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There are many physical situations where particles experience external fields or are in a nonisothermal
environment. Monte Carlo (MC) simulations can be useful to understand such experimental systems at steady
state. Within this context, we formulate a general framework to study these systems via inhomogeneous MC
simulations incorporating spatially varying temperature and gravitational fields. Using this approach we study
granular materials consisting of hard spheres in an external field with either uniform or nonuniform temperature.
We present comprehensive results from our MC simulations and compare these with theoretical results based on
the Carnahan-Starling equation of state.
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I. INTRODUCTION

Monte Carlo (MC) simulations are now a standard tool
to study the equilibrium properties of molecular systems
[1,2]. The MC approach involves a numerical integration
over phase space, sampling configurations depending on their
probability of occurrence. The method is attractive because of
its simplicity and lower computational requirements relative
to molecular dynamics (MD) simulations [3]. Over the five
decades since it was first proposed [4,5], many refinements
and variations have been incorporated in the MC method.
For example, an important extension is the direct simulation
Monte Carlo method, which is a combination of MC and MD
approaches [6].

There are many physical situations in which field gradients
exist naturally in a system. For example, a gas in a gravitational
field exhibits a spatial variation in number density. On the
other hand, an imposed temperature gradient in the system
will also result in variation of the number density. Such
systems are not in thermodynamic equilibrium, and the
steady state (time-invariant state) results from a balance of
fluxes. The standard approach for analysis of these systems
is to use transport equations with the assumption of local
thermodynamic equilibrium. Thus the hydrostatic balance
equation in conjunction with an equation of state may be used
to analyze a gas in a gravitational field (ref. Sec. II A). In this
paper we use MC simulations to study steady-state systems
with gradients as defined above. Apart from the relevance
to statistical physics, such systems are of great importance
in the study of granular materials [7–10], as we discuss
below.

There have been a number of MC studies of inhomogeneous
systems, e.g., colloids [11–21], biophysics of receptor cells
[22], inhomogeneous percolation [23], etc. In general, the
MC approach has proved very useful to study both static
and dynamic properties of powders [24–27]. As shown in
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several studies [28,29], the equation of state for slightly
inelastic particles is the same as that for elastic particles.
Thus the thermodynamic properties of granular materials can
be obtained by MC for slightly inelastic grains. Isothermal
MC simulations were used by Khakhar et al. [30,31] to
study hard sphere mixtures in a gravitational field, in the
context of granular segregation. At low densities there was
good agreement between simulation results and the predictions
of a continuum theory. Seibert and Burns [32] proposed an
MC method for analyzing fluidized beds and compared their
simulations to experimental results. Although the MC method
has been widely used to study inhomogeneous systems,
there has not been a detailed analysis of its accuracy for
calculation of equilibrium thermodynamic properties in the
presence of spatial inhomogeneity. MC simulations have not
been applied to systems with a spatially varying temperature
field.

In this paper we propose and test a general method
for Monte Carlo simulation of systems with a spatially
varying temperature field. We also examine the accuracy
of MC simulations for obtaining thermodynamic properties
in systems with significant gradients. Such inhomogeneous
MC simulations are particularly relevant for granular chute
flows [10,33]. In these flows, the solids’ volume fraction is
nearly uniform but the temperature varies with height [33].
The imposition of gradients is also useful for obtaining
thermodynamic properties spanning a range of states in a
single simulation. Here a simple model system, for which
theoretical results are available, is used. MC simulations
of the system incorporating gradients in the gravitational
field and the temperature are carried out and the com-
puted results are compared to an established equation of
state.

This paper is organized as follows. In Sec. II we present the
theoretical background for studying inhomogeneous systems.
In Sec. III we present details of our numerical simulations.
The numerical results are presented in Sec. IV. Finally,
we end this paper with a summary and discussion in
Sec. V.
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FIG. 1. Schematic view of a granular material consisting of hard
spheres in a gravitational field (acting along the x direction). We
impose periodic boundary conditions in the y,z directions, and
reflecting boundary conditions in the x direction. The upper x

boundary is taken to be high enough so that the density becomes
negligible there.

II. THEORETICAL BACKGROUND

We consider elastic hard spheres in a gravitational field
as shown in Fig. 1. The system is analogous to the classical
problem of Brownian particles in a gravitational field studied
by Perrin [34]. The particles are identical and have a diameter
d and mass m. The base is an elastic planar surface. The
system is thus nondissipative. We would like to mimic the
equilibrium number density profiles obtained in dissipative
systems (e.g., granular flows) by considering (i) a spatially
varying gravitational field of the form

a(x) = g exp(αx), (1)

where a is the acceleration experienced by a particle at height
x, and (ii) an imposed temperature profile of the form

T (x) = T0 exp(−βx). (2)

In Eqs. (1) and (2), g is the acceleration due to gravity, T0

is the temperature at the base, and α,β are constants. Since
we are interested in granular systems, the temperature used
is the granular temperature T = m〈v2〉/2 [35], where 〈v2〉 is
the mean-square fluctuation velocity of the grains. Thus T is
the kinetic energy (per particle) associated with the fluctuation
velocity. The results presented below are also applicable to
molecular systems but with T replaced by kBT , where kB is
the Boltzmann constant and T is the usual thermodynamic
temperature.

A. Number Density Profile

The steady-state number density profile is obtained as
follows for the above system. The stress balance equation is

dP

dx
= −mna, (3)

where P is the pressure, ma is the net downward force, and n

is the number density of the particles. Further, assuming local
equilibrium, we have from the equation of state

P = nT Z(ν), (4)

where Z(ν) is the compressibility factor and ν = nπd3/6
is the volume fraction of the particles. Here we use the
Carnahan-Starling (CS) equation of state [36], for which the
compressibility factor is given by

Z(ν) = 1 + ν + ν2 − ν3

(1 − ν)3
. (5)

Combining Eqs. (3) and (4), we obtain

d(nT Z)

dx
= −mna, (6)

which upon rearrangement yields

d ln n

dx
= − (ma)/(T Z) + d ln T/dx

1 + d ln Z/d ln ν
. (7)

Equation (7) can be solved to obtain the static profile n(x) for a
specified gravitational field a(x) and temperature profile T (x).

For the assumed profiles specified in Eqs. (1) and (2),
Eq. (7) becomes

d ln n

dx
= − (mg)/(T0Z)e(α+β)x − β

1 + d ln Z/d ln ν
. (8)

A numerical solution is necessary for the general case.
However, it is relevant to understand the ideal gas limit, which
serves as a reference point. In the limit of low volume fractions
(ν � 1), ideal gas behavior is obtained (Z = 1) and Eq. (8)
reduces to

d ln n

dx
= −mg

T0
e(α+β)x + β. (9)

Equation (9) has the solution

ln

(
n

n0

)
= − mg

(α + β)T0
[e(α+β)x − 1] + βx, (10)

where n0 is the number density at the base (x = 0). For the
case of a constant field (α = 0) and a uniform temperature
(β = 0), the preceding equation reduces to

n(x) = n0 exp

(
−mgx

T0

)
, (11)

which is a well-known result [34].

B. Importance Sampling

We consider next the theoretical basis of MC simulations
for the system defined above. We begin with the case of a
constant gravitational field and a uniform temperature, and
then generalize to allow for a spatially varying a(x) and T (x).
In an MC simulation, we start off with an initial configuration
and subject the system to a series of sequential random
perturbations. Each proposed change is accepted with a certain
probability which satisfies the detailed-balance condition [1,2]
so as to drive the system to equilibrium. According to the
Metropolis algorithm [1,2], the probability of acceptance of a
step is given by

p =
{

exp(−�E/T0), �E > 0,

1, �E < 0,
(12)

where �E is the change in energy due to the perturbation,
and T0 is the uniform temperature. Thus all changes which
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result in a decrease of energy are accepted, but only a
fraction p of perturbations which result in an increase of
energy are accepted. Let us next obtain expressions for the
acceptance probability for the different cases considered here.
We assume that the velocity distribution is equilibrated and
focus on configurational changes arising from changes of
particle positions.

In the case of a uniform gravitational field (a = g), the
change in energy due to the displacement of a single particle
by �x is

�E = mg�x, (13)

if the displacement results in no overlap of particles; and �E =
∞, if there is an overlap. For a uniform temperature (T = T0),
the probability of acceptance of this displacement is

p = exp

(
−mg�x

T0

)
. (14)

Here, and subsequently, we write down only the expression
for �E > 0 – for �E < 0, p = 1 always. Clearly, all
displacements which result in overlaps are rejected (p = 0).
Equation (14) indicates that all downward steps are accepted,
and upward steps are accepted with a probability p(�x).

Next, consider a spatially varying gravitational field a(x)
and a uniform temperature (T = T0). In this case, the change
in energy due to the displacement of a single particle which
causes no particle overlap is

�E =
∫ x0+�x

x0

ma dx, (15)

where x0 is the initial height of the particle. For the gravita-
tional field in Eq. (1),

p = exp

[
−mgeαx0

αT0
(eα�x − 1)

]
. (16)

This reduces to Eq. (14) in the limit α → 0, as required.
Finally, we consider the case of a uniform gravitational field

(a = g) but a spatially varying temperature:

T = T0f (x). (17)

The Metropolis algorithm is not valid in this case, and our
simulations show that a direct substitution of Eq. (17) into
Eq. (12) gives incorrect results. Here we obtain an expression
for the acceptance probability by constructing an equivalent
isothermal system but with a varying gravitational field, which
gives an identical number density profile. By substituting
Eq. (17) in Eq. (6) with a = g, we obtain

d(nT0Z)

dx
= −mgn

f
− nT0Z

f

df

dx
. (18)

Equation (18) may be rewritten as

d(nT0Z)

dx
= −mnge, (19)

where

ge = g

f
+ T0Z

mf

df

dx
. (20)

Equation (19) shows that the nonisothermal system is
equivalent to an isothermal system at temperature T0 but with

an effective (spatially varying) gravitational field ge(x). The
change in potential energy due to displacement of a single
particle with no overlap, in the equivalent isothermal system,
is given by

�E =
∫ x0+�x

x0

mgedx. (21)

The corresponding acceptance probability for the step is

p = exp

(
−�E

T0

)
. (22)

Next we obtain ge(x) as a functional of n(x). From Eq. (3) we
obtain the pressure profile as

P (x) = mg

∫ ∞

x

n(x ′)dx ′, (23)

where the pressure far from the base is taken to be zero,
P (∞) = 0. By using Z = P/(nT ) in Eq. (20), we obtain the
effective gravitational field:

ge = g

f
+ g

nf 2

df

dx

∫ ∞

x

n(x ′)dx ′. (24)

Thus given n(x), ge(x) can be computed for any f (x).
Combining Eqs. (24) and (21), we obtain

p = exp

[
−mg

T0

∫ x0+�x

x0

(
1

f
+ 1

nf 2

df

dx

∫ ∞

x

n(x ′)dx ′
)

dx

]
.

(25)

Finally, by substituting f (x) = e−βx from Eq. (2), we obtain

p = exp

[
−mgeβx0

βT0
(eβ�x − 1) + mgβ

T0

∫ x0+�x

x0

eβx

n

×
(∫ ∞

x

n(x ′)dx ′
)

dx

]
. (26)

The first term in the exponential is similar to that in Eq. (16).
However, the second term depends on the local number density
and must be determined numerically.

It is straightforward to obtain the MC transition probability
for the case where both the gravitational field and temperature
are spatially varying functions. For the sake of brevity, we do
not present the resulting expressions here.

C. Dimensionless Equations

We next rescale variables to put the above equations in di-
mensionless form: x̄ = x/d, ᾱ = αd, β̄ = βd, T̄ = T/(mgd),
n̄ = nd3, P̄ = Pd2/(mg), ā = a/g, where the overbars denote
dimensionless quantities. The governing equation for the
number density profile in dimensionless form is then

d ln n̄

dx̄
= − (1)/(T̄0Z)e(ᾱ+β̄)x̄ − β̄

1 + d ln Z/d ln ν
, (27)

and the number density profile for an ideal gas is

ln

(
n̄

n̄0

)
= − 1

(ᾱ + β̄)T̄0
[e(ᾱ+β̄)x̄ − 1] + β̄x̄. (28)
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The acceptance probability for an isothermal system with a
uniform gravitational field is

p = exp

(
−�x̄

T̄0

)
. (29)

This system is characterized by one parameter T̄0. The
corresponding expression for an isothermal system with a
spatially varying field is

p = exp

[
−eᾱx̄0

ᾱT̄0
(eᾱ�x̄ − 1)

]
. (30)

This system is characterized by two parameters T̄0,ᾱ. Finally,
the acceptance probability for a system with a spatially varying
temperature and a uniform gravitational field is

p = exp

[
−eβ̄x̄0

β̄T̄0
(eβ̄�x̄ − 1) − 1

β̄T̄0

×
∫ x̄0+�x̄

x̄0

(
eβ̄x̄

n̄

∫ ∞

x̄

n̄(x̄ ′)dx ′
)

dx

]
. (31)

Again, this system is characterized by two parameters T̄0,β̄. In
our subsequent discussion, we drop the bars and always work
with dimensionless variables.

III. COMPUTATIONAL DETAILS

The simulation space consists of reflecting boundaries in
the x direction (both top and bottom) and periodic boundaries
in the y and z directions. Simulations are performed by
initially placing 25,000 particles randomly in the box, which
extends 400 × 25 × 25 particle diameters in the x, y, and
z directions, respectively. Particles are inserted sequentially,
with the coordinates of each particle being assigned using
a random number generator. If a new particle does not
overlap with any existing particle, then its position is accepted.
Thus the initial configuration consists of particles uniformly
distributed in the box with average number density nav = 0.1.

The above configuration is the starting point of our MC
simulations. Each particle is given a uniform random displace-
ment (�x,�y,�z) in the range (−S,S). If the displacement
does not result in the overlap of particles, it is accepted with
the probability p(�x) given in Sec. II C. A Monte Carlo
step (MCS) denotes a complete cycle of trial displacements
of all particles. Standard procedures (binning, linked lists,
etc.) [3] are used for enhancing computational efficiency while
checking for particle overlap.

The number density profile n(x) is calculated for each MCS
using horizontal bins of height 0.1 particle diameter. Here n(x)
denotes the number density in a bin at position x. Recall that
n(x) is required for computing the acceptance probability for
the system with a spatially varying temperature [cf. Eq. (31)].
The maximum displacement used in the computations is S =
0.75 in all cases except α = 0.1, for which S = 0.25 is used.

The system is assumed to have reached steady state when
the center of mass becomes approximately constant in time. As
shown in the following section, a steady state is reached well
within 5 × 105 MCSs in all cases. Thus the first 5 × 105 MCSs
are discarded and data are collected for five subsequent
intervals of 105 MCSs each. The results reported are an average

over the five intervals (i.e., 5 × 105 MCSs) and the average
absolute deviation of the five runs is calculated as a measure
of the computational error. The steady-state number density
profile [n(x)] is the primary measurement. The pressure profile
P (x) is computed from the number density profile using
Eq. (3), and the results are compared to the predictions of
the CS equation of state. We note that the calculation of the
pressure in systems with an applied field (i.e., inhomogeneous
MC) is very simple, compared to homogeneous MC. A similar
approach based on experimental measurements of number
density profiles for sedimenting colloidal particles has been
used by Piazza et al. [37].

IV. NUMERICAL RESULTS

We present below results for the three different systems
discussed above: (a) uniform temperature and uniform external
field; (b) uniform temperature and spatially varying external
field; and (c) spatially varying temperature and uniform
external field.

A. Isothermal System in a Uniform Gravitational Field

Let us first consider an isothermal system in a uniform
gravitational field a = 1 (in dimensionless units). Figure 2
shows the variation of the center of mass (hc) with MCS.
The initial condition consisted of a homogeneous distribution
of particles. Gravity tends to settle the particles, resulting in
decrease of hc with MCS. The particles have kinetic energy
(characterized by the granular temperature) which restricts
complete settling. As the MC simulation proceeds, the system
reaches a steady-state configuration where hc does not change
further, as shown in Fig. 2. As can be seen from the inset in
Fig. 2, the saturation value of hc (hs

c) increases linearly with T0

at high temperatures. This is because a significant volume in
these systems has a low particle number density, approaching
the ideal gas limit, in which volume is proportional to
temperature at a constant pressure.

Figure 3(a) shows the variation of the steady-state number
density (n) with height (x) for different values of T0. The
highest number density occurs at the base, where the pressure
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FIG. 2. Variation of the height of the center of mass (hc) with
MCS (t). The results correspond to an isothermal constant-gravity
system with T0 = 5,15,30. Inset: Plot of the saturation value of hc

versus temperature.
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FIG. 3. (Color online) (a) Variation of the number density (n) with
height (x) at steady state for an isothermal constant-gravity system
for different values of T0 as indicated. The solid lines are predictions
of Eq. (27). (b) Linear-log plot of data sets in (a). The solid lines
denote the corresponding ideal gas profiles from Eq. (28).

is the highest. The bed expands with increasing T0, and the
gradients in number density reduce. In all cases, the density
decays to a very small value (<10−4) at the top of the box (x =
400), validating the assumption P (∞) = 0, which is required
to calculate the pressure profile. Figure 3(b) is a linear-log
plot of the data in Fig. 3(a). The solid lines denote the ideal
gas behavior in Eq. (28) — this is the appropriate limit at
low densities and pressures. The solid lines in Fig. 3(a) are
the predictions of Eq. (27) obtained by numerical integration.
There is good agreement between theory and simulations.

We study next the variation of n(x) close to the base (x = 0).
Figure 4 shows n(x) vs x for the data in Fig. 3(a). The density
profile shows a layered structure due to the discreteness of
the particles, in conjunction with an exponentially decaying
envelope. At the lowest temperature (T0 = 5), five layers
are clearly evident, and the number of layers decreases with
increase in T0. A quantitative measure of the morphology is
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FIG. 4. Analogous to Fig. 3(a), but n(x) is shown in a region close
to the base. Inset: Radial distribution function [g(r)] of particles in
the lateral (yz) plane for x = 0.5 and T0 = 5.
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FIG. 5. Variation of the mean displacement per Monte Carlo step
(�rMCS) with height (x) for the temperatures indicated in the legend.

the radial distribution function g(r) in the lateral direction,
where r = (y2 + z2)1/2. The inset in Fig. 4 shows g(r) vs r ,
computed for the particles in the horizontal bin corresponding
to the lowermost peak position (x = 0.5) for T0 = 5 in Fig. 4.
The radial distribution function resembles that for a liquid and
indicates the existence of a disordered state near the base.

Figure 5 shows the variation of the mean displacement per
MCS (�rMCS) with height for the two cases shown in Fig. 3.
�rMCS is an average over only accepted displacements in a bin
and is hence a measure of the local mobility of particles. At
T0 = 20, the relatively large values of �rMCS indicate that the
system is in a fluidlike state and the layering seen is a boundary
effect of the flat base (x = 0). At T0 = 5, however, the sharp
decrease in �rMCS close to the base indicates the approach to
a glassy state. In the comparisons made below, we omit the
layered region near the base (five to eight particle diameters)
in which boundary effects are significant.

Figure 6 shows a comparison of the pressure (P )-solids’
volume fraction (ν) profiles from our MC simulations with the
CS equation of state. There is very good agreement between
them. In spite of significant gradients in number density,
the inhomogeneous MC method yields the local equilibrium
pressure. This is true even for T0 = 5, where a sharp decrease
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FIG. 6. Variation of the normalized pressure (P/T0) with volume
fraction (ν) for isothermal constant-gravity systems. We show MC
results for T0 = 5,15,30. The solid line denotes the CS equation of
state.
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FIG. 7. Variation of hc with t for an isothermal (T0 = 20) system
with a spatially varying gravitational field a(x) = exp(αx). We show
results for α = 0.0025,0.02,0.05. Inset: Plot of the saturation value
of hc versus the field gradient parameter, α.

in �rMCS is seen near the base. Thus the system remains
fluidlike and follows the equilibrium CS equation everywhere
except in the boundary region (eight particle diameters for
T0 = 5). Furthermore, a single simulation is able to generate
a pressure vs volume fraction equilibrium graph over a wide
range of volume fractions, which would normally require a
large number of homogeneous simulations.

B. Isothermal System in a Spatially Varying Gravitational Field

Figure 7 shows the variation of hc with MCS for an isother-
mal system with T0 = 20, and a spatially varying gravitational
field, a(x) = exp(αx). The initial distribution of particles is
homogeneous. As before, the gravitational field settles the
particles, resulting in a reduction of hc with increasing MCS.
The system reaches a steady-state configuration, characterized
by hc becoming approximately constant. The saturation value
hs

c decreases with increasing field gradient α, as shown in the
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FIG. 8. (Color online) (a) Variation of n with x at steady state
for an isothermal (T0 = 20) system with a spatially varying field. We
show results for α = 0.0025,0.02,0.05. (b) Linear-log plot of data
sets in (a). The solid lines denote the corresponding ideal gas profiles
from the dimensionless form of Eq. (28).
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20 40

FIG. 9. (a) Variation of n with x at steady state for an isothermal
(T0 = 20) system with a spatially varying field for α = 0.1.

inset of Fig. 7. This implies that the equilibrium configurations
are more compact at higher field gradients.

Figure 8(a) shows n(x) vs x for T0 = 20 and different values
of α. The highest number density occurs at the base where the
pressure is the highest. The bed becomes more densely packed
with increasing α and the density gradients reduce in the bulk
but increase near the free surface. This “squeezing” of the bed
is because the weight of a particle increases with height as
a result of the field gradient. The total pressure at the base
of the bed also increases with α, and consequently, there is
an increase in the number density at the base with increasing
α (Fig. 8(a)). The solid lines in the figure are predictions of
Eq. (27) and show very good agreement with the MC results.
Figure 8(b) is a linear-log plot of the data sets in Fig. 8(a). For
small values of n, the behavior is consistent with the ideal gas
profile in Eq. (28).

In Fig. 9 we plot n(x) vs x for a relatively higher value of
the field gradient parameter, α = 0.1. A significant fraction of
the system is in a layered state with an average layer spacing
of �x = 0.86, considering the bottom 20 layers. This is close
to the hcp structure value of �x = 0.82. The positions of the
particles, shown in Fig. 10, indicate an ordered structure with
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FIG. 10. (Color online) Left, bottom right: Positions of all
particles for an isothermal (T0 = 20) system with a spatially varying
field for α = 0.1. Top right: magnified view of the horizontal layers at
x = 0.5 (circle) and at x = 1.3 (plus) showing a staggered hexagonal
packing in adjacent layers, characteristic of hcp.
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FIG. 11. Distribution functions for an isothermal (T0 = 20) sys-
tem with a spatially varying field for α = 0.1. Left: Radial distribution
function g(r) computed in the horizontal bin at x = 0.5. Right:
Angular distribution function g(θ ) for nearest neighbors (r < 1.2)
computed in horizontal bins at different x as indicated.

the magnified view indicating hexagonal packing of layers,
with adjacent layers stacked in a staggered arrangement that
is characteristic of an hcp structure. The radial distribution
function [g(r)] at the base (Fig. 11) also indicates an ordered
structure, while the angular distribution function [g(θ )] for
the nearest neighbors (r < 1.2) implies a hexagonal packing
in the layer, since the peaks are separated by an angle of
60 deg.

The variation of mean displacement with height in the
system is shown in Fig. 12 for the different field gradients
parameterized by α. The data indicate that the system is
fluidlike throughout for α = 0.0025. There is a reduction in
mobility near the base for α = 0.05, implying a tendency
toward glass formation. The sharp decrease in mobility at
x ≈ 26 for α = 0.1 is typical of a phase change and indicates
freezing near the base for α = 0.1, in concurrence with the
above results.

Figure 13 shows a comparison of the MC results of pressure
(P ) vs volume fraction (ν) to the predictions of the CS
equation, excluding the data from the frozen and boundary
regions. There is very good agreement between the MC results
and the CS equation for all the values of α considered. We note
that the gradients are much larger in this case as compared to
the constant field case (Fig. 3), yet the accuracy of the MC
computation remains high.
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FIG. 12. Variation of the mean displacement per Monte Carlo
step (�rMCS) with height (x) for the different values of the field
gradient parameter (α) indicated in the legend.
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FIG. 13. Variation of P/T0 with ν for an isothermal system
(T0 = 20) with a spatially varying field for the different values of
the field gradient parameter (α) indicated. The solid line denotes the
predictions of the CS equation of state.

C. Nonisothermal System in a Uniform Gravitational Field

Finally, we study a system with a spatially varying
temperature [T = T0 exp(−βx) with T0 = 20] and a uniform
gravitational field (a = 1). Figure 14(a) shows n(x) vs x

for different values of the temperature gradient β. The
corresponding linear-log plot is shown in Fig. 14(b). In this
case, the density decays monotonically with x only for small
values of β. For larger values of β [see Fig. 14(a)], the
density maximum is determined by the competition between
the gravitational field and the decreasing temperature (with
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0.75

1

n
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β=0.01
β=0.02
β=0.05
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β=0.01
β=0.02
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(b)

FIG. 14. (Color online) (a) Variation of n with x at steady state
for a constant-gravity system with a spatially varying temperature
T (x) = T0 exp(−βx) with T0 = 20 for different values of β. The
solid lines are predictions of Eq. (27). (b) Linear-log plot of data sets
in (a). The solid lines denote the corresponding ideal gas profiles from
the dimensionless form of Eq. (28).
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FIG. 15. Variation of the mean displacement per Monte Carlo step
(�rMCS) with height (x) for the different values of the temperature
gradient parameter (β) indicated in the legend.

height). The maximum is located at xm = β−1 ln(T0Zβ) in
dimensionless units [cf. Eq. (27), with α = 0]. As in the
previous cases, predictions of Eq. (27) [Fig. 14(a)] and
Eq. (28) [Fig. 14(b), low-number-density region] closely
match the MC results.

Figure 15 shows the mean motion per Monte Carlo step
(�rMCS) for the different values of β studied. The system is in
a fluidlike state for all cases, in spite of the significant number
fraction gradients. Further, no significant layering is seen even
at the highest value of β. Both these results are a consequence
of the highest temperatures being at the base (x = 0).

We plot P/T (x) vs ν in Fig. 16 for different values of β,
excluding the data in the boundary region. Again, the MC
data is in excellent agreement with the CS equation over
an extended range of temperature values [T ∈ (0+,20)]. This
validates the gradient MC method for nonisothermal systems.
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FIG. 16. Variation of P/T with ν for a constant-gravity system
with a spatially varying temperature T (x) = T0 exp(−βx) with T0 =
20 for different values of β indicated. The solid line denotes the
predictions of the CS equation of state.

D. Analysis of Deviations between CS and MC Results

We consider here the deviations between the MC results
and the predictions of the CS equation relative to the estimated
numerical error of the MC simulations. We estimate the error
in computing the pressure using MC simulations by carrying
out N independent simulations to obtain N pressure profiles
[Pi(x)]. The mean absolute error is then obtained as

σ (x) = 1

NP

N∑
i=1

|Pi(x) − P (x)| , (32)

where P (x) = ∑N
i=1 Pi(x)/N . The results reported are for

N = 5, with each simulation result an average of 105 MCSs.
We define the deviation (δ) as

δ(x) = |P (x) − PCS(x)|
PCS(x)

, (33)

where PCS[ν(x),T (x)] is the prediction of the CS equation.
Figure 17 shows the deviation (δ) and the error (σ ) for

the three different systems considered. For each system,
only the case with the highest gradient is shown since the
data are qualitatively similar for the remaining cases. The
computational error in all cases is small (σ < 2 × 10−2,
indicated by horizontal dotted lines in Fig. 17), except at
low volume fractions where the number of particles is small.
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FIG. 17. Variation of δ and σ with ν for (a) an isothermal systems
with constant gravity, (b) an isothermal system with a spatially
varying gravitational field, and (c) a nonisothermal system with
constant gravity for the parameter values indicated. The horizontal
dotted lines correspond to a deviation of 2% and the vertical dashed
lines to the value of volume fraction (ν) at which the gradient in
number density (dn/dx) is highest.
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The deviations between MC and CS (δ) are also small
(δ � 2 × 10−2) and are comparable to the reported accuracy
of the CS equation (≈ 10−2, [38]). The only exception to this is
for β = 0.05 in the region of number density increasing with
height (x < xm, Fig. 14), where the deviation is as high as
δ = 7 × 10−2 (Fig. 17). Repeating the MC simulations with a
bin of 0.05 particle diameters did not result in any change, and
the reason for the larger-than-expected deviation is not clear.
The deviations are of the same order as the computational
error and are not higher in regions of high gradients (marked
by vertical dashed lines in Fig. 17). The results presented here
show the suitability of using gradient MC for high-throughput
computations of thermodynamic properties.

V. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion of
the results presented here. We have presented a framework for
gradient Monte Carlo (MC) simulations in systems with spa-
tially varying temperature and external fields. Such simulations
are relevant in a range of physical problems, including the flow
of granular materials or powders. For the case with uniform
temperature and a varying field, the usual MC prescription is
appropriate. For the case with nonuniform temperature, we
map this problem into one with uniform temperature and a

space-dependent field. This method is generally applicable to
fluids including the case of no applied field g = 0.

We use this framework to study a granular material
consisting of hard spheres in a gravitational field. We consider
cases with both uniform and nonuniform temperature. The
gravity field settles the particles at the base of the system. The
corresponding density profile [n(x) vs x] is inhomogeneous
with layering at the base — the precise profile is determined
by the interplay between the external field and temperature. At
low densities, the system shows ideal gas behavior. We also
study the pressure-density profiles (P/T vs ν). Over a wide
range of densities, the profiles obey the Carnahan-Starling
(CS) equation of state. This validates the gradient MC method
for the nonisothermal system. The deviations between MC and
CS are found to be less than 2%, indicating the accuracy of the
method in spite of significant number density gradients.

In general, the introduction of gradients in various param-
eters complicates a physical system. However, the presence
of temperature and field gradients also enables us to access
a wide range of pressure-density values (states) in a single
simulation. This is reminiscent of high-throughput experi-
mental methods, which study a multiplicity of states in a
single experiment [39]. Gradient Monte Carlo is thus a useful
approach for high-throughput computations of thermodynamic
properties.
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