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We investigate the stability of growing vesicles using the formalism of nonequilibrium thermodynamics.
The vesicles are growing due to the accretion of lipids to the bilayer which forms the vesicle membrane. The
thermodynamic description is based on the hydrodynamics of a water and lipid mixture together with a model
of the vesicle as a discontinuous system in the sense of linear nonequilibrium thermodynamics. This formulation
allows the forces and fluxes relevant to the dynamic stability of the vesicle to be identified. The method is used
to analyze the stability of a spherical vesicle against arbitrary axisymmetric perturbations. It is found that there
are generically two critical radii at which changes of stability occur. In the case where the perturbation takes the
form of a single zonal harmonic, only one of these radii is physical and is given by the ratio 2Lp/Lγ , where Lp

is the hydraulic conductivity and Lγ is the Onsager coefficient related to changes in membrane area due to lipid
accretion. The stability of such perturbations is related to the value of l corresponding to the particular zonal
harmonic: those with lower l are more unstable than those with higher l. Possible extensions of the current work
and the need for experimental input are discussed.
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I. INTRODUCTION

The determination of the lowest energy configuration of a
vesicle is one of the most widely studied variational problems
[1–3]. The vesicle is modeled as a closed two-dimensional
surface in three dimensions with a given energy Em. The
subscript m denotes “membrane,” since in reality the surface
of the vesicle is a membrane in the form of a lipid bilayer
[4]. There are several different models which give different
expressions for Em [1]. The earliest, and most widely studied,
is the Canham-Helfrich-Evans approach [5–7], for which the
energy is given by

Em = κ

2

∫
(2H − C0)2 dA, (1)

where H is the mean curvature of the surface with area A,
and κ and C0 are constants: the so-called bending rigidity and
spontaneous curvature, respectively. The variational calcula-
tion might typically consist of finding the shape of the surface
which minimizes Em for a given vesicle volume V and surface
area A.

The popularity of this approach to determining vesicle
shape has much to do with the straightforward way it can
be posed—not requiring any substantial input regarding
vesicle structure or composition—and the richness of the
possible shapes which are found [1]. However these reasons
are also partly responsible why the field has been slow to
develop: going beyond this description is almost certainly
going to involve more of the physics of vesicles and the
resulting analysis may not be so elegant. One of the most
obvious drawbacks of the variational studies is that they are
static. They give us a snapshot of the shape of the vesicle, but
do not tell us how the shape evolves with time, or the time
taken for any new shape to come about.

Several dynamical studies of vesicles have already appeared
in the literature [8–15]. While these preliminary investigations
have proved useful in initiating research in this area, all have
been deficient in some way or other. For instance, some of them
are not truly dynamic, relying partially on the results of the

static analysis [8,9], while others assumed that vesicle shapes
were restricted to spheres or axisymmetric ellipsoids [12,15].
In this paper we describe a systematic approach to analyzing
the stability of growing vesicles.

An obvious question is: what dynamics should be imposed
on the system? Following previous treatments, the work
presented here uses the formalism of linear nonequilibrium
thermodynamics (LNET). This assumes that that the vesicles
are macroscopic [16]. This is reasonable given the size of
vesicles, although it is clear that in some circumstances
fluctuations will be important [17–21]. However it should be
noted that similar assumptions were made deriving the form of
the energy (1); it was based on an analogy between the rod-like
lipids and nematic liquid crystals, using the methodology
introduced by Frank [22] as motivation. This is a macroscopic
static description. The equivalent macroscopic dynamical
description will involve nematohydrodynamics [23–25]. The
approach taken here can therefore be seen as a natural
extension of the static description which leads to (1).

Unlike the static theory, it is necessary to postulate a
mechanism which takes the system away from equilibrium,
albeit slowly so that LNET holds. One mechanism could be
temperature change, another could be the accretion of lipids
onto the surface from the environment. We choose to model
the latter mechanism, although we would expect that much of
the formalism constructed will be more widely applicable.

As will become apparent, this study is restricted in two
ways. First, we concentrate on the stability of deformations (as
opposed to the full dynamics) and second, for mathematical
and presentational simplicity we focus on deformations which
take a spherical vesicle to an arbitrary axisymmetric shape.
The outline of the paper is therefore as follows. In Sec. II the
thermodynamics of a mixture of point-like constituents (water)
and rod-like constituents (lipids) is reviewed with the aim
of identifying the relevant forces and fluxes—and therefore
constitutive relations—in a discontinuous LNET description of
vesicle dynamics. In Sec. III the formalism required to describe
the change of shape of the vesicle is outlined. Section IV
brings these two aspects together to provide a dynamical
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description of a vesicle growing due to accretion which is used
to study the stability of a spherical vesicle to axisymmetric
perturbations. We conclude in Sec. V with a review of the
methodology of our approach and on the prospects for future
work. There are three technical Appendices, one for each of
Secs. II, III, and IV.

II. THERMODYNAMICS

In a previous study [15] which was restricted to deforma-
tions between spheres and ellipsoids, the thermodynamics of
vesicle growth was presented in a straightforward but minimal
way. Here the aim is to provide a more detailed account. Some
of the necessary theory—LNET, the rheology of nematics and
the study of liquid crystals—is already present in the literature,
though for clarity, certain parts are recapitulated (in light of
well-known texts) while the details of specific calculations are
provided in Appendix A.

A. Linear nonequilibrium thermodynamics

The application of LNET to membrane systems has been
studied previously [26–29], however the focus has been
primarily on transport phenomena with the membrane treated
as a single discontinuity separating two regions. In contrast,
this paper is concerned with the membrane itself, and the
deformations which occur during the process of growth due to
accretion. It is assumed from the outset that the bilayer is closed
(i.e., a vesicle) and that the surrounding solution is sufficiently
dilute that lipids only attach to the surface of the existing
bilayer (and do not form other aggregates). References [30,31]
have previously considered the aggregation of amphiphiles
(lipids) for which the chemical potential of a given species
is taken to be a function of the aggregation number, that is,
the number of molecules of the same species in the local
neighborhood. A similar mechanism is implicitly considered
here by assuming that any molecular preference to be part of
the bilayer, rather than part of the solution, is controlled by
chemical potential gradients.

The usual LNET approach [16] is to consider a system
sufficiently close to equilibrium that it can be divided into
very small subsystems which are effectively homogeneous.
Though small, these subsystems are considered mesoscopic,
that is, still large enough to define thermodynamic variables.
It is then possible to choose a sufficiently large scale on which
the variables that characterize each small subsystem form a
continuous field. Each subsystem, and so each point in space
on the larger scale, is taken to obey the Gibbs relation, which
can be written in the general form

T ds = du + pdν − {dg}T , p, (2)

where all variables are now functions of position and time.
Here T is the temperature, p is the pressure and following
the literature we use s, the specific entropy, given by S/M ,
where S is the entropy and M is the mass. Similarly, u =
U/M is the specific internal energy, ν = V/M is the specific
volume, and g = u − T s + pν is the specific Gibbs energy.
The subscripted brackets {· · ·}T , p are used to indicate that
both temperature and pressure are held constant. Traditionally,
the rate of entropy production is then written as a sum

of thermodynamic forces and fluxes which are related by
constitutive equations.

For many LNET problems the relevant scale is such that
the system effectively comprises a small number of uniform
(independent of position) regions. In these cases, gradients
of thermodynamic variables between regions are taken to be
singular. For such discontinuous [16] systems, thermodynamic
forces take the form of differences (rather than gradients) and
thermodynamic fluxes become total flows between regions. In
this paper vesicles are treated in such a way; the membrane
is taken to be a separate region of high lipid density—
arranged in typical bilayer configuration—with discontinuous
transitions to uniform dilute water-lipid solutions on either
side.

B. Growing vesicles

Consider the isolated system described in Fig. 1; no
external forces act, no chemical reactions may take place,
and temperature is taken to be constant throughout. The
boundaries of each region are characterized by the outward
normal, whereby all internal boundaries allow both heat and
particle transfer but the external system boundary is adiabatic.
Pressure is assumed to be controlled by a piston, shown in
gray, which allows heat but not particle transfer. Choosing
α ∈ {I − V} to label the separate regions of the system the
total mass contained in a region is given by

Mα ≡
∑

k

Mα
k =

∑
k

∫
α

ρkdV, (3)

where ρk is the partial mass density, k ∈ {l, w} is used to label
the components (lipid and water, respectively) and the integral
is over volume V of region α. With this in place it is possible
to introduce the total mass flux of a component out of a region

dMα
k

dt
≡ −

∫
α

ρk(vk − vb) · d A, ∀ α ∈ {I, II, III}, (4)

where vk is the partial velocity of component k, vb is
the velocity of the boundary, and d A is the area element
(aligned along the outward normal) of the surface Aα con-
taining region α. For external boundaries the usual “no-slip”
condition applies: v = vk = vb. However, in a departure
from [16], internal (permeable) boundaries are permitted to
move.

Our approach is to consider a separation of time scales
between the changes which occur to the membrane and the
dynamics of the surrounding fluid. Both the interior and
exterior regions are assumed to equilibrate on a time scale
much smaller than vesicle growth—that is, they are taken
to be uniform. Physically, such an assumption is plausible
in the light of molecular simulations which indicate that the
pressure difference between two regions separated by a bilayer
are surprisingly large [32]. There are undoubtedly far from
equilibrium regimes in which the vesicle is changing quickly
enough for heterogeneous pressure differences to arise, but
these situations are not considered in this paper. Indeed, for
the same reason we neglect any flow fields which could arise
as a result of friction with the moving membrane. As a result
of these assumptions, local mass fluxes at the boundary to both
regions (interior and exterior) are taken to be independent of
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I

FIG. 1. Vesicle system schematic: the system is formed from
two distinct phases, dilute water-lipid solution and the lipid bilayer,
which are partitioned into three regions, the exterior, membrane
and the interior, labeled I, II, and III, respectively. Thermodynamic
variables in regions I and III are taken to be independent of position;
there are no diffusion flows, viscous flows, or chemical potential
gradients. Region II, the membrane, is considered to have reached
equilibrium in the sense that the molecules are arranged in the usual
bilayer configuration (shown in the exploded section); “tails” pointing
inwards and long axis orientated along the surface normal. Changes
in the fluid resulting from transport in and out of the membrane are
assumed to be confined to very small areas surrounding the membrane
boundary, these areas are labeled IV and V and are taken to be
quasistationary, that is, state variables may vary with position but on
the time scale of changes experienced in regions I, II, and III, they
are independent of time. The exterior is taken to behave like a large
reservoir while, by contrast, it is assumed that there is no net exchange
of lipids between the membrane and the interior.

position. By contrast, the membrane, however, is not uniform.
As indicated in Fig. 1, molecules are assumed to be orientated
in a bilayer fashion so that for any shape other than a sphere,
the local configuration of lipids (e.g., molecular splay) has
an angular dependence. We make the assumption that such
differences do not mechanically affect the flow of mass, either
water or lipids, into or out of the membrane. Taking partial
velocities to be in the direction of the outward normal, local
mass fluxes given by ρk(vk − vb) are also assumed to be
constant at the boundary to the membrane region.

The relative configuration of lipids in the membrane
is, however, still considered important thermodynamically.
Indeed, for such a simplified description of vesicles—with
a uniform interior and exterior, driven by mass fluxes which
do not vary at different points on the membrane—it seems
reasonable to expect that any dynamical behavior (or shape
change) will involve averaging some thermodynamic quantity
over the membrane. For example, two vesicles of different
shapes but equivalent average molecular splay are anticipated
to undergo dynamics driven by the same total flows between
interior, exterior, and membrane regions. With this in mind,
confining the details to Appendix A, we find that the total
entropy produced in the system is given by

σtot = 1

T

∑
k

III∑
α=II

(
μ̄I

k − μ̄α
k

) dMα
k

dt
, (5)

where μk is the chemical potential of component k and a
bar above a variable denotes the average value taken over the
boundary to a region, in the sense that

x̄α ≡ 1

Aα

∫
α

xdA, (6)

for some thermodynamic variable x. Immediately it is clear
that μ̄α

k = μk for α ∈ {I, III}. (The average over the boundary
to region II is addressed below.) It should be noted that in
order to reach the result (5), one important assumption has
been made: that the entropy produced due to the re-alignment
of molecules as the vesicle grows can be neglected. This is
plausible in the context of a stability analysis of deformations;
any such entropy produced as a result of a small perturbation
in the shape is proportional to thermodynamic forces (such
as pressure and chemical potential gradients) within the
membrane. These gradients are considered negligible on the
scale of pressure and chemical potential differences across
the membrane.

One might now ask: what role is played by the energy which
arises from lipid interactions in the membrane? In order to
answer this, we suppose that the internal energy averaged over
the boundary to region II (the membrane) is well defined ther-
modynamically, in the sense that ūII = ūII(s̄II,ν̄II,{c̄II

k },ψ̄ II).
Here u, s, and ν are defined earlier, ck = Mk/M is the
concentration (of component k), and ψ = 	/M is introduced
as a specific extensive variable characterizing orientation
dependent—in this case, amphiphilic—interactions. Dropping
superscripts for simplicity, this implies

dū = T ds̄ − pdν̄ +
∑

k

μ̄kdc̄k + μ̄ψdψ̄, (7)

where μk is the chemical potential of component k and

μ̄ψ =
(

∂ū

∂ψ̄

)
T , p, {c̄k}

. (8)

Note that for this system T̄ = T and p̄ = p. Assuming that
the average specific internal energy is homogeneous and of
first order in the masses of each component implies that the
average specific Gibbs energy may be written as

ḡ =
∑

k

μ̄kc̄k + μ̄ψψ̄, (9)

that is, a sum of the usual free energy of a system of
point-like constituents—arising due to the concentrations of
components—and another term relating to the nematic nature
of the molecules. As previously mentioned, we use the simplest
macroscopic model of energy associated with the orientation
of lipids in a bilayer: that attributed to Canham, Evans, and
Helfrich. Indeed, ignoring concentration dependent terms (and
re-introducing superscripts for clarity), comparison with (1)
leads to the following identifications:

μ̄II
ψ = κ and ψ̄ II = 1

2lMAm

∫
m

(2H − C0)2 dA, (10)

as κ does not scale with the system size (i.e., it is intensive). In
the above the membrane is taken to be of constant thickness l,
where the factor preceding the integral comes from the fact
that the Canham-Helfrich-Evans model is an integral over
energy per unit area [33]. Note also that the factor of M
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comes from the fact that ψ is a specific, or per unit mass,
quantity. Here, in order to be consistent with membrane model
literature (see for example the early sections of [1] or [33]), the
previously defined “bar averaging” taken over the boundary to
the membrane has been replaced by an average over a surface
bisecting the two layers of lipids Am, the so-called neutral
surface [33]. Furthermore, this approach is extended to all
thermodynamic variables: an average taken over the exterior
of the membrane is the same as an average taken over the
neutral surface.

With this in place, it is now possible to examine how the
chemical potential in (5) depends on the other thermodynamic
variables. Assuming the form μ̄k = μ̄k(T ,p,{c̄k},κ) we see
that

dμ̄k = ν̄kdp + ψ̄kdκ + {dμ̄k}T , p, κ , (11)

where temperature has been held constant and partial specific
quantities ν̄k and γ̄k are defined in the following way

ν̄k ≡
(

∂μ̄k

∂p

)
T , {c̄i �=k}, κ

, (12)

ψ̄k ≡
(

∂μ̄k

∂κ

)
T , p, {c̄i �=k}

. (13)

For a discontinuous system such as ours it is useful to
first define the difference notation (for some thermodynamic
variable x)

�α, β x̄ ≡ x̄α − x̄β , ∀ α ∈ {I, II, III}. (14)

Once again following [16] it is now possible to write an
equivalent expression to (11) for small finite differences
between regions:

�α, β μ̄k = ν̄
β

k (�α, β p) + ψ̄
β

k (�α, β κ) + {�α, β μ̄k}T , p, κ .

(15)

Restating (5) using the above difference notation and then
substituting for (15) it can be seen that, for small deformations,
the rate of entropy produced will have contributions from
pressure differences, energy differences due to membrane
deformation, and chemical potential differences. The resultant
expression may then be simplified by applying a number of
assumptions which are valid for the type of vesicle system
discussed here. First, the mass of lipids accreting to the
membrane from the interior is negligible. That is, in contrast
to the exterior, the interior is not treated as a reservoir. Second,
the membrane thickness l is considered small on the scale
of the system. This permits us to write the volume of the
membrane, to first order in small parameter l, as the area
of the surface which bisects the membrane multiplied by the
thickness [i.e., V II = lAm + O(l2)]. Finally, we assume that
both κ , the bending rigidity, and C0, the spontaneous curvature,
remain constant. For such a case, the average density of lipids
in the membrane and the average ratio of lipids between the
inner and outer layers must be unchanged. Therefore each new
unit of mass added to the membrane is assumed to increase the
area of the surface which bisects the membrane by a constant

factor. The manipulations are left to Appendix A, where it is
shown that

T σtot = �p

{
dV

dt

}
T , p, κ

−
{

dEm

dt

}
T , p, κ

+γ

{
dA

dt

}
T , p, κ

,

(16)

where γ is the surface tension1 and �p = pI − pIII is the
pressure difference between the exterior and interior. Here
surface area A, volume enclosed V , and bending energy Em

are defined in relation to a single mathematical surface taken
to bisect the two lipid monolayers.

It is worthwhile noting here that γ corresponds to the
“interfacial free energy” in the sense defined in [21]. That
is, the change in free energy which results from increasing
(decreasing) the surface by adding (removing) molecules at
constant density [cf. Eq. (A23)]. This contrasts with increasing
the surface area by reducing the density of a fixed number
of molecules: the resultant change in free energy from such
an approach is referred to as the “elastic free energy”. Here,
as with the majority of studies to date, the effects of elastic
free energy are neglected and the lipid bilayer is assumed
to be effectively incompressible due to the separation of
energy scales between stretching and bending energies [1].
As pointed out in [21], thermal fluctuations are thought to be
more important to studies of elastic free energy rather than the
interfacial energy considered here.

The result (16) allows us to identify the forces and
fluxes for this nonequilibrium system, and this is discussed
further in Sec. II C. In our previous work [15] these were
identified largely through physical arguments and from the
work of Kedem and Katchalsky [34,35]. We did use sim-
ple thermodynamic relations, but only to show that the
term involving the membrane energy could be absorbed
into effective forces—an analysis which is recapitulated in
Sec. II C. The thermodynamic analysis is this paper is far
more extensive, and as such is not easy to compare with that
presented in [15]. This is especially true of the identification of
the various contributions to the entropy. In [15] we considered
a fluid separated into two homogeneous regions and wrote
down the sum of entropy changes associated with each region.
However, here we consider the membrane as a separate
region. With proper consideration given to conservation laws,
such a sum is equal in size but opposite in sign to the
entropy produced by the system. As long as care is taken
to give the correct interpretation to the various contributions,
both treatments agree, but with the present paper giving
a mathematical justification to the form of the dynamical
equations used in [15] that was not present in that previous
discussion.

C. Effective pressure and surface tension

This paper examines the stability of deformations away
from a sphere, that is, does a deformation grow or decay?
In this context it is possible to simplify (16) by appealing

1Note that in a previous paper [15] surface tension was given by the
symbol σ . Here the alternative convention of using γ is adopted as σ

represents the rate of entropy production.
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once again to the rationale used earlier when neglecting the
entropy contributions from molecular re-alignments within the
membrane. It is assumed that the rate of change in energy due
to small membrane deformations is a function of only two
time-dependent variables: the surface area and volume of the
membrane. That is, on small time scales, changes in the energy
of the membrane are dominated by the addition of lipids to the
surface or by changes in the pressure difference across the
membrane. This point will be reexamined in more detail in
Sec. IV. For now, taking Em = Em(V, A) the rate of entropy
production can be written in terms of an effective pressure
difference and effective surface tension. That is{

dEm

dt

}
T , p, κ

=
(

∂Em

∂V

)
A

{
dV

dt

}
T , p, κ

+
(

∂Em

∂A

)
V

{
dA

dt

}
T , p, κ

, (17)

which implies

T σtot = (�p)eff

{
dV

dt

}
T , p, κ

+ γeff

{
dA

dt

}
T , p, κ

, (18)

where

(�p)eff = �p −
(

∂Em

∂V

)
A

(19)

and

γeff = γ −
(

∂Em

∂A

)
V

. (20)

Equation (18) identifies the rate of entropy production for a
growing vesicle as a sum of two pairs of forces and fluxes:
the flow of volume into the vesicle, coupled to a modified
pressure difference across the membrane; and the rate of area
increase of the membrane (due to accretion of lipids) which
is coupled to an modified surface tension. Finally, the usual
linear constitutive relation between the fluxes and forces may
be invoked. Making contact with [15] the volume flux is written
as

1

A

{
dV

dt

}
T , p, κ

= Lp (�p)eff + Lγ γeff, (21)

where Lp and Lγ are Onsager coefficients defined “per unit
area” following the convention of the initial papers detailing
the theory of hydraulic conductivity [34,35].

In summary, we have shown how the growth of vesicles can
be described thermodynamically, and reduced it under given
conditions to the study of two-dimensional surfaces whose
volume changes according to Eq. (21). The rest of the paper is
devoted to analyzing the growth such surfaces, and especially
to their deviations from a spherical shape.

III. MEMBRANE DEFORMATION

In this section the formalism needed to describe surface
deformations is outlined. The aspects of differential geometry
required are given in many standard textbooks (e.g. [36]),
but fortunately they are also used (in part) for the variational
treatments which have been so prevalent in previous studies

of vesicle behavior. The book by Ou-Yang et al. [2] gives
a good account of the details and the reader is referred to
it for a discussion of the mathematical background. For this
reason, [2] forms the basis of the notation used below.

A. Surface geometry

The two-dimensional surface (embedded in three-
dimensions) which represents the membrane is defined by
a vector field r = r(u,v), where u and v parametrize the
surface. The tangent (vector) space associated with each point
on the surface is then spanned by vectors r l ≡ ∂ r/∂ql , where
l ∈ {1,2}, q1 = u, and q2 = v. From here, the first fundamental
form, or metric, is defined as

glm ≡ r l · rm, (22)

where the inverse metric gij is defined such that gijgjk = δi
k ,

with δi
k the Kronecker delta symbol. Here, g is the determinant

of gij , given by

g ≡ 1

2
εlpεmqglmgpq, (23)

where εij is an antisymmetric two-dimensional Levi-Civita
symbol. The determinant is used to define the surface area
element

dA ≡ √
gdudv (24)

and the unit normal

n̂ ≡ r1 × r2√
g

. (25)

In order to quantify the curvature of a surface it is further
necessary to define second derivatives r lm ≡ ∂2r/∂ql∂qm,
where the coefficients of the second fundamental form

Llm ≡ r lm · n̂ (26)

allow us to make contact with (1) by writing

H ≡ −1

2
gijLij . (27)

For consistency with (1) and the majority of membrane related
literature, (27) is defined here contrary to the usual convention
of differential geometry, so that the mean curvature of a sphere
is positive, Hsphere = 1/R.

With the basics in place we now focus on an explicit
example of the above formalism: shapes which are invariant
under rotation about the z axis. Such axisymmetric vesicles
have been the some of the most studied in variational
calculations. The chosen parametrization is shown in Fig. 2:
here it is clear that generic surface parameters u and v have
been replaced by the familiar angles θ and φ, where 0 � θ � π

is the inclination, and 0 � φ < 2π is the azimuthal angle. In
this case r has the form

r = ρ(θ )ρ̂ + k(θ )k̂, (28)

where ρ̂ = cos φ î + sin φ ĵ and where î, ĵ , and k̂ are the unit
vectors in the x, y, and z directions, respectively. Tangent
vectors are now given by

rθ = ρ ′(θ )ρ̂ + k′(θ )k̂ and rφ = ρ(θ )φ̂, (29)
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FIG. 2. Diagram showing the parametrization of axisymmetric
shapes.

where a dash is used as shorthand for the derivative with respect
to θ and φ̂ = − sin φ î + cos φ ĵ . From the above it is clear the
metric gij is diagonal, and using (22), (23), and (25) it is a
simple exercise to show that

√
g = ρ[(ρ ′)2 + (k′)2]1/2 (30)

and

n̂ = ρ ′ k̂ − k′ρ̂
[(ρ ′)2 + (k′)2]1/2

. (31)

Here the explicit dependence on θ of functions ρ and k has
been dropped for simplicity. The form of second derivatives
rθθ , rθφ , rφθ , and rφφ can also be calculated from which it
is seen that Lij is diagonal. Inverting gij it then follows from
(27) that

H = 1

2

{
k′ρ ′′ − k′′ρ ′

[(ρ ′)2 + (k′)2]3/2
− k′

ρ[(ρ ′)2 + (k′)2]1/2

}
. (32)

B. Perturbation theory

The aim of this paper is to obtain stability conditions
for deformations which take a vesicle from a sphere to an
axisymmetric shape. This can be achieved by writing the
shape-dependent terms of constitutive relation (21) as pertur-
bations from a sphere and then comparing terms of equivalent
order in the small parameter controlling the perturbation. The
details of this are discussed in Sec. IV, however for now, in
anticipation, perturbative expressions are required for A, V ,
ξ1 ≡ ∫

HdA and ξ2 ≡ ∫
H 2dA, that is, the geometric terms

which arise in (21). Choosing appropriate forms for functions
ρ(θ ) and k(θ ), we write

ρ(θ ) = R sin θ [1 + ε(θ )] (33)

and

k(θ ) = R cos θ [1 + ε(θ )] , (34)

where R is clearly the radius of the unperturbed sphere
and perturbation ε(θ )—considered small on the scale of
R—defines the resultant axisymmetric shape.

Consider the surface area A = 2π
∫ π

0
√

gdθ , this will serve
as a template for calculating V , ξ1, and ξ2: the details of which

are confined to Appendix B. Substituting (33) and (34) into
(24) and (30) gives

A = 2πR2
∫ π

0
dθ sin θ

[
1 + 2ε + ε2 + 1

2
(ε′)2 + O(ε4)

]
,

(35)

where the explicit θ dependence of ε has been dropped and
as before ε′ = dε/dθ . Here terms of order greater than ε3

have been ignored, a choice which will become clear in the
next section. Integrating the fourth term on the right-hand side
gives ∫ π

0
dθ sin θ (ε′)2 = −

∫ π

0
dθ sin θ [εL̂2ε], (36)

where

L̂2 ≡ 1

sin θ

d

dθ

(
sin θ

d

dθ

)
(37)

is the θ -dependent part of the Laplacian in spherical polar
coordinates. With this in mind, (35) may now be computed by
expanding ε in terms of the zonal harmonics:

ε (θ ) = ε

∞∑
l=2

alYl (θ ) . (38)

Here the zonal harmonics Yl (θ ) are the usual spherical
harmonics with m = 0. The scale or size of the perturbation ε is
taken as a common factor of coefficients {al}. For our purposes
a0 = a1 = 0 as Y0(θ ) and Y1(θ ) correspond to spherical growth
and translation respectively [37]. Using the properties of the
zonal harmonics [38]

2π

∫ π

0
dθ sin θ Yl1 (θ )Yl2 (θ ) = δl1l2 (39)

and

L̂2Yl(θ ) = −l(l + 1)Yl(θ ), (40)

it follows that

A = 4πR2 + ε2R2
∞∑
l=2

a2
l

[
1 + 1

2
l(l + 1)

]
+ O(ε4). (41)

As mentioned earlier, similar steps can be taken to write
perturbative expressions for ξ1, ξ2, and V , however, in contrast
to (41) these results are cumbersome as they contain terms of
third order in ε: for example, the simplest result V is given by

V = 4

3
πR3 + ε2R3

∞∑
l=2

a2
l

+ ε3 R3

3

∞∑
l1=2

∞∑
l2=2

∞∑
l3=2

al1al2al3f (l1, l2, l3) + O(ε4),

(42)

where f (l1, l2, l3) is related to the square of a Wigner 3-j
symbol. The full details—including results for ξ1 and ξ2—can
be found in Appendix B.
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IV. STABILITY

We wish to address the question of vesicle stability dynam-
ically, and specifically, to determine when a spherical vesicle
becomes unstable and undergoes a shape change. Stability
questions of this kind do not require the full dynamics of the
system to be constructed and in our case it is sufficient that
only two variables are time dependent: R(t) the radius of the
unperturbed sphere and ε(t) which gives the magnitude of the
perturbation. The picture is the following. We study the growth
of a vesicle which is spherical, but deformed by a small amount
defined by (38). The geometry of the perturbation—specified
by the set {al}—is fixed (time independent), but the size of the
perturbation—specified by ε(t)—is not. We ask if there is a
time [and so an R(t)] at which ε(t) starts to increase with t ,
which will signal an instability.

Before carrying out this analysis, the growth mechanism
needs to be specified, that is, the rate at which lipids are
added to the membrane needs to be quantified. The simplest
assumption is that lipids attach themselves uniformly over the
surface at a constant rate λ, such that

dA

dt
= λA =⇒ A(t) = A(0)eλt . (43)

However, as described in [15], when using a growth law of the
above form it cannot be assumed that R(t) is independent of
ε(t) so a more consistent approach must be taken by moving
to a new variable r(t), defined as the radius of a sphere with
equivalent surface area. Setting A = 4πr2 and comparing to
(41) gives

R = r

{
1 − ε2 1

8π

∞∑
l=2

a2
l

[
1 + 1

2
l(l + 1)

]
+ O(ε4)

}
. (44)

This can be substituted into the previous expressions for ξ1

and V —(B14) and (42), respectively—to give the results (C1)
and (C2) while ξ2 remains unchanged. For clarity, we re-write
geometric terms ξ1, ξ2, and V in the following simplified way:

ξ1 = 4πr
[
1 + ε2ξ

(2)
1 + ε3ξ

(3)
1 + O(ε4)

]
, (45)

ξ2 = 4π
[
1 + ε2ξ

(2)
2 + ε3ξ

(3)
2 + O(ε4)

]
, (46)

and

V = 4

3
πr3[1 + ε2V (2) + ε3V (3) + O(ε4)], (47)

where the time dependence is contained solely in variables r(t)
and ε(t).

At this stage we briefly note that writing Em = 2κξ2 −
2κC0ξ1 + κC2

0A/2, and remembering V = V (r,ε), implies
that Em = Em[r,ε(r,V )] = Em(A,V ). Therefore the term
{dEm/dt}T , p, κ which arises in (16) can indeed be written in
the form (17) and so the constitutive relation (21) is justified
in the context of a stability analysis.

In order to calculate (21) it is first necessary to write
the partial derivatives (∂Em/∂V )A and (∂Em/∂A)V —which
arise in the effective pressure and effective surface tension,
respectively—in terms of r and ε. As in [15] we have(

∂Em

∂V

)
A

=
(

∂Em

∂V

)
r

=
(

∂Em

∂ε

)
r

(
∂ε

∂V

)
r

(48)

and(
∂Em

∂A

)
V

= 1

8πr

(
∂Em

∂r

)
V

= 1

8πr

[(
∂Em

∂r

)
ε

+
(

∂Em

∂ε

)
r

(
∂ε

∂r

)
V

]
,

(49)

where it is worthwhile noting that since the volume V has
no terms of order ε, the membrane energy Em must be
taken to O(ε3) to ensure that partial derivative (48) has the
contributions of order ε which are necessary to perform a
stability analysis. The calculation, to first order in ε, of
partial derivatives (∂Em/∂V )A and (∂Em/∂A)V is left to
Appendix C: the results are given by (C9) and (C10),
respectively. In order to calculate the left-hand side of (21),
the condition (43) can be used to show that dr/dt = λr/2,
which alongside (47) gives the result

1

A

{
dV

dt

}
T , p, κ

= λr

2
+ 2

3
rV (2)ε

{
dε

dt

}
T , p, κ

+ O(ε2).

(50)

Substituting (50) into (21) and using the results of
Appendix C, it is possible to find conditions on the growth
of the vesicle by equating terms of the same order in epsilon.

A. Zeroth order: Spherical growth

At zeroth order in ε, equivalent to spherical growth, the
condition which arises is given by

λr

2
= Lp

[
�p − 2κ

r3

(
3

ξ
(2)
2

V (2)
+ C0r

)]

+Lγ

{
γ − κ

2r2

[
C0r (C0r − 4) − 6

ξ
(2)
2

V (2)

]}
. (51)

It can be seen from the definitions (46) and (47) that the
terms proportional to ξ

(2)
2 /V (2) are dependent on the choice

of perturbation: something that should not be the case for an
ε = 0 condition. Therefore in order to make (51) independent
of perturbation choice it is necessary to impose the condition
Lγ = 2Lp/r . This is the same identification which arose
in [15] and leads to the same equation for spherical growth
in the linear regime: Eq. (15) of [15]. Indeed, if lipid accretion
is “turned off” by setting λ = 0 then the equilibrium condition
for spherical vesicles is also recovered. In our previous paper
the identification Lγ = 2Lp/r was motivated by knowing the
spherical equilibrium condition a priori, here, the equilibrium
result could have been derived independently by using the fact
that the zeroth order condition must not rely on perturbation
choice by definition.

B. First order

At first order in ε,

dε

dt
= (Lγ r − 2Lp)

27κ

4r4(V (2))2

×
[(

ξ
(3)
2 − V (3)ξ

(2)
2

V (2)

)
− C0r

(
ξ

(3)
1 + V (3)

3

)]
, (52)
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which, after some manipulation, can be shown to be of the
form

dε

dt
= − Lγ κC0

4r4
(
ξ

(2)
1

)2

(
3ξ

(3)
1 + V (3)

)
(r − rc1 )(r − rc2 ). (53)

Here rc1 = 2Lp/Lγ and

rc2 = 3ξ
(3)
2 ξ

(2)
1 + V (3)ξ

(2)
2

C0ξ
(2)
1

(
3ξ

(3)
1 + V (3)

) (54)

are critical values of r(t)—the radius of a sphere with
equivalent area—and correspond to critical values for the
surface area 4πr2

c1
and 4πr2

c2
, respectively. Whether the surface

area of the vesicle is greater than, less than, or in between the
two critical values of the surface area, controls the sign of
the right-hand side of (53) and therefore whether a particular
perturbation is stable or unstable.

1. Single mode perturbations

In order to understand the implications of (53) we consider
a simplified case: perturbations which correspond to only
one mode of the zonal harmonics, that is ε(θ ) = εalYl(θ ).
Substituting into previous results, Eqs. (C1), (C2), and (B15)
are reduced to

ξ1 = 4πr

(
1 − ε2a2

l

16π
[2 − l(l + 1)]

−ε3a3
l

32π
f (l) {l(l + 1) [2 − l(l + 1)]} + O(ε4)

)
, (55)

ξ2 = 4π

(
1 − ε2a2

l

16π
{l(l + 1) [2 − l(l + 1)]}

+ ε3a3
l

16π
f (l) {l(l + 1) [2 − l(l + 1)]} + O(ε4)

)
(56)

and

V = 4

3
πr3

{
1 + 3ε2a2

l

16π
[2 − l(l + 1)]

+ε3a3
l

4π
f (l) + O(ε4)

}
, (57)

respectively, where f (l) ≡ f (l, l, l). Using (45)–(47) and
substituting into (53) we write

al

dε

dt
= −(r − rc1 )(r − rc2 )

2πLγ C0κ

r4
g(l), (58)

where

rc2 = 20l(l + 1) − 6l2(l + 1)2

C0[3l2(l + 1)2 − 6l(l + 1) + 8]
(59)

and

g(l) = f (l)[3l2(l + 1)2 − 6l(l + 1) + 8]

[2 − l(l + 1)]2
. (60)

It is helpful at this stage to introduce dimensionless quantities:
radii are rescaled by a factor of C0 such that r̃ = C0r ,
r̃c1 = C0rc1 , and r̃c2 = C0rc2 while time is rescaled to give
τ = λt . Inserting this into the stability condition gives rise to a
natural choice for rescaling the Onsager coefficient associated

with surface growth L̃γ = Lγ κC3
0/λ. Also, noting that g(l)

is always positive and r̃c2 (l) is always negative for l � 2 it
can be seen that for such perturbations—corresponding to a
single mode of the zonal harmonics—there is only one critical
surface area 4πr2

c1
. Taking this into account (58) becomes

al

dε

dτ
= −(r̃ − r̃c1 )(r̃ + |r̃c2 |)

2πL̃γ

r̃4
g(l). (61)

In addition, it should be noted that since f (l, l, l) is zero
for odd values of l, perturbations which correspond to odd l

are constant in time for all radii at first order. In order to
investigate the stability of odd zonal harmonics it is necessary
to take the analysis presented to next order in ε which is left
for future work. Indeed, at a heuristic level, it might have
been anticipated that the stability of harmonic perturbations
which are asymmetric about θ = 0 are determined at an order
greater than symmetric perturbations, as a better “resolution”
is needed to differentiate between shapes with lower symmetry.

In order to interpret the single-mode stability condition (61)
further, it is first necessary to assume some typical values of
the constants involved: we estimate a value for κ of 10−19 J
[39] and a value for C0 of 107 m−1 such that C0r is of order 1
for a 100 nm spherical vesicle. Following [14] we use a value
for Lp, the hydraulic permeability, of 7.5 × 10−13 m s−1 Pa−1.
What is not known is a typical value for Lγ , the Onsager
coefficient linking surface tension to the rate of change in the
volume of the interior.

It is possible to deduce an estimate for Lγ by recalling
Eq. (21) and comparing the relative contributions that both
pressure and surface tension terms make to the rate of change
of volume. In order to do this it is necessary to estimate an
order of magnitude for the effective pressure difference (�p)eff

and effective surface tension γeff . For simplicity we ignore
the modifications due to the membrane energy and drop the
subscript effective. An estimate of γ = 10−3 N m−1 is provided
by [40] though estimating the pressure difference is less clear.
Following [14] we ask: what is the pressure difference which
maintains mechanical equilibrium in a growing vesicle? Using
Eq. (15) of [15],

�p = λr

2Lp

+ C0κ

r2
(C0r − 2) − 2γ

r
, (62)

it is possible to use an estimate for λ along with those
previously taken for C0, κ , γ , and Lp to compute the pressure
difference needed to maintain equilibrium in a vesicle with
r = 100 nm. Taking λ = 10−4 s−1 (the middle of the range
proposed in [8]) gives an estimate for the pressure difference
of 0.1–0.01 bar. Going back to (21), we argue that for
such processes the term Lγ γ will be neither negligible nor
significantly larger than the term Lp�p. Indeed, for the
purposes of an estimate we require that the two terms are
the same order. Taking a pressure difference of 0.1 bar this
assumption implies that Lγ is of the order 10−6 s−1 Pa−1.
As a check, we may calculate an order of magnitude for the
rescaled quantity L̃γ using the values above. This leads to an
order of magnitude for L̃γ of one. For completeness, using
these estimates the dimensionless analog for the hydraulic
conductivity L̃p = LpκC4

0/λ is therefore 7.5.
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FIG. 3. (Color online) Graph showing the growth of three
separate perturbations to a spherical vesicle at different radii. Three
specific perturbations are shown: the zonal harmonics corresponding
to l = 2 (solid), l = 4 (dashed), and l = 6 (dotted). As highlighted
in the text, order of magnitude estimates for physical constants have
been used such that the dimensionless quantities L̃γ and L̃p are taken
to be 1 and 7.5, respectively. In addition, coefficients al are taken to
be positive.

Using this estimate for L̃γ it is possible to plot curves which
show the stability of particular perturbations at different radii.
Figure 3 plots dε̃/dτ against r̃ , where ε̃ = alε (al > 0), for
three specific perturbations: the zonal harmonics correspond-
ing to l = 2, l = 4, and l = 6. First, we note that all curves
cross the axis at r̃c1 = 2C0Lp/Lγ , which in the framework of
estimates discussed above is 15. Below this point, all modes
are unstable—that is, dε̃/dτ is positive—with lowest values
of l being the most unstable, that is, growing at the fastest rate.
Above the critical point all modes are stable (decay in time)
with lowest values of l decaying fastest. However, we may
note that the inverse is true for perturbations defined opposite
to those discussed, that is al −→ −al . These perturbations are
stable beneath r̃c1 (with low l modes decaying fastest) and
unstable above r̃c1 (with low l modes growing fastest).

We note that the curves shown in Fig. 3 are asymmetric
about r̃c1 . That is, the scale of perturbation growth beneath the
critical radius is much larger than the scale of decay above
the critical radius. Similarly, for al < 0, decay beneath r̃c1

is much larger than growth above r̃c1 . However, as we will
discuss in Sec. V, before a more comprehensive analysis may
be carried out, the estimates of the physical parameters used
need to be significantly improved. As such, a more detailed
discussion of the implications of this feature is left for future
work.

2. Ellipsoidal perturbations

We may ask whether (61) can be reduced to our previous
results for (axisymmetric) ellipsoidal deformations [15]. In
terms of the dimensionless quantities introduced above, the
stability condition in that paper is given by

dε

dτ
= −(r̃ − r̃c1 ) (5r̃ + 6)

2πL̃γ

r̃4

15

28π (c1 − a1)
, (63)

where the parametrization used to characterize (axisymmetric)
ellipsoidal perturbations may be written as

ρel = R (1 + a1ε) sin θ,

kel = R (1 + c1ε) cos θ. (64)

Here the notation of Sec. III B and Fig. 2 has been used: the
points on the surface which are an angle θ from the positive
z axis are a distance ρel from the z axis and kel from the
x-y plane. Such a parametrization is different to the more
general approach taken in the main part of this paper, however,
it is possible to compare the two at first order in ε. In order
to do so, it is necessary to move to variable r , the radius of
a sphere of equivalent area. Using Eq. (17) of [15] we see
that, to first order in ε, the surface area of an ellipsoid with
parametrization (64) is given by

A = 4πR2

[
1 + 2

3
(2a1 + c1) ε + O(ε2)

]
. (65)

Setting A = 4πr2 gives

R = r

[
1 − 1

3
(2a1 + c1) ε + O(ε2)

]
, (66)

which can be substituted back into (64) to give

ρel = r

[
1 + 1

3
(a1 − c1) ε + O(ε2)

]
sin θ,

kel = r

[
1 − 2

3
(a1 − c1) ε + O(ε2)

]
cos θ. (67)

Here the radial distance to a point on the surface of the
deformed shape (ellipsoid) is given by√

(ρel)2 + (kel)2

= r

[
1 + 1

3
(c1 − a1) ε(3 cos2 θ − 1) + O(ε2)

]
, (68)

where taking Y2(θ ) = 1
4

√
5
π

(3 cos2 θ − 1) [38] this may be
rewritten as√

(ρel)2 + (kel)2 = r

[
1 + 4

3

√
π

5
(c1 − a1) εY2(θ ) + O(ε2)

]
.

(69)

With this in place we may turn to the general axisymmetric
parametrization set out earlier in this paper. Noting from (44)
that R = r[1 + O(ε2)] Eqs. (33) and (34) may be written

ρ = r[1 + ε(θ ) + O(ε2)] sin θ,

k = r[1 + ε(θ ) + O(ε2)] cos θ, (70)

where the reader is reminded that the function ε(θ ) is of order
ε. From here it follows from the calculation of

√
ρ2 + k2 that

the two parametrizations are equivalent to first order in ε if

ε(θ ) = 4

3

√
π

5
(c1 − a1) εY2(θ ), (71)

which implies

a2 = 4

3

√
π

5
(c1 − a1) . (72)

Substituting this expression for a2 into (61) and using the facts
that g(2) = (5/7)

√
5/π and r̃c2 (l = 2) = −5/6, the stability

condition (63) for ellipsoidal deformations can be recovered.
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V. CONCLUSIONS AND DISCUSSION

The purpose of this paper has been twofold. First, to
systematically set up the thermodynamic description of vesicle
growth, and second, to analyze the stability of deformations:
specifically, to determine when spherical surfaces are unstable
to small axisymmetric perturbations.

While thermodynamic descriptions of vesicle growth based
on LNET have been discussed previously, the form of the
fluxes and forces were obtained through physical arguments,
and not derived from a comprehensive analysis of the thermo-
dynamics of a membrane bilayer in an aqueous environment.
The analysis presented in Sec. II and Appendix A aims to do
just this: it is based on the concept of a discontinuous system
discussed by de Groot and Mazur [16], although considerably
elaborated for a vesicle system. It is assumed that as lipids are
incorporated into the membrane, the entropy produced—due
to the realignments of others—can be neglected. However,
the energy change that accompanies such accretion cannot
be ignored. Indeed, the assumption of the Canham-Helfrich-
Evans form [Eq. (1)] replaces the complexity of the lipid
bilayer by an energy defined in terms of the geometrical
properties of a single surface.

In order to investigate the implications of this thermo-
dynamic approach, we focused on the stability of vesicles
growing due to accretion. In the context of such a stability
analysis, the energy is assumed to rely on two time-dependent
variables: surface area A(t) and volume enclosed V (t). Here,
in analogy to a standard two-component system partitioned
into two regions, the entropy produced is characterized by
an effective pressure difference and effective surface tension.
The effective pressure is just the normal pressure difference
modified by the term (∂Em/∂V )A, and the effective surface
tension is the normal surface tension modified by the term
(∂Em/∂A)V .

While undoubtedly such a thermodynamic approach can
be improved upon, the nature of the approximations made
are argued for on physical grounds, and specific physical
justifications have been given where possible. At the very
least, the nature and extent of the assumptions are clearly
visible providing a starting point for attempts to relax them.

With the study reduced to the dynamics of a surface of
area A(t), enclosing a volume V (t), and characterized by an
energy Em(t) [given by Eq. (1)], the problem is geometrical
in nature and differential geometry may be used. In general
the approach is applicable to any smooth surface with no
particular symmetry properties, but the analysis that we present
in Sec. III is restricted to an axisymmetric surface. The
reasons for making this choice are twofold: it is common
in variational studies of vesicle growth and for reasons of
simplicity. However there is no problem in principle in treating
a general shape. The main difference is that the perturbation
would depend on the angle φ as well as θ , and would be
spanned by the full set of spherical harmonics Yl,m(θ,φ). This
would lead to sums on l [for instance in Eqs. (41) and (42)]
being replaced by sums on both l and m.

When carrying out the stability analysis in Sec. IV we
further specialized to perturbations about a spherical vesicle,
but once again other unperturbed geometries could be chosen.
A peculiarity of the perturbation expansion which has already

been remarked on in [15] is that it is necessary to develop
the perturbation expansion to third order in order to find the
growth rate of ε(t) to leading order. This unfortunately makes
the calculation more complicated than might have naively
been expected. Nevertheless, the present analysis places no
constraint on the nature of the perturbation, other than it is
axisymmetric. This is in contrast to our earlier treatment [15],
which assumed that the distorted surface was an ellipsoid. The
results of the present treatment are shown to reduce to those
of [15] for the case where the perturbation corresponds to the
l = 2 zonal harmonic.

In general it is found that there are two critical radii at
which changes in stability occur. However, in the case when
perturbations take the form of a single zonal harmonic, only
one of these radii is physical: that given by 2Lp/Lγ , where Lp

is the hydraulic conductivity and Lγ the Onsager coefficient
corresponding to changes in surface area due to lipid accretion.
In order to quantify our results we made an estimate for
Lγ using simple physical arguments. For a more complete
approach this phenomenological coefficient would need to be
measured experimentally. Using order of magnitude estimates
we see that—under the conditions of accretion proportional to
surface area—spherical vesicles at radii other than the critical
radius are always unstable. Perturbations corresponding to
zonal harmonics of lowest l grow at the fastest rate (are the
most unstable) with modes corresponding to larger l becoming
increasingly stable.

There are many ways in which the analysis presented here
could be taken forward. The most pressing need is for further
experimental studies against which the predictions made in this
paper can be compared. Experimental work regarding vesicle
shape changes has previously been carried out though the focus
has been on transitions induced by either temperature [41] or
osmotic pressure changes [42]. A summary of some relevant
experimental studies was given in [15]; of particular interest is
[42], where initially symmetric vesicles were found to deform
into oblate shapes and then prolate ones under osmotic pressure
changes which serve to reduce the enclosed volume.

In relation to these existing experimental studies, it is
appropriate to scrutinize our choice of driving mechanism.
Here we assumed that lipids accrete to the surface at a constant
rate per unit area. Although this leads to a growth law of
exponential form (43), it is worth highlighting that λ is taken
to be very small (of the order 10−4 s−1 [8]). That is, for the
range of observed vesicle sizes, surface growth will still be
very slow. Our choice of mechanism was influenced by a
number of factors. First, experiments of this type have been
carried out and are documented in [4]. Indeed, the suggestion
is that growth due to accretion is a plausible phenomenon in
the prebiotic scenario in which we are interested. Second,
this approach already entails a great deal of mathematics;
we therefore wanted to implement the simplest choice for
driving the system away from equilibrium. However, growth
laws of a more complicated form could be incorporated if
necessary. Finally, we were also conscious to demonstrate that
both the results presented here and the extended theoretical
background detailed in Sec. II are connected to our previous
paper [15]. Furthermore, in reality, lipids in solution are
likely to form micelles and small vesicles. However, the
additional effects of such micelle-vesicle or vesicle-vesicle
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adsorption are not considered here. With these points in mind,
a more experimentally accessible approach might be to extend
previous work so that temperature change—rather than the
accretion of lipids—is the effect which gives rise to shape
changes. However, the analysis needed to incorporate such a
feature presents a further technical challenge and, in light of
the already lengthy theoretical background, it is left for future
work.

In addition to the above, it is clear from experiment
that nonaxisymmetric vesicles are observed (see for example
[43]) and so our analysis should be extended to investigate
transitions from a sphere to an arbitrary shape, as opposed to
those invariant about the z axis. Similarly, a more general
theory based on deformations from an arbitrary shape (as
opposed to a sphere) could also be developed. Lastly, more
realistic models of the membrane such as the area-difference
elasticity model [44] could be used.

All these studies would benefit from more experimental
input. However, the foundations we have laid, and the methods
we have developed in this paper, do allow for these more
general analyzes to be carried out. We expect that they will
lead to a more comprehensive understanding of the dynamics
of vesicle growth in the near future.
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APPENDIX A: ENTROPY PRODUCTION

In this Appendix the calculation of entropy production is
summarized. For further background the reader is referred to
Chap. 15 of [16] from which this analysis is adapted. As usual,
subscript k ∈ {w, l} denotes the component (water and lipids,
respectively) and superscript α ∈ {I − V} denotes the region
(see Fig. 1). Starting with the total entropy in each region α

Sα ≡
∫

α

ρsdV, (A1)

the rate-of-change of Sα can be written as a sum of entropy
fluxes over the boundary and any entropy produced in the bulk

dSα

dt
=

∫
α

1

T

[
− Jq − Jnem +

∑
k

μkρk(vk − vb)

−ρh(v − vb)

]
· d A +

∫
α

σdV . (A2)

Here entropy fluxes have been taken in the traditional hydro-
dynamic form {Eq. (20), Chap. 3 of [16]} plus a term Jnem/T

which arises due the nematic nature of the lipid molecules
[23]. The other symbols have their usual meanings [16], Jq

is heat flow, h = u + pν is the enthalpy, vb is the velocity
of the boundary—zero for all impermeable boundaries—and
v = ∑

k vkρk defines both total and partial velocities. At this
stage, it is assumed that entropy fluxes associated with the
nematic nature of the lipids are tangent to the boundary at any

point, and so make no contribution to the rate of change of
entropy: ∫

α

Jnem · d A = 0. (A3)

In the same manner as set out in chap. 15 of [16]—though
adapted for the system considered in Fig. 1—Eq. (A3) can
be used to write an expression for the total rate of entropy
produced in the system

σtot = 1

T

III∑
α=I

∫
α

[
− Jq +

∑
k

μkρk

(
vk − vb

)

−ρh(v − vb)

]
· d A, (A4)

where integration is now over internal (permeable) boundaries
only. Again, adapted from [16], conservation of internal energy
and conservation of mass are given by

III∑
α=I

∫
α

[ Jq + ρh(v − vb)] · d A = 0 (A5)

and
III∑

α=I

∫
α

ρk(vk − vb) · d A = −
III∑

α=I

dMα
k

dt
= 0, (A6)

respectively. Imposing (A5) on (A4) and using the facts
that mass fluxes are assumed to be evenly distributed across
boundaries and velocities are taken to be in the normal
direction (see Sec. II) gives

σtot = − 1

T

III∑
α=I

∑
k

dMα
k

dt
μ̄α

k , (A7)

where a bar above a variable is used to denote “average
over a boundary” in the sense of (6). (Note that for uniform
regions I and III, μ̄α

k = μα
k ). Using (A6) to eliminate mass

flows out of region I, the exterior, results in (5) which is
rewritten here using the difference notation (14)

σtot = 1

T

∑
k

III∑
α=II

(�I, α μ̄k)
dMα

k

dt
. (A8)

As outlined in Sec. II averages over the boundary to the
membrane are replaced by averages over the neutral surface.
Furthermore, it is possible to expand chemical potential
differences in terms of other thermodynamic variables. Using
(15) gives

σtot = 1

T

∑
k

III∑
α=II

[
ν̄α

k (�I, α p) + ψ̄α
k (�I, α κ)

+{�I, α μ̄k}T , p, κ

]dMα
k

dt
. (A9)

So the entropy produced has been written as a sum
of thermodynamic forces—differences of variables across
discontinuities—and thermodynamic fluxes. We proceed by
considering each term separately. The first term is summed
over regions III and II, the interior and the membrane,
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respectively. Consider first the interior: a uniform region we
may write V III = V III(T , p, {M III

k }, κ) and therefore{
dV III

dt

}
T , p, κ

=
∑

k

(
∂V III

∂M III
k

)
T , p, κ, {M III

i �=k}

dM III
k

dt

=
∑

k

νIII
k

dM III
k

dt
. (A10)

Consider now the term relating to the membrane (a nonuniform
region): from (4) we have∑

k

ν̄II
k

dM II
k

dt
= −

∑
k

ν̄II
k

∫
II

ρk(vk − vb) · d A. (A11)

Recalling that mass fluxes per unit area are assumed constant,
using the definition of ν̄II

k and the fact that
∑

k ρkνk = 1 (see
Appendix II of [16]) gives∑

k

ν̄II
k

dM II
k

dt
= −

∑
k

∫
II

νkρk(vk − vb) · d A

=
∫

II
vb · d A −

∑
k

∫
II

νkρkvk · d A

= dV II

dt
−

∑
k

∫
II

νkρkvk · d A. (A12)

Here we recognize that the second term on the right-hand-
side is nothing other than the flow of volume associated with
mass moving across a permeable boundary, therefore the entire
right-hand-side may be written as {dV II/dt}T , p, κ . Combining
this with (A11) the first term of (A9) becomes

1

T

III∑
α=II

(�I, α p)

{
dV α

dt

}
T , p, κ

. (A13)

Turning attention to the second term of (A9), we notice
that since interactions between lipids are neglected outside
the membrane we are free to set κ = 0 in all other regions,
therefore only values of the summand for α = II need be
considered. In a similar fashion to above, remembering that
	 = ψM = ∑

k ψkρk , we see that

∑
k

ψ̄ II
k

dM II
k

dt
= −

∑
k

∫
II

ψkρk(vk − vb) · d A

=
∫

II
	vb · d A −

∑
k

∫
II

ψkρkvk · d A

= d	II

dt
−

∫
II

∂	

∂t
dV −

∑
k

∫
II

ψkρkvk · d A.

(A14)

Here, in analogy to above, we recognize the right-hand side
as {d	II/dt}T , p, κ , where the second term arises due to the
fact that ψ is not conserved: the curvature of the membrane
can change spontaneously through the exchange of lipids
between outer and inner monolayers. Finally, assuming that
the membrane thickness l is small on the scale of the vesicle
we may write

	II ≡
∫

II
	dV = l

∫
m

	dA + O(l2), (A15)

where, following from identifications (10), the second term of
(A9) may finally be written as

− 1

T
κ

{
d	II

dt

}
T , p, κ

= − 1

T

{
dEm

dt

}
T , p, κ

. (A16)

In analogy to the Gibbs-Duhem relation derived in
Appendix II of [16], the third term of (A9) may be simplified
by writing ∑

k

c̄
β

k {�α, β μ̄k}T , p, κ = 0, (A17)

from which it can be seen that in the limit of dilute solutions
cl � cw,

{�II, α μ̄w}T , p, κ = 0, ∀ α ∈ {I, III}. (A18)

Furthermore, assuming that the interior of the vesicle only
contributes a negligible flow of lipids, that is, it is not
considered a reservoir, gives

III∑
α=II

dMα
l

dt
{�I, α μ̄l}T , p, κ = dM II

l

dt
{�I, II μ̄l}T , p, κ .

(A19)

Combining the results (A13), (A16), and (A19) it is now
possible to write (A9) as

T σtot =
III∑

α=II

(�I, α p)

{
dV α

dt

}
T , p, κ

−
{

dEm

dt

}
T , p, κ

+ dM II
l

dt
{�I, II μ̄l}T , p, κ . (A20)

This expression can be further simplified by once again taking
the membrane to be of constant thickness l—very small on the
scale of the vesicle—so that{

dV II

dt

}
T , p, κ

= l

{
dAm

dt

}
T , p, κ

+ O(l2) (A21)

and {
dV III

dt

}
T , p, κ

=
{

dV m

dt

}
T , p, κ

− l

2

{
dAm

dt

}
T , p, κ

+ O(l2), (A22)

where Am and V m are the area of, and volume enclosed by, the
surface which bisects the membrane. Finally, as κ and C0 are
taken to remain constant, it is assumed that, on average, every
unit of mass (of lipids) accreted into the bilayer increases the
area of the central bisecting surface by the same factor, that is

dM II
l

dt
= a

{
dAm

dt

}
T , p, κ

, (A23)

where a is a constant. This is in line with the usual
assumption that bilayers are essentially incompressible due to
the separation of energy scales between stretching and bending
energies [21]. However, it is necessary to acknowledge that
in certain circumstances (e.g., highly compressed bilayers)
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thermal fluctuations are important [21]. Applying the results
(A21), (A22), and (A23) to (A20) gives

T σtot = (�I, III p)

{
dV m

dt

}
T , p, κ

−
{

dEm

dt

}
T , p, κ

+γ

{
dAm

dt

}
T , p, κ

, (A24)

where

γ =
[

l

2
(pIII + pI) − lpII + a{�I, II μ̄l}T , p, κ

]
. (A25)

APPENDIX B: PERTURBATIVE EXPRESSIONS

In Sec. III B it is stated that geometrical quantities V , ξ1,
and ξ2 are required in terms of R, the radius of a sphere, and
perturbation ε(θ ). This Appendix outlines how to arrive at the
necessary results.

Consider first ξ1 = ∫
HdA = 2π

∫ π

0 H
√

gdθ , where H

and
√

g are given by (32) and (30), respectively. While it
is possible to directly calculate a perturbative form for ξ1— by
substituting (33) and (34) into (32) and (30) and integrating—
here a change of variable is introduced to simplify the
manipulations slightly. Motivated by the form of (30) introduce
variables R(θ ) and �(θ ) such that

ρ ′ = R cos � and k′ = R sin �, (B1)

from which it follows that

R =
√

(ρ ′)2 + (k′)2, (B2)

�′ = k′′ρ ′ − ρ ′′k′

R2
, (B3)

and

ξ1 = −π

∫ π

0
dθ (ρ�′ + k′) = π

∫ π

0
dθ (ρ ′� − k′), (B4)

where the second step of (B4) comes from integration by parts;
noticing that ρ(0) = ρ(π ) = 0. In order to find �, (33) and (34)
can be substituted into (B3) giving

�′ = −1 + ε′′ − (εε′)′ + 1

3
[3ε2ε′ − (ε′)3]′ + O(ε4). (B5)

This expression can be easily integrated. Applying the bound-
ary conditions ε′(0) = ε′(π ) = 0 gives

� = −θ + ε′ − εε′ + 1

3
[3ε2ε′ − (ε′)3] + O(ε4). (B6)

Using (33) and (34) to write down expressions for ρ ′ and k′
and then substituting into (B4) along with the above gives

ξ1 = πR

∫ π

0
dθ sin θ [2 + 2ε + (ε′)2 + (ε′)2(ε′′ − ε)

+O(ε4)], (B7)

where the following result has been used:∫ π

0
dθ cos θ (ε′)3 = −3

∫ π

0
dθ sin θ (ε′)2ε′′. (B8)

A similar procedure may now be applied to ξ2 = ∫
H 2dA =

2π
∫ π

0 H 2√gdθ . Using the same variable change as above:

ξ2 = π

2

∫ π

0
dθ

[
(k′)2

ρR + 2k′�′

R + ρ(�′)2

R

]
, (B9)

it can be immediately seen from earlier definitions (B1) that
the second term simplifies:∫ π

0
dθ

(
k′�′

R

)
=

∫ θ=π

θ=0
d� sin �

= − [cos �]θ=π
θ=0 = −

[
ρ ′

R

]θ=π

θ=0

= 2,

(B10)

where the last step follows from the definitions of ρ ′, R, and
boundary conditions ε′ (0) = ε′ (π ) = 0. The remaining terms
of (B9) can be calculated in a straightforward way though the
lengthy intermediate steps have been omitted here. The result
is that

ξ2 = π

∫ π

0
dθ sin θ [2 − (ε′ cot θ + ε′′) − (ε′)2

+ 1

2
(ε′ cot θ + ε′′)2 + 2(ε′)2(ε + ε′′)

− ε(ε′ cot θ + ε′′)2 + O(ε4)].

(B11)

In the same fashion as shown in Sec. III B for the surface area,
it is possible to rewrite (B7) and (B11) in terms of the operator
L̂2 [defined in Eq, (37)] using integration by parts

ξ1 = πR

∫ π

0
dθ sin θ

[
2 + 2ε − εL̂2ε + 1

2
ε2L̂2ε

−1

2
(ε′)2L̂2ε + O(ε4)

]
(B12)

and

ξ2 = π

∫ π

0
dθ sin θ

[
2 − L̂2ε + εL̂2ε + 1

2
(L̂2ε)2 − ε2L̂2ε

− ε(L̂2ε)2 − (ε′)2L̂2ε + O(ε4)
]
. (B13)

These expressions can then be integrated using (38), (39), and
(40) to give the following results:

ξ1 = 4πR + ε2 R

2

∞∑
l=2

a2
l l(l + 1)

+ ε3 R

8

∞∑
l1,l2,l3

al1al2al3{l3(l3 + 1)[2l2(l2 + 1)

− l3(l3 + 1) − 2]}f (l1, l2, l3) + O(ε4) (B14)

and

ξ2 = 4π + ε2 1

4

∞∑
l=2

a2
l {l(l + 1)[l(l + 1) − 2]}

− ε3 1

4

∞∑
l1,l2,l3

al1al2al3{l3(l3 + 1)[l3(l3 + 1) − 2]}

× f (l1, l2, l3) + O(ε4), (B15)
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where the function f (l1, l2, l3) is given by

f (l1, l2, l3) = 2π

∫ π

0
dθ sin θ Yl1 (θ )Yl2 (θ )Yl3 (θ )

=
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3
0 0 0

)2

(B16)

and (
l1 l2 l3
0 0 0

)
(B17)

is a Wigner 3-j symbol (see, for example, Appendix C.I of [45])
with m values set to zero. The symbol is zero unless the triangle
condition |l1 − l2| � l3 � l1 + l2, holds. Finally, the volume
contained by an axisymmetric surface is given by

V = 2π

∫ R

0
dR

∫ π

0
dθ

(
∂ r
∂R

)
· n̂

√
g

= 2

3
πR3

∫ π

0
sin θdθ [1 + 3ε + 3ε2 + ε3], (B18)

which can also be integrated using the properties of the zonal
harmonics to give Eq. (42) in the main text.

APPENDIX C: PARTIAL DERIVATIVES

In order to write down the right-hand side of (21), partial
derivatives (48) and (49) are needed in terms of r , the radius
of a sphere with equivalent surface area, and ε. This Appendix
provides the details of the calculation.

First, after invoking the growth law (43), the undeformed
radius R appearing in the expressions for ξ1 and V [Eqs. (B14)
and (42), respectively] must be eliminated in favor of r . Using
the relation (44) gives

ξ1 = 4πr − ε2 r

4

∞∑
l=2

a2
l [2 − l(l + 1)]

+ ε3 r

8

∞∑
l1,l2,l3

al1al2al3{l3(l3 + 1)[2l2(l2 + 1)

− l3(l3 + 1) − 2]}f (l1, l2, l3) + O(ε4) (C1)

and

V = 4

3
πr3 + ε2 r3

4

∞∑
l=2

a2
l [2 − l(l + 1)]

+ ε3 r3

3

∞∑
l1,l2,l3

al1al2al3f (l1, l2, l3) + O(ε4), (C2)

where ξ2 remains unchanged. We may now follow [15] and
introduce the reduced volume v, such that

V = 4πr3

3
v. (C3)

Noticing that v is a function of ε only, implies that(
∂ε

∂V

)
r

= 1

4πr3/3
[v′(ε)]−1 (C4)

and (
∂ε

∂r

)
V

= −3

r

V

4πr3/3
[v′(ε)]−1, (C5)

where using the notation of (45)–(47)

v′(ε) = dv

dε
= 2εV (2) + 3ε2V (3) + O(ε3). (C6)

Substituting (C4) into (48) and (C5) into (49) gives(
∂Em

∂V

)
A

= [v′(ε)]−1

4πr3/3

(
∂Em

∂ε

)
r

(C7)

and (
∂Em

∂A

)
V

= 1

8πr

(
∂Em

∂r

)
ε

− 3V

2A

(
∂Em

∂V

)
A

. (C8)

Writing Em = 2κξ2 − 2κC0ξ1 + κC2
0A/2, the partial deriva-

tive (∂Em/∂ε)r can be found directly using (45), (46), and
A = 4πr2. Substituting into (C7) gives(

∂Em

∂V

)
A

= 6κξ
(2)
2

r3V (2)
− 6κC0ξ

(2)
1

r2V (2)
+ ε

9κ

r3V (2)

×
[(

ξ
(3)
2 − V (3)ξ

(2)
2

V (2)

)
− C0r

(
ξ

(3)
1 + V (3)

3

)]
,

(C9)

where the fact that ξ
(2)
1 /V (2) = −1/3 has been used. Sim-

ilarly, (∂Em/∂r)ε can also be found from (45), (46),
and A = 4πr2. Substituting this result and (C9) into
(C8) gives(

∂Em

∂A

)
V

= −2
κC0

r
+ κC2

0

2
− 3κξ

(2)
2

r2V (2)

− ε
9κ

2r2V (2)

[(
ξ

(3)
2 − V (3)ξ

(2)
2

V (2)

)

−C0r

(
ξ

(3)
1 + V (3)

3

)]
, (C10)

where once again ξ
(2)
1 /V (2) = −1/3 has been used.
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