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Front propagation in an A → 2A, A → 3A process in one dimension: Velocity,
diffusion, and velocity correlations
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We study front propagation in the reaction-diffusion process {A ε→ 2A,A
εt→ 3A} on a one-dimensional

lattice with hard-core interactions between the particles. Using the leading particle picture, the velocity of the
front is computed using different approximate methods that yield results in good agreement with simulation
results. We observe that the front dynamics exhibits temporal velocity correlations that must be accounted for to
obtain accurate estimates of the front diffusion coefficient. Interestingly, these temporal correlations change sign
depending upon the sign of εt − D, where D is the bare diffusion coefficient of A particles. For εt = D, we find
analytically as well as numerically that the leading particle and thus the front move as an uncorrelated random
walker.
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I. INTRODUCTION

Fronts that separate different phases occur in a large number
of physical, chemical, and biological settings [1–4]. The
propagation of such fronts is a ubiquitous phenomenon when
such systems are away from equilibrium. In this paper we study
the front dynamics in the reaction-diffusion system A

ε→ 2A,
A

εt→ 3A in a one-dimensional (1D) lattice. The front separates
a region asymptotically fully occupied by A particles from a
region that is asymptotically empty. Hard-core interactions
between particles are enforced by allowing each lattice site to
be empty or occupied by at most one particle. The unique
feature of our model lies in the occurrence of the “twin”
creation process A → 3A, in addition to the more familiar
single creation process A → 2A. The twin creation process
along with the hard-core interactions leads to interesting
temporal velocity correlations. These temporal correlations,
and our ability to provide analytic results, motivate this work.

A mean-field description of the model is provided by the
partial differential equation for the coarse grained concentra-
tion ρ(x,t),

∂ρ

∂t
= �

∂2ρ

∂x2
+ aρ − bρ2 + cρ3, (1)

where � is an effective diffusion coefficient [5], and a, b, and
c are related to the two microscopic processes of rate ε and εt

of particle creation. This description is expected to hold at the
macroscopic level.

Equation (1) reduces to the well-known Fisher equation [6]
in the absence of the twin creation process A → 3A. The
front dynamics in the microscopic lattice model for A →
2A using two-site correlations has been studied extensively
[7–12]. The inclusion of the process A → 3A involves three-
site correlations and gives rise to interesting results as reported
in this paper.

*Present address: Department of Chemistry and Biochemistry, and
BioCircuits Institute, University of California San Diego, La Jolla,
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The mean-field description admits traveling-wave solutions
of the form ρ(x,t) = φ(x − vt), where the velocity of an
initially sharp front between the ρ = 1 (stable) and ρ = 0
(unstable) states approaches an asymptotic velocity V0 =
2
√

a�. The important feature to be noted here is that a mean-
field equation fails to deal with internal fluctuations arising
from the discrete nature of the reacting species, especially in
lower dimensions or when, as in our case, the occupancy per
site is small. As shown for the diffusion-controlled process
2A → 0, the mean-field theory predicts a decay of the global
concentration ρ(t) = ∫

dx ρ(x,t) that goes asymptotically as
ρ(t) ∼ 1/t . However, in lower dimensions it has been observed
that the decay of ρ(t) is slower than 1/t . In fact, in 1D,
ρ(t) ∼ t−1/2 while in 2D, ρ(t) ∼ ln t/t [13]. Similarly, for the
front dynamics in A ↔ 2A, it is known that even for very large
occupancy N per site behind the front, discreteness effects
always affect the front, and the front velocity V converges very
slowly to the mean-field velocity |V − V0| ∼ 1/ln2 N [14].
The mean-field results are recovered for N → ∞. Thus, for
macroscopic systems one can safely neglect these correlations.
However, for systems with a finite number of particles
and/or in lower dimensions, fluctuation-induced behavior
emerges [15,16].

We focus on a 1D lattice and, using a leading par-
ticle picture, we study the front velocity and the diffu-
sion coefficient. We find analytic estimates for the front
velocity using different approximate methods which are
in increasingly good agreement with Monte Carlo simu-
lation results. Accounting for temporal correlations is not
necessary to obtain these accurate results. However, we
find that an accurate calculation of the front diffusion
coefficient requires that one take into account temporal
velocity correlations. Interestingly, it is observed that these
correlations change sign depending on the sign of c − �.
For c = �, we find analytically as well as numerically
that the leading particle and thus the front move as an
uncorrelated random walker. For this special case, through
an explicit analysis, we show that two successive steps are
uncorrelated.
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II. MODEL

We consider a 1D lattice of sites i and start with a step
function-like distribution where the left half (i � 0) is filled
with A particles while the right half (i > 0) is empty. The
size L of the lattice is chosen to be sufficiently large for
boundaries not to be of concern. We update the system random
sequentially, with L microscopic moves corresponding to one
Monte Carlo step (MCS). Explicitly, each update consists
of the random selection of a site with uniform probability
from among the L sites of the lattice. If the chosen site is
occupied, then the particle at that site can undergo one of
three microscopic moves: (1) It can jump to the left or right
nearest-neighbor site if it is empty, i.e., (10) → (01) (right
jump) or (01) → (10) (left jump), each with rate D. Here
(10) corresponds to a configuration of a pair of neighboring
sites, with 1 and 0 representing occupied and empty sites,
respectively. (2) The particle can give birth to one particle
at the left or right nearest-neighboring site if that site is
empty, i.e., (10) → (11) or (01) → (11), each with rate ε.
(3) The particle can generate two new particles at both the
neighboring sites provided both are empty, i.e., (010) → (111)
with rate εt . These choices of microscopic moves lead to the
following values for the parameters in Eq. (1): a = 2ε + εt ,
b = 2ε + 2εt , c = εt , and � = D.

As time evolves, these microscopic moves result in the
stochastic motion of the front which may be identified with
the leading A particle. After a transient time, the front reaches
an asymptotic state and we wish to compute the speed and
diffusion coefficient of the front in this regime. Let us denote
by P (X,t), the probability of finding the leading A particle at
X at time t , and by Q0(X,t), the joint probability of finding
the leading particle at X and the site immediately to the left of
it to be empty. Then the equation for the evolution of P (X,t)
is [17–19]

∂P (X,t)

∂t
= (ε + D)P (X − 1,t) + εtQ0(X − 1,t)

+DQ0(X + 1,t) − (ε + D)P (X,t)

− (εt + D)Q0(X,t). (2)

This is not a closed equation for P (X,t) because Q0(X,t) is
also unknown at this point. The latter joint probability can in
turn be written as

Q0(X,t) = [1 − ρ(X − 1,t)] P (X,t), (3)

where ρ(X − 1,t) is the conditional probability that site X − 1
is occupied given that the front is at X at time t . This
conditional probability is also unknown at this point. In fact, to
determine the evolution of Q0 requires the introduction of an
infinite hierarchy of such conditional probabilities involving
sites further and further removed from the front. We will not
do this but instead will introduce appropriate approximations
when needed.

The speed V and the diffusion coefficient Df of the front
are in general defined as

V = lim
t→∞

d

dt
〈X(t)〉, (4)

Df = 1

2
lim
t→∞

d

dt
[〈(X2(t)〉 − 〈X(t)〉2], (5)

where 〈f (X,t)〉 ≡ ∑
X f (X,t)P (X,t). Note that D and Df

differ because the former is a microscopic rate of motion to a
site given that it is empty, while Df is a macroscopic diffusion
coefficient that includes the occupancy information. We write

ρ1(t) ≡
∑
X

ρ(X − 1,t)P (X,t). (6)

This is the probability that the site behind the leading particle
is occupied at time t . Using the normalization

∑
X P (X) = 1

along with the time-independent limit ρ1(t) → ρ1 in the steady
state, we arrive at the expression for the asymptotic velocity
of the front,

V = ε + εt − ρ1(εt − D). (7)

The only unknown in this expression, which is exact, is ρ1.
The diffusion coefficient is given from Eq. (5) as

Df = 1

2
{ε + εt + 2D − ρ1(εt + D)}

+ (εt − D)

[∑
X

XQ0(X) − (1 − ρ1)
∑
X

XP (X)

]
.

(8)

This quantity requires knowledge of the full evolution of the
system. However, if we implement the approximation ρ(X −
1,t) → ρ1, that is, that in the steady state the conditional
probability can be approximated by the density at the site
behind the leading particle, then the second line drops out and
we arrive at the approximate expression

D0 = 1

2
{ε + εt + 2D − ρ1(εt + D)}. (9)

We have replaced the subscript f on D by a 0 to stress that an
approximation has been made. In this expression once again
the only unknown is ρ1. At this point we do not know the
severity of this approximation, whose effect is to neglect tem-
poral correlations implicit in Eq. (2). In an interacting system,
we cannot a priori neglect such correlations. It now remains
to determine the unknown steady-state density ρ1 behind the
front, and to assess the severity of the approximation.

Expressions (7) and (9) for the front velocity and diffusion
coefficient can be understood by visualizing the front as a
random walker that moves to the left or right with certain
rates. For such a walker, the velocity and diffusion coefficient
are given as Rr − Rl and (Rr + Rl)/2, respectively, where Rr

and Rl are the rates at which the walker moves to the right
or left. In our model the front moves to the left with rate
Rl = D(1 − ρ1), which corresponds to hopping of the front to
the left site if it is empty. To find the rate with which the front
moves to the right, we first note that this can happen in three
ways. It can happen if the front either jumps or gives birth to
a single particle at the right empty site, or if it generates two
particles at the neighboring sites, provided the site just behind
it is empty, i.e., Rr = D + ε + εt (1 − ρ1). Using these rates
one can find the front velocity and diffusion coefficient as given
by Eqs. (7) and (9), respectively. Here it is important to note
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FIG. 1. (a) Percentage relative error in V , i.e., (|V s − V a|/V s) × 100 (V s and V a representing simulation and analytic results, respectively),
vs εt , with D = 0.25 and ε = 0.025. l = 1 (stars), l = 2 (open squares), 2P (open circles), and MR (filled circles). The simulation and analytic
profile using MR are almost coincident for the range of parameters explored. (b) Percentage relative error in V vs D, with ε = 0.05 and εt = 0.
The top data (filled squares) corresponds to Ref. [7] for l = 3 (eight states). The middle data (open circles) corresponds to the Kerstein [11]
two-particle self-consistent representation, while the bottom data (filled circles) is the result of the mixed representation.

that the master equation (2) with the approximation discussed
above is based on the assumption that the future evolution of
the system is sensitive only to the present state of the system
and thus describes a simple random walk which neglects
temporal correlations in subsequent steps [20]. However, as
we will see later, this is in general not the case; indeed, we will
see that the front here moves as a correlated random walker.
Thus we interpret D0 as the front diffusion coefficient in the
absence of any temporal correlations, and will subsequently
find corrections to this expression.

We note that Eqs. (7) and (8) are exact, and that the static
correlations in the problem are embodied in the quantity ρ1.
In Ref. [9], where εt = 0, it was shown that the front velocity
asymptotically approaches the mean-field value V = V0 =
2
√

2εD in the limit D/ε → ∞, while V = ε + D ∼ ε in the
opposite limit D/ε → 0. However, between these two extreme
limits we need to know ρ1, and we expect to require knowledge
of ρ1 for εt 
= 0.

Before proceeding to compute ρ1 for the most general case,
we discuss some special cases. (i) For D = 0, no vacancies can
be created between two A particles and thus the asymptotic
front profile is a sharp step. Consequently, no twin production
takes place (as the site to the left of the leading particle is
always occupied, that is, ρ1 = 1). Hence the speed should be
independent of εt , as confirmed from Eq. (7): V = ε. In this
limit Eq. (9) gives D0 � ε/2. (ii) For D = εt , one obtains
V = ε + εt independently of ρ1. More interestingly, in this
case Df = D0, i.e., the front moves as an uncorrelated random
walker.

III. FRONT VELOCITY

In this section we present three approximate analytic
methods to estimate ρ1 and with this the front velocity as
obtained given in Eq. (7). The first method is the so-called
fixed site representation discussed in Ref. [7]. In this method,
a truncated master equation is written in the frame moving
with the front to describe the evolution of particles up to a
given number (l) of sites behind the front. The density at the
(l + 1)st site behind the front is approximated as the bulk
density, i.e., ρl+1 = 1. In Appendix A we have illustrated this

scheme for l = 1. In this case we work with a set of two states,
{01} and {11}, with the rightmost “1” representing the front
particle and a “0” representing an empty site. As shown in
Fig. 1, the front velocity V estimated with this approximation
is in reasonable agreement with the simulation results. For the
special case D = εt , as discussed earlier, the figure confirms
that the theoretical result agrees exactly with the simulation
result. We also notice that the approximate analytic results
in general show improved agreement with the simulation
results for larger values of εt . Conversely, as εt decreases and
approaches zero, we see a gradual departure of the simulation
data from the analytic outcome. This is due to the fact that the
density at the ith site behind the front, ρi , differs significantly
from the bulk density as εt decreases. This is shown in
Fig. 2. The estimate for the velocity can be further improved if
we explicitly include a larger number of sites in the dynamical
description, that is, if we increase l. For example, for l = 2
we consider the explicit evolution of four states: {001}, {011},
{101}, and {111}. The improved results are shown in Fig. 1.

The second approximate method is the two-particle rep-
resentation (2P) proposed by Kerstein [11]. Here each state
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FIG. 2. Density profile behind the front for different values of
εt , for D = 0.25 and ε = 0.025. As εt decreases, the density profile
curve shifts away from the bulk density level.

061152-3



NIRAJ KUMAR, GOUTAM TRIPATHY, AND KATJA LINDENBERG PHYSICAL REVIEW E 83, 061152 (2011)

 0.01

 0.01  0.1  1

V

εt

(a)

D=0.005

 0.01

 0.1

 0.001  0.01  0.1

V

εt

slope=0.5
(b)

D=0.45
 0

 25

 50

 0.02  0.04

FIG. 3. Front velocity V vs εt for ε = 0 and two different values of D on a log-log scale. In (a) we vary εt from 0.01 to 0.99 while in (b) we
vary εt from 0.003 to 0.10. The inset in (b) plots the percentage relative difference (|V − V0|/V ) × 100 as a function of εt . V0 is the mean-field
prediction.

of the system is defined by only the two rightmost particles.
This leads to an infinite set of states: {11}, {101}, {1001},
{10001}, {100001}, . . .. The rightmost “1” represents the front
particle and the leftmost “1” the second particle. We have
computed ρ1 using this scheme for the process under study
(see Appendix B). The results obtained using this method are
in good agreement with the simulation results marked 2P in
Fig. 1.

Since we are dealing with a multiparticle interacting system,
it is in general desirable to include a larger number of particles
in the explicit state to find better analytic estimates. Motivated
by this, we propose a scheme, which we call the mixed
representation, in which we explicitly include all states that
have either two or three particles. Thus, the set of states that
we study here is {011}, {111}, {0101}, {1101}, . . ., and obtain
an estimate for ρ1 using a procedure similar to that used in
the 2P representation (see Appendix C). This representation
can be considered as the simplest extension of two-particle
representations and yields better results than either of the above
two schemes. The results are marked as MR in Fig. 1.

Finally, we have also studied the front dynamics in two
interesting limits, namely, diffusion-controlled and reaction-
controlled dynamics. In the diffusion-controlled limit, D �
εt ∼ ε, we expect the front velocity to be independent of
εt , which is confirmed by our simulation results [Fig. 3(a)].
In the reaction-controlled limit, when diffusion is very fast
compared to the reaction processes, we expect the mean-field
continuum equation to be valid as has been shown exactly
for the process A → 2A in 1D [9]. In this limit we observe
that V ∝ ε

1/2
t , indicating mean-field-like behavior. The agree-

ment with numerical results indeed improves as εt/D → 0
[Fig. 3(b)].

IV. FRONT DIFFUSION COEFFICIENT

In order to further study the effects of temporal correlations
on the front dynamics, in Fig. 4 we present three sets of
results for the front diffusion coefficient. One is the value
of D0 using the approximate value of ρ1 calculated using
the fixed site representation approximation with l = 2 in
Eq. (9). Another is the value of D0 calculated with values
of ρ1 obtained from simulations. The third is the value Df

obtained from simulation results. The following observations

are immediately evident: (1) For D = εt , the analytical value
D0 calculated with either ρ1 agrees well with the simulation
result Dsim

f ; (2) for εt > D, Dsim
f > D0; and (3) for εt <

D, Dsim
f < D0. These overestimates and underestimates are

presumably due to the neglect of the second line of Eq. (8) in
the calculation of D0.

The effect of temporal correlations in the velocity on the
front diffusion coefficient that have been omitted in D0 can be
studied using the Green-Kubo result for the asymptotic front
diffusion coefficient,

Df = D0 +
∫ ∞

0
C(t)dt. (10)

Here C(t) is the temporal velocity correlation function defined
as

C(t) = 〈v(0)v(t)〉 − 〈v(0)〉〈v(t)〉, (11)
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FIG. 4. Comparison of the front diffusion coefficient vs εt

obtained in three ways. The filled circles show D0 of Eq. (9) with
ρ1 obtained using the approximate value of ρ1 from the fixed site
representation with l = 2. The stars show D0 of Eq. (9) with ρ1

obtained directly from the simulations. The exact simulation results
for Df are indicated by open circles. Other parameters: D = 0.25,
ε = 0.025. We note that when εt = D = 0.25, the analytic results
exactly match the simulation.
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ε = 0.025. The velocity correlation is seen to vanish when εt = D.
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where v(t) is the displacement of the front per unit time at
time t . In Fig. 5 we have plotted the temporal velocity
correlations C(t) for different values of εt . For εt > D, we
observe positive correlations while for εt < D, the correlations
are negative. Most interestingly, for εt = D, C(t) vanishes for
all t . Thus, εt = D is a special case for which the front particle
moves as an uncorrelated random walker.

We proceed to show explicitly that for the special case
εt = D two consecutive steps of the leading particle are indeed
uncorrelated in the steady state. The analysis is based on the
fact that in two successive steps, separated by L microsteps,
the front is picked on average once.

Since at most two sites behind the front can be affected in
two consecutive steps, we explicitly consider four states cor-
responding to l = 2, namely, {001}, {011}, {101}, and {111},
with the rightmost “1” representing the front. We then write

〈v(t)v(t + 1)〉 = R++ − R+− − R−+ + R−−, (12)

where

Rij = R001
ij + R011

ij + R101
ij + R111

ij (13)

denotes the steady-state flux for taking two consecutive steps
labeled by i = ± and j = ±. For example, R001

−− is the flux of
two consecutive negative steps starting from the state 001. The
only way this can occur is if the front particle makes two dif-
fusive moves to the left, which in turn can only happen if those
sites are empty. Thus R001

−− = D2P001, where P001 is the steady-
state weight of the configuration {001}. Considering all such
two successive moves in the each state, we can clearly write

R++ = D2 + 2εD + εtD + ε2 + (εtD + εtε){P001 + P101},
R+− = D2,

R−+ = (D2 + Dε + Dεt )P001 + (D2 + Dε)P101,

R−− = D2P001. (14)

This in turn immediately allows us to write

〈v(t)v(t + 1)〉 = ε2 + Dεt + 2εD + {εtD + εtε

−D2 − Dε)}P101 + {εtε − Dε}P001.

(15)

Similarly,

〈v(t)〉 = 〈v(t + 1)〉
= ε + εt − {P011 + P111}(εt − D). (16)

To compute these quantities we next need to determine the
probabilities of the different states that appear in the above
expressions. This is in general difficult to do analytically.
However, we straightforwardly observe that when εt = D,
the correlation function 〈v(t)v(t + 1)〉 − 〈v(t)〉〈v(t + 1)〉 is
independent of all the probabilities and vanishes identically.
Thus, two successive steps are temporally uncorrelated, as
observed in the simulations, cf. Fig. 5. We also stress that
for this special case the above analysis does not involve
any approximation, that is, it is exact. This is an interesting
nonequilibrium state in which there are spatial correlations
but no temporal correlations [22].

When we depart from this special case, it is evident that
for εt 
= D, 〈v(t)v(t + 1)〉 
= 〈v(t)〉〈v(t + 1)〉, i.e., the front
motion is now correlated. Preliminary fits suggest that the
temporal velocity correlation function has the general form
C(t) ∼ tαe−βt/τ .

The reaction-diffusion system presented above can be gen-
eralized by allowing annihilation of particles, e.g., 2A → A

with, say, rate W . The speed of the front in this case may be
written following the steps leading to Eq. (7), and we obtain

V = ε + εt − ρ1(εt + W − D). (17)

This implies that for εt + W = D, the front speed is indepen-
dent of ρ1. For this special case the temporal correlations in
velocity are also found to vanish numerically. Following the
steps used earlier in this section we can explicitly show that two
successive steps are indeed uncorrelated. Note that this con-
dition generalizes two special cases. One is the result that we
have discussed in this paper, for which W = 0 and εt = D. The
other is the well-studied process A ↔ 2A (no creation of twins,
εt = 0), for which there are no temporal correlations when
W = D. In Fig. 6 we schematically show the general result,
that is, that everywhere on the εt + W = D plane the temporal
velocity correlations vanish. Furthermore, spatial correlations
also vanish on the line εt = 0, W = D. The signs of the tem-
poral correlations (found numerically) are shown in different
sections of the coordinate plane. It is interesting to note that
for εt > D, W = 0, the sign of the correlations is positive,
whereas it is negative on the D = 0 and εt = 0 planes. Thus, if
parameters are continuously changed to connect a point on the
εt > D, W = 0 plane to one on either of the D = 0 or εt = 0
planes, C(t) must vanish at some intermediate point. This
has in fact been verified by our simulation results, as shown
in Fig. 7.

V. CONCLUSION

We have studied the front dynamics for the reaction-
diffusion system {A ε→ 2A,A

εt→ 3A} on a one-dimensional
(1D) lattice. We also briefly considered a generalization of
this rate scheme in which there is a reverse reaction 2A

W→ A

whereby an A particle can die. The A particles can random
walk onto neighboring sites with transition rate D. No more
than one particle may occupy a lattice site, so all of these rate
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FIG. 6. Schematic representation of the temporal velocity corre-
lation function C(t) for different values of D, W , and εt , with + and
− denoting the sign of C(t). The plane D = εt + W corresponds
to C(t) = 0, which also contains the lines εt = D, W = 0, and
W = D,εt = 0.

processes are only allowed when there are appropriate empty
sites to accept the process, be it a singlet birth, a twin birth, or
a diffusive step. The rightmost occupied site is defined as the
front.

We have calculated the front velocity analytically using
different approximate methods. In the fixed site representation
one can systematically improve upon estimates of the front
velocity by studying the explicit evolution of particles at
increasingly larger numbers of sites behind the front. The
results from the two-particle fixed site representation pro-
cedure and from the mixed representation procedure show
gratifying agreement with the simulation results. The mixed
representation scheme leads to the simplest generalization of
the two-site representation method and can be applied to other
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W=0.125

FIG. 7. Simulation results for velocity correlation function of the
front as a function of time t , for different values of W while keeping
D = 0.05, ε = 0.025, and εt = 0.15 fixed. We note that when W �
0.05, this correlation is zero.

processes as well. We also observe that when diffusion is
very large compared to the reaction rates, the front velocity
converges to the mean-field velocity.

We have also directed our attention to the front diffusion
coefficient. In general, in nonequilibrium interacting sys-
tems the temporal velocity correlations affect the diffusion
coefficient. However, interestingly, on the parameter plane
εt + W = D these temporal correlations vanish and the front
performs a temporally uncorrelated random walk, a result that
we are able to obtain analytically as well as numerically.
Furthermore, there are spatial correlations that only vanish
when W = D, εt = 0. This result generalizes one found earlier
for the single-particle creation problem A ↔ 2A [21].
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APPENDIX A: FIXED SITE REPRESENTATION

In this Appendix we illustrate the fixed site representation
scheme for the simplest case, l = 1. Transitions occur between
the two states {01} and {11} due to the microscopic processes in
the system shown in Fig. 8. Considering all such transitions, the
probabilities of these two states follow the evolution equations

∂P01

∂t
= (2D − Dρ2)P11 − {2Dρ2 + ε(2 + ρ2)

+ εt [1 + ρ2(1 − ρ3)]}P01,

∂P11

∂t
= {2Dρ2 + ε(2 + ρ2) + εt [1 + ρ2(1 − ρ3)]}P01

− (2D − Dρ2)P11. (A1)

Here, ρi is the density at the ith site behind the front, and
we have neglected the spatial density correlation between
consecutive pairs of sites beyond the second site behind
the front. Using Eq. (A1) and the normalization condition
P01 + P11 = 1, in the steady state we obtain the following

εt

(d)

D

ε

D

(a)

(b)

(c)

FIG. 8. Microscopic moves. The rightmost • represents the front.
(a) Diffusion of the front particle to its right site leading to a transition
from {11} to {01} with a rate D. (b) Creation of one particle to the left
of the front leads to a transition from {01} to {11} with a rate ε.
(c) {01} changes to {11} due to the creation of twins at both
neighboring sites of the front with a rate εt . (d) If the front moves
diffusively to its left and the second site behind the front is occupied,
there is a transition from {01} to {11} with a rate Dρ2, where ρ2 is the
occupancy probability of the second site behind the front.
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expression for ρ1:

ρ1 = 2Dρ2 + ε(2 + ρ2) + εt [1 + ρ2(1 − ρ3)]

Dρ2 + 2D + 2ε + ερ2 + εt [1 + ρ2(1 − ρ3)]
. (A2)

In order to find ρ1 we need to know ρ2 and ρ3. As a first
approximation we assume that ρ2 = ρ3 = 1, the bulk density.
We then find

ρ1 � 2D + 3ε + εt

3D + 3ε + εt

. (A3)

Using this value of ρ1 in Eq. (7) allows analytic estimates of
the front velocity. We can also extend the above procedure to
higher values of l.

APPENDIX B: TWO-PARTICLE REPRESENTATION

In this Appendix we use Kerstein’s two-particle represen-
tation [10,11] for the analytic estimates of the front velocity.
We denote by Pk the probability of a two-particle state with k

empty sites between the leading particle and the next particle
behind it. These states form a closed set under transitions due
to microscopic processes. We have illustrated a few transitions
in Fig. 9. Considering all such transitions and denoting the
probability of occupancy of the site just behind the second
particle by ρ, we write the following rate equations for Pk:

∂P0

∂t
= (ε + 2D)P1 + εt (1 − ρ)P1 + (2ε + εt )(1 − P0)

− (2D − Dρ)P0,

∂Pk

∂t
= (2D − Dρ)Pk−1 + {ε + 2D + εt (1 − ρ)}Pk+1

− (4D − Dρ + 3ε + 2εt − εtρ)Pk, k � 1.

(B1)

(a)

(b)

(c)

(d)

FIG. 9. Transition between two particle states with rightmost •
representing front. (a) Diffusive move of the front particle to its left
leading to transition 101 → 11 with a rate D. (b) When the second
particle behind the front jumps to the left, provided it is empty, the
state changes from 101 → 1001 with a rate D(1 − ρ). (c) Birth of a
single particle by the second particle to its left with rate ε leads to
the transition 1001 → 101 and (d) 1001 → 101 if the second particle
gives birth of two particles, provided the site left to it is empty, with
a rate εt (1 − ρ).

In order to solve Eq. (B1) we need to specify the dependence of
ρ on the parameters ε, εt , and D. Following Kerstein [11], we
write ρ as a linear combination of P0 and P 2

0 with coefficients
to be determined. Enforcing the condition that ρ = 1 when
P0 = 1 leaves us with a relation in terms of a single free
parameter λ,

ρ = (1 + λ)P0 − λP 2
0 . (B2)

This equation implicitly specifies the dependence of ρ on the
model parameters through the parameter dependence of P0. To
reduce the infinite set of coupled (linear) equations to a single
(nonlinear) equation, we further follow Kerstein and use the
ansatz Pk = P0(1 − P0)k . With Eq. (B2) in Eq. (B1), in the
steady state this yields a quartic equation for P0,

εtλP 4
0 + (Dλ − εt − 2εtλ)P 3

0 + (ε + D + 2εt + εtλ

−Dλ)P 2
0 + εP0 − 2ε − εt = 0. (B3)

In order to find P0 we still need to fix the value of λ. For large
D and εt = 0, it is exactly known that the front particle moves
with its mean-field velocity [9]. We have also ascertained this
feature numerically for εt 
= 0 [cf. Fig. 3(b)]. Equating the
mean-field front velocity V0 = 2

√
(2ε + εt )D to that obtained

from Eq. (7), i.e., V ∼ DP0, for D very large compared to
other parameters, we find P0 = 2

√
(2ε + εt )/D. Using this

value of P0 in Eq. (B3), we find λ = 3/4 in the limit D → ∞.
Finally, we solve the quartic equation (B3) to get the value of
ρ1 = P0 and hence the front velocity.

APPENDIX C: MIXED REPRESENTATION

Here we discuss the proposed mixed representation scheme
and study the evolution of states {011}, {111}, {0101}, {1101},
. . .. We denote the states as (k,0) or (k,1), representing the
states having k empty sites between the front and the second
particle followed by either an empty site or an occupied site,
respectively, after the second particle. For example, (0,0)
represents the state {011} while (0,1) denotes the state {111}.
Some of the transitions in this representation are shown in
Fig. 10.

Next, we assume ρ to be the density of the site which is
the next nearest neighbor to the second particle. This allows
us to write the following rate equation for the evolution of the
probabilities P (k,0) and P (k,1), k = 0,1, . . . ,∞:

∂P (0,1)

∂t
= {Dρ + ερ + 2ε + εtρ(1 − ρ)}P (0,0)

+ (D + 2ε + εt )P (1,1) + (2ε + 2εt )P (1,0)

+ εt {P (2,0) + P (2,1) + P (3,0) + P (3,1) + · · ·}
− (2D − Dρ)P (0,1),

∂P (0,0)

∂t
= D(1 − ρ)P (0,1) + (D + ε)P (1,1)

+ (2D + ε)P (1,0) + 2ε{P (2,1) + P (2,0)

+P (3,0) + P (3,1) + · · ·} − {2D + 2ε + Dρ

+ ερ + εtρ(1 − ρ)}P (0,0),
∂P (k,1)

∂t
= DP (k − 1,1) + DρP (k − 1,0)

+{Dρ + ε + ερ + εtρ(1 − ρ)}P (k,0)
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(a)

(b)

(c)

(d)

D

ε

εt

D

FIG. 10. Transitions between mixed particle states with the
rightmost • representing the front. (a) Diffusive move of the particle
to the right empty site with a rate D. This leads to a transition from
(1,1) to (0,0). (b) Birth of a new particle on the right neighboring
empty site with a rate ε, which changes the state (1,0) to (0,1).
(c) Transition from (1,0) to (1,1) with a rate Dρ, when the third
particle jumps to the right neighboring empty site. (d) (1,0) → (0,1)
when the second particle behind the front in (1,0) produces twins at
the neighboring empty sites with a rate εt .

+ (D + ε)P (k + 1,1) + (ε + εt )P (k + 1,0)

− (4D + 3ε − Dρ + εt )P (k,1),
∂P (k,0)

∂t
= [D + D(1 − ρ)]P (k − 1,0) + D(1 − ρ)P (k,1)

+DP (k + 1,1) + 2DP (k + 1,0) − {4D + 4ε

+Dρ + ερ + 2εt + εtρ(1 − ρ)}P (k,0). (C1)

This is an infinite set of (linear) coupled equations. We
truncate the problem and find an analytic estimate for P0 by
solving the rate equations for P (0,0) and P (0,1), assuming
P (1,1) = ρP1, P (1,0) = (1 − ρ)P1. Using

∑1
i=0 P (k,i) =

Pk and
∑∞

k=0 Pk = 1, we find the steady-state expression
for P (0,0) and P (0,1) in terms of P1 and ρ, which in turn
leads to an expression for P0 in terms of these quantities
since

P (0,0) + P (0,1) = P0. (C2)

Following Kerstein [11], we use the ansatz P1 = P0(1 − P0)
and arrive at the equation

αP0(1 − P0) + βP0 + γ = 0, (C3)

where

α = (2ε + εt + Dρ − εtρ){3D + 2ε + ερ + εtρ(1 − ρ)}
+ (2D − Dρ − ε){2D + 2ε + ερ + εtρ(1 − ρ)},

β = {2D + 2ε + ερ + Dρ + εtρ(1 − ρ)}(2D − Dρ)

−{Dρ + 2ε + ερ + εtρ(1 − ρ)}(D − Dρ),

γ = εt (1 − P0){3D + 2ε + ερ + εtρ(1 − ρ)}

+ 2ε(1 − P0){2D + 2ε + ερ + εtρ(1 − ρ)}. (C4)

Equation (C3) contains the two unknowns ρ and P0. We
therefore need an additional relation between them to find
the desired P0. We specify the dependence of ρ on P0 in
a way analogous to the procedure followed in the case of
the two-particle representation (see Appendix B), and thereby
arrive at analytic estimates for P0 and hence for the front
velocity. The expressions are rather cumbersome and so we
only exhibit the results graphically in Fig. 1.
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