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The second self-diffusion and viscosity virial coefficients of the Lennard-Jones (LJ) fluid were calculated by
a detailed evaluation of the velocity and shear-stress autocorrelation functions using equilibrium molecular
dynamics simulations at low and moderate densities. Accurate calculation of these coefficients requires
corresponding transport coefficient values with low degrees of uncertainty. These were obtained via very long
simulations by increasing the number of particles and by using the knowledge of correlation functions in the
Green-Kubo method in conjunction with their corresponding generalized Einstein relations. The values of the
self-diffusion and shear viscosity coefficients have been evaluated for systems with reduced densities between
0.0005 and 0.05 and reduced temperatures from 0.7 to 30.0. This provides a new insight into the transport
coefficients beyond what can be offered by the Rainwater-Friend theory, which has not been developed for the
self-diffusion coefficient.
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I. INTRODUCTION

Transport coefficients, which are important to many appli-
cations, particularly the optimization of chemical processes,
depend on temperature and density as well as on the type
of fluid. Hence, accurately predicting these coefficients for
even simple fluids over a wide range of densities and
temperatures has been a matter of much consideration within
the field of nonequilibrium statistical mechanics, dating from
the Enskog’s early work [1,2]. At present, there are several
approaches to the study of transport coefficients; some of
them are as follows: the Chapman-Enskog solution of the
Boltzmann equation in the kinetic theory for low densities
(zero-density limit), the Rainwater-Friend (RF) and modified
Enskog theory for moderate densities, and the corresponding
states correlation function theory for high densities [3–12]. The
time correlation function theory can also be used to calculate
the transport coefficients at all densities and temperatures [13].

The second transport virial coefficient may be evaluated
as the first density correction of its corresponding transport
coefficient. In the 1980s, Rainwater and Friend introduced
a theoretical model for the calculation of second-transport
virial coefficients containing the effects of two-body colli-
sional transfer and both three-monomer and monomer-dimer
collisions [7,8]. This theory is supported by the fact that a
real fluid differs from a hard sphere mainly in the temperature
dependence of the collision frequency and pressure of the fluid.
Rainwater and Friend presented the second viscosity and ther-
mal conductivity virial coefficients for the Lennard-Jones (LJ)
potential model [7,8]. Najafi and coworkers employed the more
accurate potential of HFD-type (Hartree-Fock-Dispersion)
for noble gases and Behnejad et al. used an accurate and
realistic Morse-Spline-Van der Waals (MSV) potential model
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to improve upon the theoretical results produced by the
Rainwater and Friend model for real fluids [9–12,14–16].

The major difficulty in comparing the theoretical results of
model fluids with the experimental results is the differences
between the model and real Hamiltonians [17]. For this reason,
computer simulations of model fluids can be used for assessing
theories. In this work, the second virial coefficients of the
viscosity and self-diffusion coefficients have been calculated
by equilibrium molecular dynamics (EMD) simulations for
LJ fluids. The results of the viscosity coefficients have been
compared using the Rainwater-Friend theory [8]. To date, the
Rainwater-Friend theory has not been extended to the self-
diffusion coefficient.

The application of EMD to the calculation of transport
properties is well known, but the correct evaluation of the
correlation functions used to obtain second-transport virial
coefficients is a troublesome task. While experimental data
generated by Teske and Vogel show that the effect of the second
viscosity virial coefficient at densities lower than 0.002 is only
1%, the statistical uncertainties in the simulation results found
by Meier et al., who simulated an LJ model fluid in extensive
ranges of temperature and density, are more than 10% for
the viscosity and 1% for the self-diffusion coefficients at low
densities [18–22]. Meier and coworkers stated that reliable
results for the second-transport virial coefficients could not be
given with any reasonable degree of precision. Nevertheless,
these researchers explored a possible means of estimating
the second self-diffusion virial coefficient as a function
of temperature. In addition, at low densities, the density
dependence of transport coefficients must be determined by
interpolation. To our knowledge, this has not been investigated,
so we extended our investigation to the densities as low as
0.0005. As Alder and Wainwright pointed out, the study of
autocorrelation functions at low densities made difficult by the
fact that the system must be so large that a molecule undergoes
many collisions before a sound wave travels across the
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whole system [23]. Since the correlation functions decay very
slowly at low densities, the uncertainty of the values for long
correlation times has been discussed in detail. Furthermore,
we increased the length of the simulation to 50 times that
of previous studies to decrease the likelihood of statistical
error, and we increased the number of particles to 2048 to
improve the accuracy of the self-diffusion coefficient, which
is a single-particle property [20,21]. The latter is particularly
useful because it can decrease the artificial effects of periodic
boundary conditions (PBC) on the velocity autocorrelation
functions for long correlation times. In addition, a detailed
analysis on autocorrelation functions has been performed to
evaluate the decay time values, the artificial effects from PBC,
and the decay behavior at long correlation time. Finally, the
self-diffusion coefficients were calculated using the Einstein
approach, in which some of the parameters were determined
according to velocity autocorrelation functions, while the
shear viscosity coefficients were obtained directly by evalu-
ating shear-stress correlation functions using the Green-Kubo
approach [13].

This paper is organized as follows: the next section provides
a theoretical background for transport coefficients and presents
the details of the simulation. Section III evaluates the behavior
of autocorrelation functions. Sections IV and V present the
methods and the results for the calculated second self-diffusion
and viscosity virial coefficients, respectively.

II. THEORY AND SIMULATION DETAILS

In contrast to thermodynamic properties, transport coeffi-
cients cannot be evaluated as a power series of density so that
a logarithmic term appears in the series such as the following:

X(ρ,T ) = X0(T )
[
1 + BX ρ + CX ρ2lnρ + DX ρ2 + · · ·] , (1)

where X is Dρ, the self-diffusion coefficient, or η, the
shear viscosity coefficient [24]. It should be noted that D is
multiplied by ρ to remove the singularity of the self-diffusion
coefficients in zero density limit, and, in this paper, Dρ is
referred to as self-diffusion for simplicity [1,3]. BD and Bη are
the second self-diffusion and shear viscosity virial coefficients,
while CX and DX are higher-order virial transport coefficients.
(Dρ)0 and η0 are the zero density limits of the self-diffusion
and viscosity coefficients, which can be obtained by the kinetic
theory from the Chapman-Enskog solution of the Boltzmann
equation [3].

Evaluation of the second transport virial coefficients re-
quires their corresponding transport coefficients at the low
and moderate densities along the desired isotherms. Therefore,
180 state points were selected on the phase diagram of an LJ
model fluid with reduced density ranging from 0.0005 to 0.05
and reduced temperatures ranging from 0.7 to 30.0. Reduced
quantities are defined as follows: reduced temperature, T ∗ =
kT /ε; reduced shear viscosity coefficient, η∗ = ησ 2/

√
mε;

reduced self-diffusion coefficient, D∗ = D
√

m/ε/σ ; reduced
time, t∗ = t

√
ε/m/σ ; reduced density, ρ∗ = ρσ 3, where k is

the Boltzmann constant, m is the mass of a particle, and ε and

σ are the energy and length scaling parameters for LJ potential
as follows:

VLJ = 4ε

{(σ

r

)12
−

(σ

r

)6
}

. (2)

One of the methods for calculating transport coefficients,
which is applicable to all densities and temperatures, is the
time-correlation function approach, which is a result of the
Onsager hypothesis [13,25]. Using this method, which is
based on linear-response theory, the self-diffusion coefficient
can be calculated using the Green-Kubo integral equation or
equivalently via its corresponding Einstein relation:

D = 1

3N

N∑
i=0

∫ ∞

0
〈vi(t) · vi(t0)〉 dt, (3)

D = lim
t→∞

1

6N

N∑
i=1

d

dt
〈[ri(t) − ri(t0)]2〉, (4)

where N is the number of particles, ri and vi are the position
and velocity vectors of particle i, respectively, and t is
time [26]. The angular brackets indicate ensemble averaging
over short subtrajectories of the system with time origin, t0.
In both relations, averaging is over all particles to reduce
likelihood of statistical error. Similarly, the shear-viscosity
coefficients can be calculated using the Green-Kubo integral
equation or equivalently using its corresponding Einstein
relation as follows:

η = V

kT

∫ ∞

0
〈ταβ (t)ταβ(t0)〉dt, (5)

η= V

2kT
lim
t→∞

d

dt

〈[
m

V

N∑
i=1

[vi,α(t)ri,β(t)−vi,α(t0)ri,β(t0)]

]2〉
,

(6)

where V stands for the volume of the primary cell, ταβ denotes
an off-diagonal element of the stress tensor, vi,α and ri,β are the
Cartesian components of the velocity and position for particle
i (α,β = x,y,z; α �= β). In order to decrease likelihood of
statistical error, averaging is performed over all independent
tensor elements, e.g., τxy , τxz, τyz; ταβ is related to phase space
variables of simulated system as follows:

ταβ = − 1

V

N∑
i=1

mvi,αvi,β − 1

V

N−1∑
i=1

N∑
j=i+1

rij,αfij,β, (7)

in which fij,β is β component of the force vector and rij,α is
the α component of the distance vector between particles i and
j [27]. The instant positions and velocities of particles can be
obtained by EMD simulations; the accuracy depends on the
integration algorithm and simulation parameters. In this work,
we used optimized simulation parameters to decrease the rate
of computational error and improve the required statistical
precision for evaluating the second virial-transport coeffi-
cients. The systems were equilibrated 5 × 106 and simulated
1 × 108 time steps for the low-density and 1 × 106 and 5 × 107

for the moderate-density states by the DL POLY molecular
dynamics parallel-simulation package in NVE ensemble with
2048 LJ particles in the primary cell under the cubic periodic
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boundary conditions and sampled at every 50th time step for
the positions and velocities of all particles as well as at the
every time step for the independent off-diagonal elements
of the stress tensor [28]. The time-step length (	t∗) and the
potential cutoff radius parameters were selected as 0.0023 and
6.75 in the reduced units, respectively. The Lennard-Jones
potential model was used to compare the simulated results to
the values of the second viscosity virial coefficients from the
Rainwater-Friend theory [8]. NVE is the intrinsic ensemble
of EMD, so it produces realistic phase-space trajectories
at longer time periods. However, using this ensemble leads
to small differences between the simulated and the desired
temperatures, but these can be accounted for by applying
a proper temperature correction. Equilibrium status of the
systems was checked by comparing the averaged configuration
energy, temperature, and pressure values in two different
intervals from the initial and final parts of the simulated
trajectories. Moreover, the results of this examination confirm
the stability of the velocity-Verlet integrator for an LJ system,
even for very long simulations.

III. EVALUATION OF THE AUTOCORRELATION
FUNCTIONS

The self-diffusion coefficient is related to the velocity
autocorrelation function integral as in Eq. (3), and the shear
viscosity is related to the off-diagonal elements of the stress
tensor correlation function as in Eq. (5). Hence, the study of
these functions is useful for the more accurate calculation of
the corresponding transport coefficients. First, the presence
or absence of the long-time tail for correlation functions was
examined to assess the accumulation of computational errors
at long times.

Velocity autocorrelation function (VACF), 〈v(t) · v(t0)〉,
shows how the present velocity of a particle is related
to its previous value and how that effects its subsequent
velocities. According to the Boltzmann-Enskog theory and the
macroscopic Langevin relation, VACF decays exponentially,
but Alder and Wainwright found a power decay at the
long correlation time using EMD simulations of 500 hard
spheres particles at a reduced density of 0.47 and found
that VACF decays as t−d/2 in the long term, where d is
the dimension of the simulated system [23,29,30]. Recently,
Isobe revisited the 2D long-time tail problem with 1 × 106

particles and performed a large-scale, long-time, statistically
accurate EMD simulation and found that, in moderately dense
fluids, VACF decays slightly faster than ∼1/t [31]. This is in
accordance with the prediction of the self-consistent mode-
coupling theory in the long-time limit, ∼1/t

√
lnt [32,33].

At long correlation times, the power decay of VACF, rather
than the exponential decay, is related to the domination of
the transverse hydrodynamic mode to the longitudinal mode
in the dissipation of particle momentum over long periods
of time.

Nevertheless, the longitudinal hydrodynamics mode in the
momentum dissipation, which propagates through the periodic
boundary conditions, can reflect the artificial correlations at
long time and should be considered in the study of very
slow decaying correlation functions, such as those used in the
present project. The maximum value of time, tmax, in which

TABLE I. Reduced adiabatic compressibility, κ∗
s ; reduced speed

of sound, c∗
s ; and reduced beginning time of the artificial PBC effect

on VACF, t∗
max, for LJ fluid at T ∗ = 1.2 and ρ∗ = 0.001, simulated

with N particles for the duration of t∗ = 1 × 108.

N κ∗
s c∗

s t∗
max

108 524.2 1.381 34.48
256 507.6 1.404 45.24
500 505.6 1.406 56.44
864 503.2 1.410 67.56
1372 502.8 1.410 79.10
2048 502.3 1.411 90.00
4000 501.6 1.412 112.40

the error from the artificial effect of PBC on the correlations
is not important, can be related to the length of the simulation
cell by tmax = L/cs = 1/cs(N/ρ)1/3, where cs is the speed of
sound. Here, we used the following equation to calculate cs

from EMD simulation as follows:

cs =
√

1

ρmκs

, (8)

where m is the atomic mass, and κs is the adiabatic compress-
ibility, which is calculated for LJ systems as follows:

κ∗
s = κsε

σ 3
=

[
7P ∗− 16ρ∗T ∗

3
−8ρ∗U ∗

c − N

ρ∗T ∗ 〈(δP ∗)2〉
]−1

, (9)

where U ∗
c is the reduced internal energy per atom [34]. Table

I shows adiabatic compressibility, the speed of sound, and
tmax values for systems with particle numbers from 108 to
4000, simulated for the duration of t∗ = 1 × 108 at T ∗ = 1.2
and ρ∗ = 0.001. It is worthwhile to note that the number of
particles has no significant effect on κ∗

s , so tmax increases as
the cubic root of the number of atoms does.

In the other hand, common numerical calculation errors and
errors from approximations in the integration algorithms can
accumulate over longer correlation times, and their effects be-
come intensified. Averaging over numerous statistical samples
can reduce these errors. Furthermore, to improve the statistical
precision, every simulated trajectory can be divided into many
subtrajectories, or time windows, in which the correlation
functions decay to zero [35]. The time interval between two
successive time windows, t∗o , and the time interval between
two successive samples from the simulated trajectory, t∗s , can
be optimized to save CPU time. For the system with 1372
particles at a reduced density of 0.05 and a reduced temperature
of 1.0 simulated for the duration of t∗ = 14000, Fig. 1 shows
that the curves of VACFs for t∗s = 	t∗ (square symbol) and
t∗s = 500	t∗ (circle symbol) are the same. Furthermore, these
results indicate an unspecified deviation from exponential
decay over long periods of time. This seems due to the
finite size effects, so, according to Alder and Wainwright
and, more recently, Naitoh et al., we applied a correction on
VACF by adding a constant correction term, 1/(N − 1), to
the results of simulation with 1372 particles [23,36]. This is
based on the theory of conservation of momentum: whenever
one particle has a velocity v, the average velocity of other
particles should be −v/(N − 1). Subsequently, the corrected
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FIG. 1. (Color online) Effects of sampling parameter, t∗
s ; number

of particles, N ; length of simulation; and 1/(N − 1) correction on
the velocity autocorrelation function of LJ fluid at reduced density of
0.05 and reduced temperature of 1.0.

results (represented by a diamond symbol) are compatible
with the results (represented by a triangle symbol) from
the simulation of a system with 2048 particles at the same
density and temperature. Figure 1 shows that both correlations
from the simulation of 2048 particles during t∗ = 4.6 × 103

and corrected correlations obtained from the simulation of
1372 particles demonstrate a power decay. This long-time
tail, however, seems to disappear when the length of the
simulation is extended from t∗ = 4.6 × 103 to t∗ = 1.4 × 105.
Thus, for systems with 2048 particles at various densities and
temperatures, such as the one in the present work, the long-time
tail has not been found to have correlation time values less than
t∗max. Similarly, the effect of t∗o on shear-stress correlations has
been examined for the system with a reduced density of 0.01
and a reduced temperature of 5.0 with sampling performed
at every step and a simulation of t∗ = 2.3 × 105 in duration.
Figure 2 demonstrates that there are no significant differences
for the correlation values when t∗o is less than 500	t∗. In
addition, a comparison of Figs. 1 and 2 indicates that the
uncertainty in the velocity autocorrelation values is in the order
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FIG. 2. (Color online) Effect of time interval between the be-
ginnings of two successive time windows, t∗

o , on calculation of the
normalized shear-stress correlation function of LJ fluid at a reduced
density of 0.01 and a reduced temperature of 5.0.

of 10−4, while for the normalized shear-stress correlations,
the uncertainty is in the order of 10−3. Thus, it can be
concluded that the self-diffusion coefficients can be obtained
accurately.

IV. CALCULATION OF SECOND SELF-DIFFUSION
VIRIAL COEFFICIENTS

In order to calculate the self-diffusion coefficients precisely,
we used both the knowledge obtained from Green-Kubo
evaluation of VACF and the Einstein approach. The Einstein
approach is preferred because the velocity-Verlet integrator
computes the positions more accurate than the velocities, and
the evaluation of VACF is useful because it gives the lowest
physically infinite time in Eq. (4) [27]. This mixed method
can avoid the errors that would arise on the mean-squared
displacement (MSD) curves if a linear regime were to be used.
Moreover, the self-diffusion coefficient is a single-particle
property, so it can be averaged out over all particles to
increase statistical accuracy. In practice, at each state point,
we calculated the values of D∗ρ∗ as a function of the
correlation time by measuring the instant slope of MSD
for all particles, and then we averaged the values beyond
decay time in the VACF curves. Figure 3 shows the typical
D∗ρ∗ variations versus the time of correlation for a system
with a reduced temperature of 1.8 and a reduced density of
0.02. There are only small variations around the mean value.
Thus, the standard deviations are small and it is possible to
calculate the self-diffusion coefficient values to a high level
of precision using the simulation parameters described in this
work.

In order to calculate MSD and VACF curves, the order-n
algorithm was used because it can be adjusted to the sampling
parameters. This makes it applicable for computing both
the slow and fast correlation decays simultaneously, namely
the low- and high-density systems. In this algorithm, the
block sums of the velocities are first calculated and saved in
distinct time intervals, and then the values of the velocities are
determined at the desired times by using a recursive relation
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FIG. 3. Reduced self-diffusion coefficient of LJ fluid at a reduced
temperature of 1.8 and a reduced density of 0.02 versus time of
correlation (a) from zero time and (b) from decay time. (Dotted line:
mean value.)
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FIG. 4. Density dependence of the simulated reduced self-
diffusion coefficients of LJ fluid divided by their values at zero-
density limit from the Chapman-Enskog theory (a) for isotherms of
0.7 to 1.5 and (b) for isotherms of 1.8 to 5.0. (Filled squares with
error bars: temperature corrected values; circles: values at simulated
temperatures; solid line: fitted linear regime.)

between the values of the subsequent block sums. More details
about this algorithm can be found in Ref. [37].

The values of the self-diffusion coefficients and their
standard deviations are presented in Ref. [38]. The values at
zero density limit are calculated from the Chapman-Enskog
theory [3]. For isotherms of 0.7, 0.8, and 0.9, the systems
are metastable at densities higher than 0.015, 0.03, and
0.045, respectively, so the temperature values of these systems
change toward the nearest stable states due to adjustment of
temperature in the NVE ensemble during the equilibration
stage.

While the calculation of the second self-diffusion virial
coefficients necessarily involves a survey of the self-diffusion
density dependence along specified isotherms (Fig. 4), the
self-diffusion coefficient values are related to the simulated
temperatures, which are somewhat different from the desired
temperatures. Because the standard deviations of the calcu-
lated self-diffusion coefficients are very low, it is useful to
have a temperature correction on them to adjust their values for
the desired isotherms. The differences between the simulated
(T ∗

sim) and the desired temperatures (T ∗
des) are small, so a
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FIG. 5. Density dependence of the simulated reduced self-
diffusion coefficients of LJ fluid divided by their values at zero-
density limit from the Chapman-Enskog theory for isotherms of 8.0,
20.0, and 30.0. [Legend as in Fig. 4; dotted line: fitted up to fourth
term of Eq. (1).]

first-order Taylor series in terms of the reduced temperature
can be used to predict D∗ρ∗ at T ∗

des as follows:

D∗ρ∗ (
ρ∗,T ∗

des

) = D∗ρ∗ (
ρ∗,T ∗

sim

)
+ (

T ∗
des − T ∗

sim

) 	D∗ρ∗ (
ρ∗,T ∗

sim

)
	T ∗ ,

(10)

where the first derivative is approximated from the difference
between D∗ρ∗ at T ∗

sim and D∗ρ∗ at the nearest simulated
temperature to T ∗

des along an isochore. The values at T ∗
sim

are shown as the unfilled circles and the corrected values are
shown as the filled squares with error bars in (Figs. 4(a))
and 4(b). These figures show the density dependence of the
reduced self-diffusion coefficients divided by their values at the
zero-density limit that is calculated from the Chapman-Enskog
theory at the different temperatures. The results indicate that
it is possible to approximate the values of the self-diffusion
coefficients as the first-order power series of density, as in
Eq. (1), within the density ranges covered in this project, so
we calculated the second self-diffusion virial coefficients as
the slope of solid straight lines in Figs. 4(a) and 4(b) up to
the reduced temperature of T ∗ = 5.0. At higher temperatures,
it seems that higher-order terms in Eq. (1) are not negligible.
Thus, the isotherms of T ∗ = 8.0, T ∗ = 20.0, and T ∗ = 30.0
can be fitted to Eq. (1) up to the fourth virial coefficients
(dotted line in Fig. 5). This also indicates the importance of
the logarithmic term in Eq. (1) by which it becomes possible
to give a suitable fit.

The values of the second self-diffusion virial coefficient
at different temperatures and their standard deviations are
presented in Table II. The thermal behavior of them is also
shown graphically in Fig. 6 and compared with the approx-
imated values reported by Meier et al. [20]. The differences
are from 12% up to 35%. The overall thermal behavior of the
second self-diffusion virial coefficient is similar to the thermal
behavior of the second viscosity and thermal conductivity
virial coefficient predicted by the Rainwater-Friend theory [8].
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TABLE II. Simulated reduced second self-diffusion virial coeffi-
cients, B∗

D; reduced second viscosity virial coefficients, B∗
η ; and their

standard deviations [SD(B∗
D) and SD(B∗

η )] for the Lennard-Jones
fluid at different temperatures.

T ∗ B∗
D SD(B∗

D) B∗
η SD(B∗

η )

0.7 −3.103 0.1723 −2.287 3.470
0.8 −2.056 0.0537 −0.268 0.828
0.9 −1.389 0.0543 0.490 0.337
1.0 −1.027 0.0555 1.281 0.645
1.2 −0.698 0.0509 0.794 0.729
1.5 −0.555 0.0348 0.920 0.270
1.8 −0.495 0.0275 1.059 0.514
2.0 −0.516 0.0357 1.082 0.285
2.5 −0.550 0.0335 0.766 0.237
3.0 −0.576 0.0238 0.588 0.266
4.0 −0.597 0.0216 0.507 0.281
5.0 −0.649 0.0212 0.347 0.237
8.0 −0.836 0.0296 −0.130 0.251
20.0 — — 0.184 0.129
30.0 — — −0.147 0.120

V. CALCULATION OF THE SECOND VISCOSITY
VIRIAL COEFFICIENTS

Since the shear-viscosity coefficient is a collective property,
increasing the number of particles should not have any signifi-
cant effect on increasing the statistical precision. Nevertheless,
to explore it precisely, we performed a set of simulations at
a stated point with a reduced density of 0.001 and a reduced
temperature of 1.2 by different numbers of particles in the
primary simulation cell. In all cases, the simulation length was
t∗ = 2.3 × 105 and other parameters were given as in Sec. II.
Figure 7 shows the results of the normalized shear-stress
correlation function for these systems. Small deviations in
these curves, which grow with time, cannot be attributed to the
number of particles because there is no linear relation between
them. For example, the curves corresponding to 108 and 4000
particles coincide with each other, and the small deviations
between other curves are due to temperature variation and
computational errors.

1 2 3 4 5

T
*

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

B D*

FIG. 6. Second self-diffusion virial coefficients of LJ fluid as a
function of reduced temperature. (Circles with error bars: this work;
crosses: from Ref. [20].)

FIG. 7. Normalized shear-stress correlation functions of LJ fluid
at a reduced temperature of 1.2 and a reduced density of 0.001 with
different numbers of atoms in the simulation primary cell.

In contrast to the self-diffusion, the viscosity coefficient
is not averaged over all particles, so it is obtained with
less statistical precision at the same simulation length.
Therefore, confidently determining a linear regime in the
generalized mean-squared displacement functions as in the
Einstein approach shown in Eq. (6) is difficult. Moreover,
this approach cannot be applied directly because the particle
trajectories are not continuous in a system that is simulated
under periodic boundary conditions. In this work, we used
the Green-Kubo approach, as described in Eq. (5), to calculate
the shear-viscosity coefficients. In practice, at every state
point, we calculated the values of η∗ as a function of time
by integrating the shear-stress correlation function and then
we averaged the values beyond its decay time. The variations
around mean values of the calculated viscosity coefficients
(Fig. 8) are higher than the variations around mean values
of the calculated self-diffusion coefficients (Fig. 3) when all
simulation parameters are equal.

The values of the reduced viscosity coefficients and their
standard deviations are presented in Ref. [38]. The values at
zero-density limit are calculated using the Chapman-Enskog
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η∗
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(a)

(b)

FIG. 8. Reduced viscosity coefficient of LJ fluid at a reduced
temperature of 1.8 and a reduced density of 0.02 versus time of
correlation (a) from zero time and (b) from decay time. (Dotted line:
mean value.)
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FIG. 9. Density dependence of the simulated reduced-viscosity
coefficients of LJ fluid divided by their values at zero-density limit
from the Chapman-Enskog theory (a) for isotherms of 0.7 to 2.0 and
(b) for isotherms of 2.5 to 30.0. (Legend as in Fig. 4.)

theory [3]. As with self-diffusion, shear-viscosity coefficient
values are related to the simulated temperatures, which are
somewhat different from the desired temperatures, so they can
be corrected by using the first-order Taylor series in terms of
the reduced temperature, as in Eq. (10), for the self-diffusion
coefficient, to obtain η∗ at T ∗

des.
Figures 9(a) and 9(b) show the density dependence of

the reduced-viscosity coefficients divided by their values at
zero-density limit at different temperatures. Although the
consistency between viscosities is less than the self-diffusion
coefficients, nevertheless, it is possible to approximate their
values as the first-order power series of density, as in Eq. (1).
Thus, the second viscosity virial coefficients can be calculated
as the slope of the solid straight lines in Figs. 9(a) and 9(b)
for all isotherms. The values of the second viscosity virial
coefficient at different temperatures and standard deviations
are presented in Table II. Figure 10 compares the second
viscosity virial coefficients calculated in this work with those
reported by the Rainwater-Friend theory at different tem-
peratures. The figure indicates that for temperatures beyond
T ∗ = 1.0, the simulated B∗

η values are appropriately described
by the Rainwater-Friend theory. However, for the reduced
temperatures of 0.8, 0.9, and 1.0, the simulated values are

0.7 1 10 20 30

T
*
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-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

B
η∗

FIG. 10. Second viscosity virial coefficients of LJ fluid as a
function of reduced temperature. (Circles with error bars: this work;
solid line: Rainwater-Friend theory, Ref. [8].)

higher than the values from the Rainwater-Friend theory, and
for T ∗ = 0.7, uncertainty in the simulated value is too high to
permit a strong statement.

VI. CONCLUSION

The effect of second transport virial coefficients is very
small at low densities, so it can be hidden by common
simulation errors. This makes it difficult to calculate second
transport virial coefficients using common simulation meth-
ods. This is why calculation of the second virial transport
coefficients requires highly accurate, consistent data for the
corresponding transport coefficients in the low and moderate
densities. In the present work, we reduced simulation errors
by performing very long equilibrium molecular dynamics
simulations using optimized parameters. We also evaluated the
correlation functions to remove the artificial effects of periodic
boundary conditions on the results. Standard deviations of
the self-diffusion coefficients obtained in this work are small,
so it is possible to extract the second self-diffusion virial
coefficients from the data. The results also indicate that even
at the high reduced temperatures of 20.0 and 30.0, at which the
linear regime cannot be observed, the density expansion with
logarithmic terms, as in Eq. (1), can be established. Although
the standard deviations of the simulated viscosity coefficients
are not so low as the standard deviations of the self-diffusion
coefficients, it is still possible to extract the second viscosity
virial coefficients with only reasonable levels of uncertainty.
The comparison of the second viscosity virial coefficient with
the results of the Rainwater-Friend theory shows that they are
compatible beyond T ∗ = 1.0 in the error bars, but at this and
lower temperatures the simulated values are higher than the
values from RF theory.
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