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Lattice gas with nearest- and next-to-nearest-neighbor exclusion
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We investigate a hard-square lattice gas on the square lattice by means of transfer-matrix and Monte Carlo
methods. The size of the hard squares is equal to two lattice constants, so the simultaneous occupation of
nearest-neighbor sites as well as of next-to-nearest-neighbor sites is excluded. Near saturation of the particle
density, this system is known to undergo a phase transition to one out of four partially ordered phases. We find
that this transition displays strong finite-size corrections to scaling and that the correlation functions deviate from
isotropy to rather large distances. In contrast with an earlier study, we find that the critical temperature exponent
of the transition is not Ising-like.
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I. INTRODUCTION

Consider adsorption of adatoms on the (100) surface of a
cubic crystal. In the presence of attractive forces, the adatoms
will tend to occupy positions directly above the centers of
the faces of the square lattice defining the surface layer. It is
obvious that the phase behavior of such a system depends on
parameters such as the chemical potential of the adatoms and
their size or, more generally, on the potentials describing the
interactions involving the adatoms. If the adatoms are large
enough, nearest-neighbor and next-to-nearest-neighbor sites
will be excluded for a pair of adatoms. If the size of the
adatoms allows the simultaneous occupation of third-neighbor
sites separated by two lattice units, the behavior of the system
may be, at least approximately, described by a lattice gas model
defined by the partition sum

Zlg =
∑
{σn}

∏
〈ij〉

(1 − σiσj )
∏
[kl]

(1 − σkσl)
∏
m

μσm, (1)

where the lattice variables σi are labeled by their lattice site
number i and can take the values 0 (not occupied) and 1
(occupied). The particle number is controlled by the chemical
potential μ. The first product is on all nearest-neighbor pairs,
and the second one is on all next-to-nearest-neighbor pairs.
Interactions between adatoms at distances of two or more
lattice units are neglected. The excluded area about each
lattice gas particle assumes the shape of a square whose
linear size equals two lattice units. The model is thus a
hard-square model. It should not be confused with other
hard-square models, such as Fisher’s [1] and Baxter’s [2,3],
and the nearest-neighbor exclusion hard-square model without
further interactions [4–9]. The latter model, as well as that of
Eq. (1), are part of a family of hard-core lattice gases that
are, apart from the size of the hard core, parametrized by the
chemical potential as the only variable parameter. This family
was recently investigated by means of Monte Carlo simulations
in an extensive study by Marques Fernandes et al. [10] for
hard-core sizes corresponding with exclusions up to the fifth
neighbors. There are also other studies [11–15] that include
the model of Eq. (1) as a specific case.

We proceed to summarize the existing understanding and
results on the universality class of by Eq. (1). In the limit

μ → ∞, the system will reach its densest state, which occupies
one of four sites of the lattice of Eq. (1). That may be realized in
a regular square pattern of the particles but one may then also
independently shift horizontal (or vertical) rows of particles,
without violating the neighbor exclusions of the system. The
ground states are multiply degenerate, and the entropy density
of the ground states of a system depends on the linear finite
size L as 1/L. For this reason, the model does not display
long-range order in the sense of condensation of the lattice-gas
particles on one out of four sublattices. But a different type of
long-range order is still possible. Namely, in the limit μ → ∞,
there will be either vertical or horizontal rows of particles,
with every other site occupied. Moreover, these rows may
be simultaneously shifted by one lattice unit in the direction
perpendicular to the rows.

Thus, there are four distinct ordered phases. That is
known to be a special and interesting case in the theory of
phase transitions in two dimensions. As noted by Kinzel and
Schick [11], such models typically belong to “nonuniversal”
manifolds, so the symmetry properties of the model are not
sufficient to predict its critical exponents, which suggests the
use of numerical techniques. Since the Monte Carlo analysis
of Marques Fernandes et al. [10] yielded estimates of the
exponents that were close to the exact values of the Ising
model, these authors described the transition as belonging to
the Ising universality class.

The present work aims at a further investigation of this issue.
The unavoidable error margins of the estimated exponents
[10], which were not listed explicitly, leave some room for
the possibility of critical behavior that differs from Ising
universality. Furthermore, the available theoretical knowledge
does not seem to provide evidence in favor of Ising universality.
Examples of exactly solved models with four competing
ground states are the Baxter model [16] and the Ashkin-
Teller [17] model, which display a “nonuniversal” critical line
with a temperature exponent that depends continuously on
a parameter in the Hamiltonian of the model [16,18], while
their magnetic exponent remains constant at the Ising value
yt = 15/8. For this reason, the magnetic exponent alone is not
a good indicator of Ising universality.

Both the Baxter and the Ashkin-Teller model are composed
of two interacting square-lattice Ising models. Here we shall
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show that this property also applies, at least in a broad sense,
to the model of Eq. (1). First, we replace the labeling of the
lattice sites as i,j,k, . . . by integer Cartesian coordinates x,y

running from 0 to L − 1. We then define spin-1 Ising variables
sx
x,y, s

y
x,y with possible values 0, ± 1 by

sx
x,y = σx+1,y+1 + σx+1,y − σx,y+1 − σx,y

(2)
sy
x,y = σx+1,y+1 + σx,y+1 − σx+1,y − σx,y,

for only even values of x and y in the range from 0 to L − 2.
Spin values +1 show that there is a particle in the right or
upper side of an elementary square, and −1 for a particle on the
opposite side. A spin value 0 denotes the absence of a particle.
Note that the restriction that an elementary square contains 0
or 1 particles translates into |sx

x,y | = |sy
x,y |. The partition sum

of this Ising-like model is

ZIsing =
∑
{sx

x,y }

∑
{sy

x,y }

∏
x,y

{
μ(sx

x,y s
y
x,y )2 [

1 − (
sx
x,y

)2 − (
sy
x,y

)2 + 2
(
sx
x,ys

y
x,y

)2 ]

[
1 + 1

4
sx
x,ys

x
x+2,y

(
1 + sx

x,y

)(
1 − sx

x+2,y

)] [
1 + 1

4
sy
x,ys

y

x,y+2

(
1 + sy

x,y

)(
1 − s

y

x,y+2

)]

[
1 − 1

16
sx
x,ys

x
x+2,y+2s

y
x,ys

y

x+2,y+2

(
1 + sx

x,y

)(
1 − sx

x+2,y+2

)(
1 + sy

x,y

)(
1 − s

y

x+2,y+2

)]

[
1 − 1

16
sx
x,ys

x
x+2,y−2s

y
x,ys

y

x+2,y−2

(
1 + sx

x,y

)(
1 − sx

x+2,y−2

)(
1 − sy

x,y

)(
1 + s

y

x+2,y−2

)]}
. (3)

The factors between square brackets are equal to 0 or 1, thus
imposing the various constraints. The first one guarantees that
|sx

x,y | = |sy
x,y |; the second and the third ones represent neighbor

exclusions in the x and y directions respectively; and the fourth
and the fifth ones the remaining next-to-nearest-neighbor
exclusion between particles in diagonally separated squares.

The model of Eq. (3) does not obey the spin-inversion
symmetry of the usual Ising model. Instead, the model is
invariant under the simultaneous inversion sx

x,y ↔ −sx
−x,y of

the x spins and the spatial x direction of the lattice. Whereas
the separate factors in Eq. (3) do not obey this symmetry, the
product does. Independently, Eq. (3) is also invariant under
the simultaneous inversion s

y
x,y ↔ −s

y
x,−y . These symmetries

still allow Ising-like order parameters 〈sx〉 and 〈sy〉, and in this
sense the model of Eq. (3) is still Ising-like.

The first and last two factors between the square brackets
in Eq. (3) specify a coupling between the sx and sy spins. In
their absence, the model would decompose in two systems
of linear chains in the x and y directions, without phase
transitions. Their presence not only introduces a coupling
between the chains in both directions but also can be associated
with a coupling between the two Ising-like order parameters,
similarly to the four-spin couplings in the Baxter model [16]
and the Ashkin-Teller [17] model. In the latter two models,
a positive coupling between the Ising-like order parameters
corresponds to a value of the temperature exponent exceeding
the Ising value yt = 1.

It is, thus, of interest to consider the signs of the four-spin
products of the form sx

x,ys
x
x+a,y+bs

y
x,ys

y

x+c,y+d in Eq. (3).
The first factor between square brackets contains a posit-
ive contribution, whereas the last two factors contain negative
contributions. Since the latter ones are subject to four extra
conditions expressed by factors such as 1

2 (1 + sx
x,y), one is

tempted to expect that the positive contribution dominates,
which suggests that yt > 1, differing from Ising universality.

To resolve this issue, we performed transfer-matrix and
Monte Carlo calculations. The numerical techniques are
explained in Sec. II and the results are presented in Sec. III.
While a rather large range of finite sizes has become available
with the present transfer-matrix techniques and computers,
our early optimism was not justified. The transfer-matrix
analysis yielded puzzling results, including rather extreme
deviations from isotropy, to the extent that one might doubt the
asymptotic conformal invariance of the model of Eq. (3). This
situation is quite unlike, e.g., the nearest-neighbor exclusion
model, which allows [9] the very accurate determination of
some universal parameters. It thus seemed necessary to apply
Monte Carlo calculations, which can handle much larger
system sizes, to analyze the model of Eq. (3). Our first
round of Monte Carlo calculations using the METROPOLIS

method [19], which covered a range of finite-sizes up to
L ≈ 120, did not yield a clear numerical picture either. For this
reason we developed a more efficient Monte Carlo method,
described in Sec. II B. With the help of this method, which
moves a string of particles in addition to METROPOLIS moves,
meaningful numerical results could be obtained for larger
systems. These provide a satisfactory determination of the
temperature exponent, as well as an explanation of the unusual
behavior found in Sec. III A. Our results are briefly discussed in
Sec. IV.

II. NUMERICAL TECHNIQUES

A. The transfer matrix

The calculation of a few leading eigenvalues of the transfer
matrix yields the free energy density and the correlation
lengths associated with correlation functions corresponding to
subleading eigenvalues. Here we do not attempt to calculate the
transfer matrix itself, but we build an algorithm that executes
the multiplication of the transfer matrix with a given vector.
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The transfer matrix is decomposed in a number of sparse
matrices that can be stored in a memory with a size roughly
of the same order as the linear dimension of the transfer
matrix. The principle and some details of the sparse-matrix
decomposition are explained, e.g., in Refs. [8,20–23].

We apply the transfer-matrix method to systems that are
periodic with the finite size L in one direction, and consider
the limit of infinite size for the other direction. Thus the model
is wrapped on a cylinder. For a transfer matrix that adds one
layer of L sites to the system, the free energy density follows
as

f (L) = ζ

L
log λ0, (4)

where λ0 is the largest eigenvalue of the transfer matrix T
and ζ is the geometrical factor defined as the ratio of length
unit (circumference of the cylinder divided by L) over the
thickness of a layer added by the action of T. The correlation
length ξk(L) associated with the subleading eigenvalue λk of
T is given by

ξ−1
k (L) = ζ log

λ0

|λk| . (5)

For conformally invariant models the scaled correlation length
satisfies [24] Xk = L/[2πξk(L)], where Xk is the scaling
dimension of the observable whose decay of correlations is
described by the characteristic length ξk(L). Normally one
expects nonzero irrelevant fields, so this equation applies only
in the limit L → ∞. In the presence of an irrelevant field, and
of a small deviation of the chemical potential μ with respect
to its critical value μc, scaling predicts that the scaled gap,
defined as

Xk(L,μ) ≡ L

2πξk(L,μ)
(6)

behaves as

Xk(L,μ) = Xk + ak(μ − μc)Lyt + bkL
yi + . . . , (7)

where the temperature exponent yt is positive and the irrelevant
exponent yi is negative.

The elements of the transfer matrix are non-negative,
so the Perron-Frobenius theorem implies that elements of
the eigenvector corresponding to the largest eigenvalue can
be chosen non-negative. Iterative methods starting from a
vector with only positive elements will thus yield the latter
eigenvector and its eigenvalue. The determination of the
subleading eigenvalues is facilitated by the use of their
symmetry properties. Translations of the lattice correspond
with rotations about the axis of the cylinder. The model is
thus invariant under a discrete set of translations in the finite
direction, and [in the lattice gas representation of Eq. (1)] also
under an inversion of the coordinate in that direction. Each
of these symmetry operations is represented by a matrix, say
S, that acts in the same vector space as the transfer matrix
T. Since T and S commute, there exists a common set of
eigenstates of T and S. The symmetry properties of the leading
eigenvectors are found by inspection of numerically solutions
of the eigenproblem for small systems. For larger systems we
may then impose the desired symmetry on the vector that
is being iterated. This will normally yield the eigenvector

associated with the largest eigenvalue (or the one with the
largest absolute value) in the subspace corresponding with
that symmetry.

First, we consider the lattice model of Eq. (1) wrapped such
that one set of edges of the square lattice is parallel to the axis
of the cylinder. The transfer matrix algorithms for this model
obviously includes the coding of the possible configurations of
lattice gas particles on a circular row of L sites at the end of the
cylinder by means of subsequent integers. It thus seems natural
to employ a coding algorithm that takes into account nearest-
as well as next-to-nearest-neighbor exclusion. The next-to-
nearest-neighbor exclusion, which applies to sites on different
rows, does not impose further restrictions on the configuration
of an L-site circular row, besides the restrictions imposed by
the nearest-neighbor exclusion. The applicable type of coding
was already employed and described in the literature [8,9].
However, the application of sparse-matrix techniques also
requires the coding of particle configurations as obtained after
adding a part of the next circular row of sites on top of an
L-site circular row. This leads to a closed array consisting
of L + 2 sites with two “steps.” The different geometry of
the L + 2-site array imposes additional restrictions at the
“steps.” These were included in the algorithm by simply
putting the corresponding weights to zero. The resulting
transfer matrix Ta (where “a” denotes axial) is symmetric,
and its largest eigenvalues were determined by maximiza-
tion of the Rayleigh quotient using the conjugate-gradient
method [25].

We also performed transfer-matrix calculations with a set
of diagonals of the square lattice parallel to the axis of
the cylinder. In this case the coding applies to a particle
configuration on an L-site zigzag line. Nearest- as well as
next-to-nearest-neighbor exclusion applies to the sites on this
line. As before, the transfer matrix is decomposed in a number
of sparse matrices. Application of these does not lead to a
change in the number of sites at the end of the cylinder
but introduces straight segments consisting of two lattice
edges into the zigzag pattern. Along these straight parts, the
next-to-nearest-neighbor exclusion does not apply. For this
reason we employed the same coding as before and, where
necessary, we enforced the next-to-nearest-neighbor exclusion
by putting the applicable weights to zero. The resulting transfer
matrix Td (where “d” denotes diagonal) is not symmetric,
and the Hessenberg algorithm as described in Ref. [21] was
employed to find its largest eigenvalues.

B. Monte Carlo algorithm

As already known from the literature, the phase transition
of the model of Eq. (1) takes place at a particle density that
is close to the value 1/4 corresponding with full packing.
This has unfortunate consequences for the efficiency of the
METROPOLIS Monte Carlo method. There is only a small
fraction of the lattice site that can accommodate another
particle. When the algorithm visits an occupied site, the large
value of the chemical potential renders it unlikely that the site
will be vacated. Indeed, preliminary simulations of this type
led to long autocorrelation times. Furthermore, this situation
becomes rapidly worse with increasing system size, due to
critical slowing down.
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We therefore explored ways to speed up the simulations.
First, one may formulate a rejection-free algorithm by con-
structing the probability distribution of the lifetime of the
initial state and use a random number to choose the lifetime.
Then the type and location of the move can be chosen in
accordance with the corresponding probabilities, with the help
of two more random numbers.

We did not follow this path because we expected that
nonlocal updates might be more effective. An existing algo-
rithm is available called the geometric cluster algorithm [26].
It moves part of the particle configuration to a different
location on the same lattice. The idea of such moves was
introduced by Dress and Krauth [27] for hard particles in
continuous space. We found that, although the geometric
cluster algorithm is extremely efficient in simulations of lattice
gases with nearest-neighbor exclusion [28], it is of less use
when applied to the present model. It is helpful in realizing
rapid equilibration between the different sublattices, but it
does not reduce autocorrelation times associated with other
properties. This is due to the tendency of the algorithm, when
applied to dense systems, to form geometric clusters that
include almost all of the lattice gas particles.

Another nonlocal method is suggested by the degrees of
freedom that still exist in the limit μ → ∞, namely the
freedom to shift a whole row of particles by one lattice unit
in the direction of the row. At finite values of μ, additional
vacant sites will occur, and it may thus be possible to apply
moves involving a part of a row. An update attempt consists of
the following steps:

(i) Randomly choose a particle, and randomly choose a
direction from the four possibilities.

(ii) Propose a move of the particle in the chosen direction.
If this leads to a violation of the nearest-neighbor exclusion in
that direction, shift that neighbor by one lattice unit in the same
direction. If this leads to another nearest-neighbor conflict,
apply another shift operation. Include as many neighbors in
the chosen direction as necessary to avoid nearest-neighbor
conflicts. This leads to the formation of a row of L or less
particles. The latter case arises if there are two neighboring
vacancies on the line of the row.

(iii) Check if the proposed move leads to a violation
of the next-to-nearest-neighbor exclusion at the end of the
row. Accept the move if and only if there is no such
violation.

Note that the aforementioned nearest-neighbor conflicts can
arise only along the line of particles being constructed, because
a nearest-neighbor conflict in the perpendicular direction
would imply a next-nearest-neighbor violation in the initial
configuration. Furthermore, next-to-nearest-neighbor conflicts
can occur only at the end of the row. Other occurrences
would also imply the existence of a conflict in the initial
configuration.

It is easily verified that the reverse move has equal
probability, so the algorithm satisfies the condition of detailed
balance. It appears to have a reasonable acceptance ratio.
It speeds up the calculation by a factor of about 100 in
comparison with the METROPOLIS method. Since it conserves
the particle number, and we use the chemical potential μ as
the independent parameter, we applied it still in combination
with METROPOLIS sweeps. This way of moving a row of

particles is close in spirit to the “event chain” Monte Carlo
moves described by Bernard et al. [29] for hard particles in
continuous space. Typically one simulation cycle consisted of
one METROPOLIS sweep, one geometric cluster step and 10
“sweeps” of attempts to move a row of particles. A sweep
means here that L2/4 elementary squares were randomly
chosen and, if it contained a particle, the update attempt started
with that particle.

The correctness of the algorithm was confirmed by a num-
ber of tests comparing the results of METROPOLIS simulations
with those of simulations including geometric cluster steps
and/or attempts to move rows of particles. Further sensitive
tests were performed by comparing the particle densities
obtained by the Monte Carlo method with those from the
transfer-matrix calculations. For chemical potentials μ < μc,
the various numerical results allow accurate extrapolations to
the thermodynamic limit. The differences were as expected
on the basis of the statistical accuracy of the Monte Carlo
results.

III. RESULTS

A. Transfer matrix results

1. Straight transfer

On the basis of Eq. (7) one expects, at least for sufficiently
large L, that a plot of the Xk(L,μ)-versus-μ curves for
different values of L will display intersections converging
to the point with coordinates μc and Xk . Such a plot is
shown in Fig. 1(a) based on the second largest (in absolute
value) eigenvalue λ1 of the transfer matrix Ta. This eigenvalue
is a negative singlet, and the corresponding eigenvector
is invariant under the symmetries mentioned in Sec. II A.
Figure 1(a) shows finite-size data for the X1(L,μ) in the range
6 � L � 36. There are intersections, ranging from about μ =
4.4 for the smallest systems to about μ > 5.7 for the largest
ones, without clear signs of convergence with increasing L.
The estimates of the associated scaling dimension X1 at these
intersections decrease rapidly from about 0.02 to about 0.0015.
These values seem to extrapolate to X1 = 0, in conflict with
the expected value 1/8. Furthermore, the corresponding values
of μ do not seem to converge to the literature value quoted as
μc = 4.574 and μc = 4.578 in Ref. [10].

Next we calculated the second subleading eigenvalue λ2,
i.e., the third largest one in absolute value. This eigenvalue
is positive and the eigenvector is again invariant under the
symmetries mentioned above. It was obtained using orthogo-
nalization with respect to the leading eigenvector. The scaled
gaps X2(L,μ) are shown as a function of μ in Fig. 1(b). In this
case there are also intersections. The chemical potential at the
intersections increases with L to about μ = 4.66 at the largest
system size. These values are much closer to the existing result
μc ≈ 4.576 for the critical point [10]. However, the data do not
allow a satisfactory extrapolation with L and suggest that an
extremum will occur for L > 36. The behavior in this figure
differs remarkably from that in Fig. 1(a).

The third subleading eigenvalue is a negative doublet, and
the associated eigenstate is antisymmetric under a translation
over L/2 lattice units. The corresponding scaled gap X3(L,μ)
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FIG. 1. (Color online) Scaled gaps X1(L,μ), X2(L,μ), and
X3(L,μ) versus chemical potential μ for even system sizes 6 � L �
36. These data apply to the transfer matrix Ta for transfer in the axial
direction. For clarity, the data points, which lie at multiples of 0.1 on
the μ scale, are connected by a smooth curve for each value of L.
To avoid crowding, the data points are not shown individually. The
scaled gaps increase with L on the left-hand side.

is shown versus μ in Fig. 1(c). Intersections are absent for the
smallest and the largest system sizes in the range 6 � L � 36.
These data suggest that we are still far away from the large-L
scaling limit.

2. Diagonal transfer

While a transfer matrix can be constructed that adds only
L/2 sites, we did not use it because it does not commute with
the inversion operation. Instead, we used a transfer matrix
adding L sites, using a sparse-matrix decomposition that first
sequentially adds L/2 sites on the even positions, and then
the same on the odd positions. Due to the orientation of the
lattice edges, the unit of length is a factor

√
2 smaller than

for the transfer matrix for transfer in the axial direction. The
geometric factor is thus ζ = 1/2 in this case.

We performed calculations only for L equal to multiples of
4 in order to avoid frustration effects due to the next-to-nearest-
neighbor exclusion. The leading eigenstate is again the fully
symmetric Perron-Frobenius vector. The second eigenstate,
as determined by calculations for small L, is a doublet with a
negative eigenvalue. These two eigenvectors change sign under
a translation of L

√
2 perpendicular to the transfer direction.

They can be chosen such that one of them is symmetric
under inversion and the other antisymmetric. Imposing the
antisymmetry under translation and symmetry under inversion,
we determined the eigenvalue λ1 for larger systems up to
L = 36. The corresponding scaled gaps X1(L,μ) are shown
versus μ in Fig. 2(a). With exclusion of the smallest system
size L = 4, the intersections of the curves for sizes L and
L + 4 lie in the interval 4.72 < μ < 4.84.

The numerical solutions for μ in the scaling equation

Xk(L,μ) = Xk(L + 4,μ) (8)

are denoted μL. According to Eq. (7) they behave as

μL = μc + aLyi−yt + · · · . (9)

The data for μL are, however, not well described by a single
correction term in L. Attempts to fit an expression with two
powers of L suggest that the critical point satisfies μc ≈ 4.6
with an uncertainty of a few times 10−2.

We then calculated the eigenvalue λ2 with the third
largest absolute value. It is a positive singlet. Its eigenstate
is translationally invariant, and it is antisymmetric under
inversion. The results for the scaled gaps X2 are shown in
Fig. 2(b). Similar to the case of X1, there are intersections
near the existing result μc ≈ 4.576 for the critical point, but
the data are not well described by Eq. (9) and do not allow a
convincing determination of μc.

The fourth largest eigenvalue λ3 is positive singlet, and
its eigenstate is fully symmetric. The corresponding scaled
gaps are shown in Fig. 2(c) for system sizes in the range 8 �
L � 36. Intersections are absent, and the data do not suggest
convergence near the expected critical point.

Furthermore, we attempted to determine the conformal
anomaly c from the free energies [30,31] as calculated at μ =
4.585. Poor convergence prevented an accurate determination.
Iterated fits with a fixed exponent −2 to the free energies
calculated with the “axial” transfer matrix yielded results
decreasing to c = 1.74 for the largest L available. The diagonal
transfer matrix yielded estimates increasing to c = 0.68 for the
largest L.

Although the transfer-matrix method itself yields highly
accurate eigenvalues and scaled gaps (typical errors are 10−12

or less), the present model apparently displays unusually
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FIG. 2. (Color online) Scaled gaps X1(L,μ), X2(L,μ), and
X3(L,μ) versus chemical potential μ for system sizes equal to
multiples of 4 in the range 8 � L � 36. These data apply to the
transfer matrix Td for transfer in the diagonal direction. For clarity,
the data points, which lie at multiples of 0.1 on the μ scale, are
connected by a smooth curve for each value of L. To avoid crowding,
the data points are not shown individually. The scaled gaps increase
with L on the left-hand side.

poor finite-size convergence, which thus prevents an accu-
rate determination of the critical point and the universal
quantities.

B. Monte Carlo results

The simulations were performed for systems on square
lattices with periodic boundary conditions and 24 different
linear sizes in the range 8 � L � 256. The chemical potential
was chosen close to the expected critical point μ ≈ 4.58,
except for some additional runs to determine the dependence
of the data on μ. The length of the simulations per system
size varied between at least 2 × 109 cycles for the systems
with L � 64 to 4 × 108 cycles for 160 � L � 256. Each
cycle included, in addition to the Monte Carlo algorithms
described in Sec. II B, the sampling of several quantities. These
included the particle densities ρi on the four sublattices labeled
by i ≡ 1 + (x mod 2) + 2(y mod 2) and the third neighbor
correlations

γx,i = 4L−2
∑
x,y|i

σx,yσx+2,y

(10)
γy,i = 4L−2

∑
x,y|i

σx,yσx,y+2,

where the sums are over the sites x,y on sublattice i.
The fluctuations in the sublattice densities are expressed by

a quantity m2, analogously to the magnetization of a clock or
Potts model, by

m2 = 4

3

4∑
i=1

(ρi − ρ)2, (11)

where ρ ≡ 〈∑4
i=1 ρi〉/4 is the total particle density. On this

basis we can define a generalized susceptibility as

χ = L2〈m2〉 (12)

and a quantity Q1 related to the Binder cumulant as

Q1 = 〈m2〉2

〈m4〉 . (13)

A more direct way to describe the type of order as it occurs
in the ordered phases uses the third-neighbor correlations

gx,e = γx,1 + γx,2,

gx,o = γx,3 + γx,4, (14)
gy,e = γy,1 + γy,3,

gy,o = γy,2 + γy,4,

from which we can form a generalized susceptibility

χ2 = L2〈(gx,e − gx,o)2 + (gy,e − gy,o)2〉 (15)

and a dimensionless ratio

Q2 = 〈(gx,e − gx,o)2 + (gy,e − gy,o)2〉2

〈[(gx,e − gx,o)2 + (gy,e − gy,o)2]2〉 . (16)

1. Universal ratios

The finite-size scaling behavior of the dimensionless
ratios Q1 and Q2 is obtained by writing these quantities in
terms of derivatives of the free energy and application of a
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TABLE I. Parameters as determined by least-squares fits to the
dimensionless ratios Q1 and Q2. Estimated error margins in the last
decimal place are shown between parentheses.

Parameter Fit for Q1 Fit for Q2

Q 0.890 (3) 0.886 (3)
μc 4.585 (2) 4.583 (2)
yt 1.05 (2) 1.05 (2)
a1 0.0059 (5) 0.0053 (5)
a2 −0.000069 (15) −0.000066 (15)
a3 −0.0000013 (16) −0.0000012 (16)
b1 328 (58) 323 (60)
c −154 (24) −146 (24)
Lmin 56 — 56 —

renormalization transformation with scale factor L. The result
is given by

Q(L,μ) = Q+
∑

k

ak(μ−μc)kLkyt + cL2−2yh + bLyi + · · · .

(17)

The term with exponent 2 − 2yh is the leading term due to the
analytic part of the free energy, and yi is the leading irrelevant
exponent. For Ising-like models, it is known that yi = −2
but corrections with this exponent are also expected more
generally.

As a first step, the difference Q1 − Q2 was fitted by
Eq. (17). These fits yielded a strong indication that the first
term vanishes, i.e., that the universal constant Q is the same for
both types of data. Also the terms in the sum, and the one with
exponent yi seem absent, in agreement with the assumption
that Q1 and Q2 pertain to the same universal quantity, i.e., that
the difference Q1 − Q2 is due to the analytical background
which behaves as L2−2yh in leading order.

The numerical data for Q1 and Q2 were also fitted
separately by Eq. (17), using fixed values yh = 15/8 and
yi = −2, while the remaining parameters were left free. Many
fits were made, with different values of the cutoff at small
system sizes and also with additional corrections proportional
to L1−2yh and (μ − μc)L2−2yh . Satisfactory fits were obtained
only when restricting system sizes to L � 56 or 64. Parameters
as found on the basis of Eq. (17) are listed in Table I. We
quote conservative error margins of four standard deviations
to allow for the possible presence of additional correction
terms in Eq. (17). This choice is consistent with the differences
between the fits for Q1 and Q2, and with the change of the
parameters due to variation of the fit formula and the cutoff at
small system sizes. While the parameters Q, μc, and yt , and to
some extent also a1, are rather stable under variations of the fits
as mentioned above, the remaining parameters display larger
differences.

2. Susceptibilities

The finite-size scaling behavior of the susceptibilities Q1

and Q2 is obtained from the scaling equation of the free energy

TABLE II. Parameters as determined by the least-squares fits
to the susceptibilities χ1 and χ2. Estimated errors in the last
decimal place are shown between parentheses. Fixed parameters
are identified by the absence of error estimates.

Parameter Fit for χ1 Fit for χ2

yh 1.877 (5) 1.877 (5)
χ0 −54 (15) −2280 (570)
c0 0.0346 (20) 1.33 (8)
c1 0.00061 (3) 0.0237 (13)
c2 0.0000021 (6) −0.00005 (2)
c3 0.0000000 (1) −0.000007 (8)
b1 175 (56) 7200 (2200)
b2 −700 (260) −26700 (10000)
μc 4.584 — 4.584 —
yt 1.05 — 1.05 —
Lmin 64 — 64 —

and taking the second derivative to the magnetic field. This
leads to

χ (L,μ) = χ0+χ1(μ − μc) + L2yh−2

{ ∑
k=0,1,2,···

ck(μ−μc)kLkyt

+ b1L
y1 + [b2 + b21(μ − μc)]Ly2 · · ·

}
. (18)

The numerical data for χ1 and χ2 were fitted by Eq. (18),
using fixed values μc = 4.584, yt = 1.05, y1 = −2, and
y2 = −2.75, while the remaining parameters were left free.
Reasonable fits were obtained only using system sizes L � 64.
The μ-dependent correction terms with amplitudes χ1 and
b21 were necessary to obtain reasonable residuals χ2 and
consistency between both results for the universal parameter
yh as obtained from the fits for χ1 and χ2. Some of the fitted
parameters are summarized in Table II. One-σ error estimates
are listed. They do not include the uncertainties due to the error
margins in the fixed parameters.

3. Energy-like quantities

The temperature exponent yt , which was estimated in
Sec. III B 1 from the dependence of the ratios Q on the
chemical potential, can also be determined from quantities
involving the density ρ at the critical point. For instance, the
leading terms in the scaling behavior of the critical density are
given by ρ(L,μc) = ρc + pL2−yt + · · · with additional terms
due to the irrelevant field and μ − μc. A numerical analysis of
the density suggests yt = 1.05(5), which is consistent with, but
less accurate than, the result in Sec. III B 1. We also made an at-
tempt to determine yt by means of an analysis of the finite-size
data for the specific-heat-like quantity c ≡ L2(〈ρ2〉 − 〈ρ〉2).
This attempt was unsuccessful because its leading singular
behavior, which goes as L2yt−2, is not sufficiently different
from the analytic background which is independent of L. Next,
we considered the connected correlation A(L,μ) between the
squared magnetization as defined in Sec. III B and the density

A(L,μ) 
� m2ρ �= 〈m2ρ〉−〈m2〉〈ρ〉. (19)

Its finite-size scaling behavior near criticality follows by
differentiation of the free energy, twice to a sublattice field
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and once to the chemical potential. The statistical analysis
of the data in terms of this scaling expression thus yields
an independent determination of the temperature exponent.
It led to results for yt between 1.05 and 1.10, depending on
the number of correction terms. Here, the error estimation
for yt is affected by the lack of precise knowledge of the
error in the finite-size data for the largest system sizes. This
situation occurs when the autocorrelation time becomes of the
same order as the run length. This problem is more serious for
A(L,μ) than for other sampled quantities, because the random
sampling of higher derivatives of the free energy appears to
be more sensitive to large and infrequent fluctuations. We also
investigated the related quantity

B(L,μ)
 (�m2ρ �= 〈m2ρ〉−〈m2〉〈ρ〉)/〈m2〉,
(20)

in which one may hope that some of the magnetization
fluctuations will cancel. But the scatter of data points taken
between runs at the same chemical potential still suggested
that the errors within the runs are underestimated. Expression
of B(L,μ) in derivatives of the free energy and expansion in
μ − μc yields

B(L,μ) = Lyt−2

( ∑
j=0,1,2,···

cjL
jyt (μ − μc)j + b1L

y1

+ b2L
y2 + · · ·

)
+ L2−2yh [a0+a1(μ−μc) + · · ·].

(21)

Fits of this expression to the Monte Carlo data yielded
estimates of yt clustered at 1.07 to 1.08, with error margins
of 0.01 to 0.02, depending on the number of correction terms
used in the fit formula and the cutoff at small system sizes. In
view of the difficulties due to the error estimation, we consider
this result for yt as somewhat tentative.

4. Magnetic correlation functions

The sampling of correlations over distances r in a system
of finite size L will yield L-dependent correlation functions
g(L,r), but here we are interested in the limit of infinite
system size g(r) ≡ limL→∞ g(L,r). Scaling predicts that, at
criticality,

g(L,r) = r2yh−4g̃(L/r), (22)

where corrections to scaling are neglected, so this formula
applies only for sufficiently large r . The universal scaling
function g̃(L/r) rapidly approaches a constant for large L/r ,
which corresponds with a small finite-size dependence of
g(L,r) for L � r . Taken together with Eq. (22), this enables
the estimation of g(r) from simulation results for g(L,r) with
sufficiently large L. To facilitate this estimation, we restrict
the finite sizes L as well as the distances r to powers of 2.
From Eq. (22) we find that

g(L,2p)/g(2L,2p) = g̃(2−pL)/g̃(21−pL), (23)

where p determines the distance as r = 2p. Thus, from
simulation results for sizes L and 2L we numerically determine
the ratios g̃(4)/g̃(2), g̃(8)/g̃(4), and g̃(16)/g̃(8). For L/r � 16
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FIG. 3. (Color online) Correlation functions ga(r) (triangles) and
gd(r) (circles) as a function of distance r . These functions describe
sublattice-sublattice correlations in two different directions. The
numerical errors are smaller than the symbol sizes, except for the
largest values of r where they are about the same. The curves are
added for clarity. The straight line corresponds with decay as r−1/4

and serves only for the purpose of comparison with the Monte Carlo
data.

the correlation function g(L,r) depends only weakly on L,
and we neglect this dependence, i.e., we set g̃(∞) = g̃(16).
Combining the numerical results for these ratios, one obtains
the ratios g̃(∞)/g̃(L/r) for L/r = 2,4,8, . . .. These ratios
serve as correction factors to estimate the infinite-system
correlation function as

g(r) = g̃(∞)

g̃(Lmax/r)
g(Lmax,r), (24)

where Lmax = 512 is the largest system that was simulated.
The correction factors g̃(L/r)/g̃(L/2r) were determined from
data for system sizes 512 and 256 and independently for sizes
256 and 128. On this basis we are confident that the procedure
leads to results for correlation functions g(r), as defined below,
with errors not exceeding a few percent.

We define a sublattice correlation function ga along the
direction of the lattice axes and another one gd in the diagonal
direction:

ga(r) ≡ 〈σx,yσx+r,y〉 − ρ2 (25)

and

gd(r
√

2) ≡ 〈σx,yσx+r,y+r〉 − ρ2. (26)

These quantities were sampled during simulations of systems
with sizes L = 128, 256, and 512 for μ = 4.58, which is close
to the critical point. Data were taken for r equal to powers of
2 up to L/2. The results are shown in Fig. 3. These data show
that the density-density correlation function on the sublattices
is larger along the edge direction than along the diagonal
direction. The difference persists until distances exceeding
100 lattice units.
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FIG. 4. (Color online) Correlation functions g1(r) and g2(r) as a
function of distance r . These functions describe the correlations in the
x direction between the x and y components of the magnetization in
the spin representation of the present lattice gas model. The numerical
errors are smaller than the symbol sizes, except for the largest values
of r where they are about the same. The curves are added for clarity.
The straight line corresponds with decay as r−1/4 and serves only for
the purpose of comparison with the Monte Carlo data.

Two more types of correlations were determined. They are
conveniently described in terms of the three-valued spins sx

and sy defined earlier in each elementary square:

g1(r) ≡ 〈sx
x,ys

x
x+r,y〉 (27)

and

g2(r) ≡ 〈sy
x,ys

y
x+r,y〉. (28)

These correlation functions describe the decay of the correla-
tions for each of the two spin components. The data for system
sizes up to L = 512 were corrected for the finite-size effect as
described above. The results are shown in Fig. 4. It appears
that the anisotropy of the pair g1, g2 is even more prominent
than that of ga, gd. Nevertheless, the results shown in Fig. 4
suggest that the anisotropy disappears at distances exceeding
a few hundred lattice units.

IV. DISCUSSION

The behavior of the correlation lengths found by the
transfer-matrix calculations in Sec. III A does not seem to
agree with a simple scaling limit. Some of the scaled gaps
yield intersections that lie in the neighborhood of the expected
critical point but do not allow accurate extrapolations, and
the value of the scaled gap does not seem to converge to the
expected scaling dimensions. Some other scaled gaps do not
even approximately agree with the expected behavior near a
critical point. Moreover, the results for the smallest gap, which
we interpret as describing the magnetic correlation function,
display a pronounced difference between the axial and the
diagonal directions. The dissimilarity between these directions
is such that one might even doubt whether the present
lattice-gas model satisfies asymptotic conformal invariance
at criticality. This anisotropic behavior resembles that of an
exactly solved tiling model [32,33] of a plane by triangles

and squares. The latter model satisfies scale invariance but not
conformal invariance, and its asymptotic behavior is that of
two decoupled, anisotropic free-fermion models [34]. Because
the anisotropy of the two models has the opposite sign, it
cannot be absorbed by an anisotropic scaling of the lattice.
However, the analysis of correlations of the present lattice-gas
model over a much longer range than what can be accessed by
transfer-matrix methods indicates that the anisotropy vanishes
at large distances and thus shows behavior consistent with
asymptotic conformal invariance. This interpretation is also
consistent with the expected value c = 1 of the conformal
anomaly in relation with the finite-size estimates quoted in
Sec. III A 2.

The transfer-matrix results, especially those of the “edge”
transfer matrix, should be interpreted in terms of the absence of
finite-size convergence in the range of available system sizes.
It is quite clear that the correlation functions do not reach
their asymptotic regime within the range L � 36 of available
finite sizes. The fact that the “edge” transfer matrix yields
results that are even worse than the “diagonal” one can be
related to the inequivalence of the x and y directions in the
cylindrical geometry. This becomes already clear by inspection
of the ground states, which consist of rows of particles, all of
which are in either the x or in the y direction. Each such
row can take two distinct configurations, related by a shift
in the direction of the row. For a long cylinder, this twofold
degeneracy leads to a strong tendency for the formation of
such rows perpendicular to the axis of the cylinder, instead
of parallel. This effect is purely entropic. It leads to long-
ranged correlations in the length direction of the cylinder,
associated with the occupation difference between the odd
and the even rows. These correlations can thus be associated
with the negative eigenvalue λ1, in line with the small values
of the scaled gaps near the critical point as shown in Fig. 1(a).
For transfer in the diagonal direction, the x and y directions
remain equivalent and the transfer-matrix results for X1 and
X2 seem better behaved, although the values of the scaled
gaps do not agree with the expected scaling dimensions. Our
interpretation is that they are still subject to relatively strong
corrections to scaling and that exposure of the true asymptotic
behavior requires much larger system sizes.

This interpretation is supported by the analysis of the Monte
Carlo results, which leads to consistent results only for system
sizes exceeding 48 or 64. The analysis of the correlation
functions shows that asymptotic isotropy is reached only for
system sizes of several hundred lattice units. Although our
data analysis for systems larger than about L = 64 leads
to acceptable residuals, one has to keep in mind that the
remaining range of system sizes is not wide; accordingly, we
quoted conservative errors of four σ in Table I. Also taking
into account the independent determination of the temperature
exponent in Sec. III B 3, we present our final estimate as
yt = 1.06(3).

Even with this conservative error estimate, the deviation of
yt from the Ising universal value is significant. Together with
the absence of a theoretical argument in favor of Ising-like
behavior, it thus seems very likely that the universality class
of the present lattice gas is not Ising-like and corresponds
instead with a Baxter model or an Ashkin-Teller model with
a positive four-spin coupling. This interpretation is consistent
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with our numerical result for yh, which is close to the expected
value 15/8. However, the statistical error listed in Table II has
still to be revised to include the effect of the uncertainty in
the critical point, which we quote as μc = 4.584(2) on the
basis of the results in Table I. This leads to our final estimate
yh = 1.877(9).
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[20] H. W. J. Blöte and M. P. Nightingale, Physica A 112, 405
(1982).
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[23] H. W. J. Blöte and M. P. Nightingale, Phys. Rev. B 47, 15046

(1993).
[24] J. L. Cardy, J. Phys. A 17, L385 (1984).
[25] M. R. Hestenes and E. Stiefel, J. Res. Natl. Bur. Stand. 49,

(1952); see also K. E. Atkinson, An Introduction to Numerical
Analysis, 2nd ed. (John Wiley & Sons, New York, 1989).

[26] J. R. Heringa and H. W. J. Blöte, Phys. Rev. E 57, 4976 (1998).
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