloid concentrations vary very little through the sample;
the relative changes δn/n and δn±/n± between the hot and
cold boundaries are proportional to the reduced temperature
difference δT /T . Since in experiment the ratio δT /T is much
smaller than unity, we may safely replace the concentrations n

and n± in the coefficients of Eq. (6) with constants n̄ and n̄±;
the latter are defined as the colloidal and salt concentrations at
∇T = 0.

Formally, this small-gradient approximation corresponds to
neglecting terms that are quadratic in small quantities ∇n±,
∇n, E , and ∇T . This approximation has been used, more or
less explicitly, in previous works on the thermoelectric effect
[30,31] and in recent applications in colloidal thermophoresis
[15,16,32]. Moreover, various works on the osmotic flow
driven by externally imposed gradients of charged solutes
resort to the same approximation, albeit with the salinity
change ∇n0 instead of the temperature gradient [2,29,33].

C. Bulk thermoelectric field

The relations in Eqs. (5)–(7) describe both the bulk
properties of a macroscopic sample and boundary effects
such as the surface charges that develop at the hot and cold
boundaries (see Fig. 1). The thickness of the surface layer is
given by the Debye length and thus in the range 1–100 nm. This

061403-2



COLLECTIVE THERMOELECTROPHORESIS OF CHARGED . . . PHYSICAL REVIEW E 83, 061403 (2011)

is much smaller than the sample size. Thus we discard surface
effects and discuss the bulk behavior only; a full evaluation
including surface effects is given in the Appendix.

In a macroscopic sample the net charge density vanishes
because of the huge electrostatic energy. With

ρbulk = 0,

Gauss’s law [Eq. (7)] imposes a constant electric field whose
explicit expression is readily obtained from Eq. (6),

E = −ψ
∇T

T
, (8)

with the shorthand notation for the coefficient of ∇T/T ,

ψ = −e
2n̄+α+ − 2n̄−α− − Zn̄T μT /D

εκ̄2
,

and κ̄2 = e2(n̄+ + n̄− + Zn̄T μT /D)/εkBT . Note that we
have used the small-gradient approximation and replaced
the colloidal and ion concentrations with their mean values.
Although it is not always mentioned explicitly, the argument
of zero bulk charge density has been used in previous works
on the Seebeck effect of electrolytes [15,16,30–32] and, more
generally, for colloidal transport in nonequilibrium situations
involving thermal or chemical gradients [2,29,33].

D. Zero-dilution limit

We briefly discuss the case of a very dilute suspension
where the colloidal charges are negligible for the electrostatic
properties. Putting n → 0 in the electric field [Eq. (8)], we
have ψ0 = − (α+ − α−) kBT /e and

E0 = (α+ − α−)
kB∇T

e
.

This expression has been used previously in [15,16,31,32].
Note that the parameter κ−1 reduces to the usual expression of
the Debye screening length.

By inserting the thermoelectric field E in the drift velocity
[Eq. (2)] and comparing with Eq. (2) we obtain the definition
of the thermophoretic mobility

D0
T = μT + εζψ0

ηT
. (9)

Not surprisingly, it is independent of the colloidal concentra-
tion. The parameter ψ0 and the macroscopic thermopotential
U = ψ0δT /T between the hot and cold vessel boundaries
are given by the steady state of the electrolyte solution.
Using the values of Table I, one finds the values ψ0 = −15
and 70 mV for NaCl and NaOH solutions, respectively.
Thus one expects D0

T to change its sign upon replacing one
salt with another [16]. This is confirmed by a very recent
study on sodium dodecylsulfate (SDS) micelles, where the
electrolyte composition NaCl1−xOHx was varied at constant
ionic strength [32]; increasing the relative hydroxide content x
from 0 to 1 resulted in a linear variation of the Soret coefficient
ST and a change of sign at x ≈ 1

2 [32].

E. Collective effects on the electric field E

Now we derive the main result of this paper, that is, the
dependence of E and DT on the colloidal concentration and,

in the case of polyelectrolytes, on its molecular weight. As
two important parameters we define the ratio of the colloidal
charge density to the salinity,

φ = Zn̄

n0
, (10)

and the ratio of the colloidal electrophoretic mobility μ to the
diffusion coefficient D,

ξ = kBT

e

|μ|
D

. (11)

In the following we assume a negative surface potential. For
typical colloidal suspensions, the charge ratio is smaller than
unity, φ ∼ 0.1, whereas the parameter ξ may exceed 102.

Rewriting the coefficient ψ in Eq. (8) in terms of the
dimensionless quantities φ and ξ , we have

ψ = −2(1 + φ)α+ − 2α− − φT μT /D

2 + φ + φξ

kBT

e
. (12)

Equation (12) shows how the thermoelectric field arises from
the competition of the Soret motion of the mobile ions and the
colloidal solute. In the low-dilution limit φ → 0 the first term
in the numerator reduces to (α+ − α−), which corresponds to
the response of the electrolyte solution discussed in previous
work [15,16,32].

The φ-dependent term in the numerator becomes relevant
where φ ∼ D/T μT and, in particular, may change the sign of
ψ and thus of the thermoelectric field. With the typical value
of T μT ∼ 10−9 m/s2 one has D/T μT = 10−3 for micron-
size particles (and polyelectrolytes of a gyration radius of
1 μm) and D/T μT = 10−1 for 10-nm beads. This means
that, at typical colloidal densities, the thermoelectric field is
essentially determined by the macroions. The denominator in
Eq. (12) results in an overall decrease when augmenting the
colloidal concentration.

F. Collective effects on the mobility DT

Now we determine the steady-state thermophoretic mobil-
ity. Plugging the value of the electric field E given in Eq. (8)
into the drift velocity of Eq. (2) and comparing with Eq. (1),
we get

DT = D0
T

1 + φ

2+φ
ξ
, (13)

where D0
T is defined by Eq. (9) albeit with a modified parameter

ψ0 = − (1 + φ)α+ − α−
1 + φ/2

kBT

e
. (14)

The mobility and its dependence on the ratio φ constitute the
main result of this paper. According to Eq. (9), the sign of DT

is determined by the competition of the bare mobility μT and
the Seebeck term proportional to ζψ0. Since φ < 1 in most
cases, the numerator of Eq. (13) is rather similar to the dilute
case discussed above [Eq. (9)].

A much more striking variation arises from the denominator
of Eq. (13). For typical values of the charge ratio φ ∼ 0.1,

collective effects set in where 1
2φξ ∼ 1, in other words, where

ξ is of the order of 20. For high polymers (N = 103, . . . ,106)
and colloidal particles in the range from 10 nm to 1 μm,
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ARGHYA MAJEE AND ALOIS WÜRGER PHYSICAL REVIEW E 83, 061403 (2011)

the parameter ξ takes values between 10 and 103. This
simple estimate suggests that collective effects occur in many
systems. A detailed comparison with experiment is given in
the following section.

In the limit of zero dilution φ → 0 one readily recovers the
expression of Eq. (9). The opposite case of a salt-free system
leads to

DT = D0
T

1 + ξ
(φ → ∞),

with ψ0 determined by the counterions only. In view of the
large values of ξ mentioned above, one expects a strong
reduction of the mobility in the salt-free case.

III. COMPARISON WITH EXPERIMENT

We discuss Eq. (13) in view of recent experiments on
colloidal suspensions. At relevant values of the charge ratio
(φ ∼ 0.1) the numerator hardly differs from that of the dilute
case. Thus in the following we focus on the reduction of DT

due to the denominator.

A. Polyelectrolytes

We start with experimental findings on polyelectrolytes at
constant volume fraction but variable molecular weight. In
their study of 2 g/l of NaPSS in a 100-mM/l NaCl solution,
Iacopini et al. found a significant variation with the chain
length [12]: Figure 2(a) shows the data measured at 30 ◦C for
molecules of 74, 160, and 360 repeat units, with an overall
decrease of the mobility by 40%. The same factor has been
found in the temperature range from 15 ◦C to 35 ◦C.

The solid line represents collective effects arising from
the denominator of Eq. (13). It has been calculated with
the double-layer term in the small-bead limit, assuming the
monomer to be small as compared to the Debye length (R < λ)
[22–24],

μT = − dε

dT

ζ 2

3η
,

and with the Hückel-limit electrophoretic mobility μ =
2
3εζ/η. Inserting the diffusion coefficient D = kBT /6πηR

and the Bjerrum length �B = e2/4πεkBT in Eq. (11), we have

ξ = e|ζ |
kBT

R

�B

. (15)

The theoretical curve of Fig. 2(a) is calculated with the
parameters ζ = −27 mV, nN = 10 mM/l, and φ = 0.1. Its
variation arises only from the gyration radius R = �N1−ν

K Nν ;
we have used the usual exponent ν = 3

5 , the size of a monomer
� = 0.4 nm, and the number of monomers per segment NK =
10. The dashed line indicates the mobility in the short-chain
limit. The theoretical expression in Eq. (13) provides a good
description of the reduction of DT with increasing chain
length.

As a second example, DNA in 1-mM/l Tris
[tris(hydroxymethyl)aminomethane] buffer shows similar be-
havior; its mobility decreases by a factor of 5 over the range
from N = 50 to 48 500 base pairs per molecule [13]. The
overall DNA content was kept constant, Nn = 50 μM/l, with

FIG. 2. (Color online) Comparison with measured data.
(a) Variation of DT with the chain length N of a polyelectrolyte
at fixed volume fraction. The data on 2 g/l of Na PSS in a 100-mM/l
NaCl solution at 30 ◦C are taken from Iacopini et al. [12]. The solid
line is calculated from Eq. (13) with the parameters as given in the
main text. The dependence on N arises from the gyration radius R.
(b) Volume fraction dependence of DT on a dispersion of 70-nm silica
beads in a solution of 30 μM/l of sulpho-rhodamine B. The data are
from Ghofraniha et al. [14]; the fit curves are obtained from Eqs. (13)
and (16), with different values of the reduced virial coefficient B/V ,
where V = 4

3 πR3 is the particle volume.

a charge ratio φ = 0.05. Equations (13) and (15) provide
a good fit to these data, albeit with a somewhat too small
exponent ν ≈ 0.4. In view of this discrepancy one should
keep in mind the rather complex electrostatic properties of
polyelectrolytes.

The reduction observed for both Na PSS and DNA cannot
be explained by hydrodynamic effects. Interchain interactions
are of little significance because of the low dilution. Indeed,
the effective volume fraction of the polymer coils hardly
attains a few percent, nR3 ∼ 10−2; thus nearby chains do
not overlap and leave both the viscosity and the diffusion
coefficient unchanged. Regarding hydrodynamic interactions
of beads of the same molecule, it is known that they enhance
the electrophoretic mobility in Eqs. (2) and (9) with increasing
chain length. Yet this effect occurs for short polyelectrolytes
and saturates for chains longer than the size of the screening
cloud [34]; for the examples studied here, it would enhance DT

in the range N < 40. We conclude that hydrodynamic effects
may be ruled out as an explanation for the reduction shown
in Fig. 2(a). Finally, we discuss electrostatic single-particle
effects. The electrophoretic mobility in salt-free solution
has been found to decrease slightly at higher concentration
because of the increase of the overall ionic strength and the
shorter screening length [35,36]. In the present case, however,
the weight fraction of the polyelectrolyte is constant and so
is the overall charge density. Thus the electrostatic properties
of the solution are the same for different chain lengths.

B. Colloidal particles

Now we discuss the concentration-dependent mobility DT

that has been reported for dispersions of solid particles in
weak electrolytes. Ghofraniha et al. studied silica particles
(R = 35 nm) in a 30-μM/l solution of the negatively charged
dye sulpho-rhodamine B [14]. The data shown in Fig. 2(b)
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reveal a significant decrease with the colloidal volume fraction;
at 3% DT is reduced to less than half of the zero-dilution
value. The negative sign of the measured DT indicates that the
thermoelectric contribution εψ0ζ/ηT to Eq. (9) overtakes the
Ruckenstein term [16]

μT = εζ 2

3ηT
.

The negative surface potential ζ implies that the thermopo-
tential parameter of the sulpho-rhodamine solution is positive,
ψ0 > 0.

The curves in Fig. 2(b) are calculated from Eqs. (11) and
(13) with ψ0 = 10 mV, which is comparable to common salts
and weaker than the values of NaOH and tetraethylammonium
[15,32]. The rather small DT suggests that the particles are
weakly charged; we use Z = 30 and ζ = −10 mV. The dashed
line gives the mobility D0

T in the zero-dilution limit and the
solid lines are given by Eq. (13).

In addition to the explicit concentration dependence in
terms of the parameter φ, one has to take into account that, even
at moderate colloidal volume fraction, the Einstein coefficient
D is not constant. Indeed, cooperative diffusion of charged
particles arises from the electrostatic pair potential �(r) and,
to a lesser extent, from hydrodynamic interactions [37]. To
linear order in the concentration, the virial expansion for the
Einstein coefficient reads

D = D0(1 + 2nB), (16)

with the parameter

B = 1

2

∫
dV

(
1 − e−�/kBT

)
.

For hard spheres the virial coefficient is given by the
particle volume, B = 4V with V = 4

3πR3. The electrostatic
pair potential results in an effective interaction volume
V = 4

3π (R + χ

2 λ)3, where λ is the Debye length and χ a
numerical factor [26,32,38]; for small and highly charged par-
ticles in a weak electrolyte, the repulsive forces may enhance
the virial coefficient by one or two orders of magnitude. In
contrast, hydrodynamic interactions contribute a negative term
B/V ∼ −6.5 and reduce the Einstein coefficient accordingly
[37]. Our discussion of the data of Ref. [14] is restricted
to volume fractions up to 3%; at higher concentration the
measured D saturates and the linear approximation ceases to
be valid. In units of the particle volume V , the measured virial
coefficient reads B/V = 20 [14]; the best fit of the mobility
data is obtained with B/V = 14. This value is much larger
than that of hard spheres and thus indicates the importance
of electrostatic repulsion. The concentration of mobile charge
carriers n0 = 30 μM/l leads to a screening length of about
50 nm. With χ ∼ 2 in the above expression for the effective
volume, one finds a virial coefficient close to the measured
value. As an illustration of the effect of collective diffusion
on DT , we plot Eq. (13) for these three values: Though the
variation of DT with B is not negligible, it is significantly
weaker than that of the thermoelectric effect.

As a second experiment we mention data by Putnam and
Cahill on latex beads of radius R = 13 nm in an electrolyte
solution of 2-mM/l ionic strength [15]; by varying the volume
fractions from 0.7 to 2.2 wt. %, these authors observed a

reduction of DT by about 10%. With a valency of Z ∼ 50 one
finds that, at the highest particle concentration n = 4 μM/l,
the charge ratio φ does not exceed 10%.

Finally, we address the concentration dependence observed
by Piazza and Guarino for the Soret coefficient ST = DT /D

of SDS micelles [26]. Its decrease with the SDS content is well
described by collective diffusion according to Eq. (16). In a
very recent measurement, Vigolo et al. varied the electrolyte
composition NaCl1−xOHx and thus the thermal diffusion
parameter of the anion in Eq. (14), α− = (1 − x)αCl + xαOH

[32]. The observed linear dependence of ST on x confirms the
crucial role of the thermopotential. Unfortunately, there are no
mobility data for micelles; thus at present it is not possible
to determine whether their DT is subject to collective effects
similar to those of polyelectrolytes and solid beads.

IV. CONCLUSION

In summary, charged colloids in a nonuniform temperature
show collective transport behavior mediated by the Seebeck
effect of both colloidal and salt ions. For large particles
and macromolecules, cooperative effects set in at rather low
concentration, where hydrodynamic interactions are absent
and where the charge ratio φ is much smaller than unity.
The criterion for the onset of collective behavior, φξ ∼ 1 in
Eq. (13), involves the ratio of the electrophoretic mobility
and the Einstein coefficient; by contrast, the criterion for
cooperative diffusion, Bn ∼ 1, depends on the pair potential
of the solute particles. The examples discussed suggest that
the collective thermoelectric effect is generic for colloids
at ordinary concentrations. This issue could be relevant for
microfluidic applications of thermophoresis.

We conclude with a remark on the thermoelectric field given
in Eq. (12). Both its magnitude and its sign can be tuned by
choosing the appropriate electrolyte and adjusting the charge
ratio. With a thermal gradient of less than 1 K/μm, E may
attain values of 100 V/m. Thus the thermoelectric effect could
be used for applying electric fields in microfluidic devices.
Local laser heating would permit the realization of almost any
desired spatiotemporal electric-field pattern.
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I. APPENDIX

The thermoelectric field in Eq. (8) has been derived by using
the charge neutrality of the bulk of a macroscopic sample. Here
we give a derivation based on the steady state, Gauss’s law,
and the electrostatic boundary conditions. Resorting to the
small-gradient approximation, we replace the coefficients in
Eq. (6) with their mean values and thus have

E = −ψ
∇T

T
+ ∇ρ

ε κ̄2
.
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From Gauss’s law in Eq. (7) we have ∇ρ/ε = ∇2E and thus
obtain a differential equation for the thermoelectric field E
with a constant inhomogeneity −(ψ/T )∇T ,

E − ∇2E
κ̄2

= −ψ
∇T

T
.

The solution E = Einh + Eh consists of two contributions.
The inhomogeneous term Einh = −(ψ/T )∇T accounts for the
macroscopic Seebeck effect. The remaining term Eh is related
to surface charges at the cold and hot boundaries of the sample.
The homogeneous equation ∇2Eh = κ̄2Eh is solved by the
exponential function,

Eh = A+eκ̄z + A−e−κ̄z,

where z is the coordinate in the direction of the temperature
gradient. Its range is − 1

2L � z � 1
2L with the sample size L.

The electrostatic boundary conditions require that the
electric field vanishes at z = ± 1

2L. Setting E = 0 and

solving for the coefficients of Eh, one readily finds A± =
− 1

2 Einh/ cosh(κ̄L/2) and the thermoelectric field

E = −ψ

T
∇T

(
1 − cosh(κ̄z)

cosh(κ̄L/2)

)
.

Both E and the corresponding charge density ρ are illustrated
in the right panel of Fig. 1. The field vanishes at the boundaries
and reaches its constant bulk value [Eq. (8)] within a few
screening lengths κ̄−1. The parameter κ̄−1 takes values in the
range between 1 and 100 nm and thus is much smaller than
the size of sample L. Even in microfluid devices, κ̄L is, in
general, larger than 103.

In real systems a more complex picture may emerge
from the surface roughness of the boundaries, the
solute size, and surface charges of other origin. Note that such
additional effects do not affect the bulk electric field [Eq. (8)]
and thus are irrelevant for the results of this paper.
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