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Critical behavior and correlations on scale-free small-world networks:
Application to network design
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We analyze critical phenomena on networks generated as the union of hidden variable models (networks with
any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to
those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior
(thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then,
we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately
power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of
the vertex degree, for γ � 3 and with or without short-range couplings, such strong correlations persist even
in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always
disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena
in the rewired network are best performed, a natural criterion to reach best communication features, at least in
noncongested regimes.
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I. INTRODUCTION

In the last decade, it has been recognized that at the
base of many complex systems, as diverse as those observed
in nature and in technological and social sciences, there is
an ubiquitous presence of networks having certain universal
topological features upon which the functionality of the system
largely depends [1]. Essentially, there are two basic topological
features in these complex networks: scale free and small
world. The former refers to the fact that the distribution
of the links among the nodes is strongly heterogeneous, in
particular, many networks have a power-law distribution for
the vertex degree P(k) ∼ k−γ ; the latter refers to the fact that
two randomly chosen nodes are at a distance that, for γ > 3,
scales with the system size N as slowly as log(N )/ log(b),
with b being the mean branching of the network, while for
γ � 3 (where b diverges), the average distance scales as
log[log(N )] or even slower and the network is called ultrasmall
[2]. Network models have then been profusely studied over
the years and many fundamental results are by now well
established and widespread [3,4]. The main assumption under
these studies has been the treelike hypothesis, thanks to which
the generating function technique and the Bethe-Peierls (BP)
method [5] can be applied to get exact solutions for the
percolative and thermal (at least in the ferromagnetic case)
properties as well as the communication features of the system.
However, the treelike assumption is almost never satisfied
in real-world networks. For example, networks of friends,
networks of neurons, the WWW, and the Internet are just
a few examples in which the average clustering coefficient
C [1,4] is finite. More precisely, whereas networks having a
hierarchical structure share a k degree-dependent clustering
coefficient of the form C(k) ∼ k−α , with α ∼ 1, so that the
most connected (and most important) nodes are not clustered,
there are other networks having C(k) ∼ O(1) for almost any
k and for which clustering is important for all nodes. The
former class includes, e.g., some social networks, language
networks, the WWW, and the Internet at the autonomous

system level, whereas the latter class includes the Internet at
the router level, the power grid, but also the brain. As discussed
in Ref. [6], the reason for this difference is related to the fact
that, in the second class, wiring is expensive (economically
or biologically) and the network, rather than hierarchically
organized, is geographically organized. Finally, we recall that
even in pure scale-free networks characterized by an exponent
γ � 3, the treelike assumption is not true; such networks in
fact contain many large cliques [7].

In the last few years, there has been important progress for
the modeling of networks with loops [8–12]; however, such
progress was essentially confined to the cases in which the
random graph can be seen as a treelike hypergraph, or with a
weak transitivity (i.e., with a small overlap between clusters).
It is then of fundamental importance to understand, in general,
as to what the role is of the loops in complex networks from
the point of view of collective behavior. In the presence of
loops, how do the critical surface and the correlation functions
change? Are the analytical results accumulated over 10 years
of research in complex networks robust with respect to the
presence of loops? And, if yes, to what extent? We point out
that the crucial question concerns the loops of finite length.
In fact, in classical random graphs (γ = ∞) and in complex
networks (2 < γ < ∞), there are no finite loops (at least for
γ > 3; for a detailed discussion of the case γ � 3, see the next
section) since the length of the loops scales as log(N ) and, as
a consequence, one can say that the treelike approximation in
these models becomes exact for N → ∞. But, in networks
in which there are loops of finite length (for any N ), due to
the fact that the correlation length in all these models remains
finite, we can not neglect the short-loops even near the critical
point and, as a consequence, the (exact) solution to these issues
is nontrivial.

In this paper, we address the above questions via the
introduction of heterogeneous small-world networks, a natural
generalization of the “classical” small-world networks [13]
that were introduced as intermediate systems lying between
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loopylike (e.g., finite-dimensional lattices) and treelike net-
works. In the classical (γ = ∞) small-world networks, we
have a homogeneous distribution of links among the sites,
but also a finite clustering coefficient, so that treelike based
techniques such as the BP can not be used to solve, e.g.,
an Ising model defined on them. By using a completely
different approach, it is, however, possible to solve exactly the
homogeneous small-world models, at least in the paramagnetic
phase (P) getting their exact critical surface and behavior [14].
If J0 is the coupling associated to a given graph (L0,�0), which
in particular may have short-range links and short loops of any
kind, and J is the coupling associated to a number Nc/2
of additional uniformly spread long-range links (so that they
alone would form a classical random graph [15]), then, for any
c > 0, the mean-field equation for these models is given by

m = m0(βJ0; ctm + βh), t
def= tanh(βJ ), (1)

where m0(βJ0; βh) is defined as the average magnetization of
the model in the absence of the long-range connections, with
a short-range coupling J0 and in the presence of a generic
external field h at temperature T = 1/β. Equation (1) is a
natural generalization of the celebrated Curie-Weiss mean-
field equation m = tanh(βJm + βh), which is valid for J0 = 0
and c = N . It is easy, however, to check that, for any J0 � 0,
the critical behavior of Eq. (1) is classical, regardless of the
local topology and clustering coefficient of the network (see
also Ref. [16]).

In this paper, we face the natural extension of Eq. (1)
toward a large class of heterogeneous small-world networks
generated by using hidden variables [17–20], which have the
slight inconvenience that the resulting network has some small
degree-degree correlation [21], but also the great advantage
that the model is analytically solvable even in the presence of
loops (at least within our effective field theory). After deriving
the equation for the order parameter and the critical surface
(thermal or bond percolative), we analyze the connected
correlation functions in general and we show that, in these
models, even for J0 = 0, there are finite size corrections as
strong as 1/Nδ , with δ = (γ − 2)/(γ − 1) for γ > 3 and
δ = 0 for γ � 3, contradicting the common opinion that, in
mean-field models, the connected correlation functions always
disappear in the thermodynamic limit. Then, we prove that
the critical behavior (thermal or bond percolative) on these
networks is never affected by the presence of a local non-
treelike structure, provided that the connectivity associated to
such loopy structures is nonheterogeneous. This latter result
already has been presented and discussed in a previous paper
[22], but limiting the proof to an infinitesimal coupling J0,
while postponing to this paper the general proof as well as the
derivation of the mean-field equation. Meanwhile, in [23], we
find that a similar robustness theorem has been proved for both
static and growing networks embedded in a metric space when
γ � 3.

In Tables I and II, we summarize the state of the art
reached about the analytical behavior of the Ising model built
on classical and complex random graphs. We stress that we
mention only the cases and the models where exact analytical
calculations have been possible without any pretension to
be exhaustive [in particular, we do not mention here the

hierarchical models (random or not), where some exact
analytical results are also possible].

Finally, as an application, given the desired degree sequence
and the graph (L0,�0), we find that the equation for the
critical surface leads to an optimization problem consisting
in finding the rewiring of the additional links that provide
the minimal percolating point, a criterion that amounts to
finding the rewiring that provides the best communication
performance at the minimal cost in the absence of congestion.
This optimization problem, in general, is an NP-hard problem;
however, we provide heuristic solutions, the effectiveness
of which depends on how much the network is structured
in communities (if any), and we show that the use of the
formula for the critical surface is always exponentially (in N )
convenient with respect to a direct inspection of the network,
even in the worst case scenario in which there is no community
structure at all.

II. RANDOM ISING MODELS BUILT ON
HETEROGENEOUS SMALL-WORLD NETWORKS

A. The model

The family of models that we consider is built as follows.
Let (L0,�0) be any graph, L0 and �0 being the set of
vertices i = 1, . . . ,N and links (i,j ), i < j , respectively. Let
us consider the Ising model defined on the graph (L0,�0) with
a fixed coupling J0 and in the presence of an arbitrary external
field {hi}:

H0 = −J0

∑
(i,j )∈�0

σiσj −
∑

i

hiσi . (2)

We will call this the pure model. Let us now consider the
model obtained by removing randomly some links of the
graph (L0,�0) and by adding new links as follows. Let us
indicate with c0;i,j = 0,1 the adjacency matrix of the new
graph in which some links of �0 have been removed. Given
an ensemble C of random graphs c, c ∈ C, the links of which
are determined by the adjacency matrix elements ci,j = 0,1,
we define our heterogeneous small-world model through the
following Hamiltonian:

Hc0,c,J0,J
def= −

∑
(i,j )∈�0

c0;i,j J0;i,j σiσj − h
∑

i

σi

−
∑
i<j

cij Jij σiσj . (3)

The variables ci,j specify whether a “long-range” link between
the sites i and j is present (ci,j = 1) or absent (ci,j = 0),
whereas the variables c0;i,j specify whether a link (i,j ) ∈ �0

has been removed (c0;i,j = 0) or not (c0;i,j = 1). The Ji,j ’s are
the random couplings of the given link (i,j ) and similarly for
the J0;i,j ’s for the links of �0. All the above random variables
are assumed to be independent. For the J0;i,j ’s and the Ji,j ’s,
we will not assume any particular distribution, while for the
c0;i,j ’s and the ci,j ’s, we assume, respectively, the probabilities

p0(c0;i,j ) = (1 − p)δc0;i,j ,1 + pδc0;i,j ,0, (4)

pij (cij ) = f (pi,pj )δcij ,1 + [1 − f (pi,pj )]δcij ,0, (5)
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TABLE I. Critical behavior of the unweighted magnetization m = ∑
i 〈σi〉/N (τ ≡ 1 − T/Tc), the susceptibility χ , and the equation for

the critical temperature of the Ising model built on several network models: the classical random graph; the configuration model [i.e., the
maximally random graph under the constraint that the degree distribution is a given one, P (k) ∼ k−γ ]; the static model [a hidden variable
model with weights pi ∝ i−μ, where μ ∈ [0,1) is such that P (k) ∼ k−γ ]; the classical small-world network built by overlapping the classical
random graph with additional links associated to an arbitrary graph (L0,�0); the heterogeneous small-world networks [ [22] (J0 infinitesimal)
and this paper (J0 arbitrary)] built by overlapping hidden variable models with additional links associated to an arbitrary graph (L0,�0); the
spatial network model for γ < 3 (where self-similarity applies). We use the notation c = 〈k〉

P
.

Ising on the “classical random graph” (Ref. [15]) m̄ χ Equation for tc = tanh(βcJ )

P (k) Poissonian {no finite loops; shortest loops scale as O[log(N )]} ∝ τ 1/2 ∝ τ−1 ctc = 1

Ising on the “configuration network” (Ref. [24]) m̄ χ Equation for tc = tanh(βcJ )

γ > 5, 〈k4〉
P

< ∞ {shortest loops scale as O[log(N )]} ∝ τ 1/2

γ = 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ {shortest loops scale as O[log(N )]} ∝ 1/ ln τ−1

⎫⎬
⎭ ∝ τ−1 tc = 〈k〉

P

〈k2〉P −〈k〉
P

3 < γ < 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ {shortest loops scale as O[log(N )]} ∝ τ 1/(γ−3)

γ = 3, 〈k2〉
P

= ∞ (finite loops) ∝ e−2T/〈k〉
P

}
βc → 0

2 < γ < 3, 〈k2〉
P

= ∞ (finite loops) ∝ T −1/(3−γ )
∝ T −1

Ising on the “static network” (hidden variables) (Ref. [32]) m̄ χ Equation for tc = tanh(βcJ )

γ > 5, 〈k4〉
P

< ∞ {shortest loops scale as O[log(N )]} ∝ τ 1/2

γ = 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ {shortest loops scale as O[log(N )]} ∝ 1/ ln τ−1

⎫⎬
⎭ ∝ τ−1 ctcN

∑
i p

2
i = 1

3 < γ < 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ {shortest loops scale as O[log(N )]} ∝ τ 1/(γ−3)

γ = 3, 〈k2〉
P

= ∞ (finite loops) ∝ e−2T/〈k〉
P
}

βc → 0
2 < γ < 3, 〈k2〉

P
= ∞ (finite loops) ∝ T −1/(3−γ )

∝ T −1

Ising on the “classical SW networks” (Refs. [14,16]) m̄ χ Equation for tc = tanh(βcJ )

P (k) Poissonian + additional arbitrary links (loops of any length) ∝ τ 1/2 ∝ τ−1 ctcχ̃0 (βcJ0; 0) = 1

Ising on the “heterogeneous SW networks” (Ref. [22] and this paper) m̄ χ Equation for tc = tanh(βcJ )

γ > 5, 〈k4〉
P

< ∞ (arbitrary loops of any length) ∝ τ 1/2

γ = 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ (arbitrary loops of any length) ∝ 1/ ln τ−1

⎫⎬
⎭ ∝ τ−1 ctcN

∑
i,j χ̃0;i,jpipj = 1

3 < γ < 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ (arbitrary loops of any length) ∝ τ 1/(γ−3)

γ = 3, 〈k2〉
P

= ∞ (arbitrary loops of any length) ∝ e−2T/〈k〉
P
}

βc → 0
2 < γ < 3, 〈k2〉

P
= ∞ (arbitrary loops of any length) ∝ T −1/(3−γ )

∝ T −1

Ising on “static and growing spatial networks” (Ref. [23]) m̄ χ Equation for tc = tanh(βcJ )

Self-similarity 2 < γ < 3, 〈k2〉
P

= ∞ (loops in a metric space) ∝ T −1/(3−γ ) ∝ T −1 βc → 0

where p ∈ [0,1], and the {pi} are a set of hidden variables1

[17–20], each proportional to the average degrees {k̄i} of the
graph c of the nodes i = 1, . . . ,N [i.e., the degrees in the
absence of the graph (L0,�0)]. Usually, the hidden variables
depend on one (or more) continuous parameters μ ∈ I, and
on N . Given the mean degree c > 0 (so that, on average, there
are in total cN/2 bonds) of the graph c, we assume that, for a
continuous subset J ⊂ I, asymptotically in N , we can write

f (pi,pj ) = cNpipj , (6)

where

c
def=

∑
i

k̄i

N
. (7)

For the validity of the results that we present in the next section,
we require the number of links (i,j ) for which Eq. (6) is not

1Usually, the hidden variables are represented not with the {pi}, but
with the set {θi}, where θi = √

cNpi .

true to be less than O(Nα), as long as α < 1. We will prove
in fact that, in the thermodynamic limit, the free energy of
the model (see below) is not affected by the presence of the
O(Nα) links for which Eq. (6) is not true if α < 1. As a
probability, Eq. (6) for f (pi,pj ) will be manifestly violated
in I \ J whenever cNpipj > 1. Note that, if pi �= 0 for any
given N (a requirement that is true for any graph in which
there are no isolated nodes), for N → ∞ the terms cNpipj

tend either to 0 or to ∞, therefore, the number of links (i,j )
for which Eq. (6) is not true for N large approaches

NN
def=

∑
i<j

θ (cNpipj − 1), (8)

where θ (x) = 0 or 1 if x < 0 or x � 0, respectively. In
Appendix A, we show that, if in the ensemble C the probability
p(k) to have a vertex with degree k scales, for k large, as a
power law p(k) ∼ k−γ , then

NN <
N2−γ c1−γ

2(γ − 1)
log(N ), (9)
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TABLE II. Connected correlation functions χ̃l (connected correlation of two randomly chosen spins at given distance l) and χ̃ij [average
connected correlation of two given spins i and j (see Sec. II C)] of the Ising model built on the configuration model; the classical small-world
network built by overlapping the classical random graph with additional links associated to an arbitrary graph (L0,�0) [χ̃0;i,j stands for
the connected correlation function associated to (L0,�0)]; the heterogeneous small-world networks (this paper) built by overlapping hidden
variable models with (L0,�0). In the heterogeneous small-world networks, the formula for χ̃ij is valid when the underlying network (L0,�0)
has dimension d0 � 1. For the general case, the dependence on i and j is more complicated [see Eq. (75)], but the dependence on N is the
same. For what concerns the configuration network model, for γ � 3, in Ref. [25] it is speculated that χ̃l ∼ 0 for l not too small, while for
l ∼ O(1), one has χ̃l ∼ t l , a result that is not in contradiction with our achievement (see Sec. II C). However, in Ref. [25], χ̃l was obtained
directly by using the treelike assumption, which, for γ � 3, is wrong even in the configuration model (in fact, the formulas of Ref. [25] give
χ̃l = 0 for any l � 2, which is clearly not exact). See Ref. [7] and footnote 2. Apart from technical details, the main point we stress is that, in
previous works, it was not possible to see that (i) finite size effects are always strong in scale-free networks; (ii) for γ > 3 they decay as slowly
as O(1/N (γ−3)/(γ−1)); and (iii) finite size effects persist even in the thermodynamic limit when γ � 3 and, as a consequence, correlations of
two given spins can be strong (power-law-like) when γ � 3.

Ising on the “configuration network” (Ref. [25]) Correlations χ̃l of two spins at distance l; N → ∞
γ > 5, 〈k4〉

P
< ∞ {length of shortest loops scale as O[log(N )]} χ̃l ∼ t l , [t = tanh(βJ )]

γ = 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ {shortest loops scale as O[log(N )]} χ̃l ∼ t l

3 < γ < 5, 〈k4〉
P

= ∞, 〈k2〉
P

< ∞ {shortest loops scale as O[log(N )]} χ̃l ∼ t l

γ = 3, 〈k2〉
P

= ∞ (finite loops) χ̃l ?
2 < γ < 3, 〈k2〉

P
= ∞ (finite loops) χ̃l ?

Ising on the “classical SW networks” (Ref. [14]) Correlations χ̃ij of two given spins i and j ; N finite

P (k) Poissonian + additional arbitrary links (arbitrary loops) χ̃ij = χ̃0;i,j + O

(
ct

N

[χ̃0]2

1−ctχ̃0

)
Ising on the “heterogeneous SW networks” (this paper) Correlations χ̃ij of two given spins i and j ; N finite

γ > 3, 〈k4〉
P

< ∞ (arbitrary loops of any length) χ̃ij = χ̃0;i,j + O

(
t

tc

1
1−t/tc

(ij )−1/(γ−1)

N (γ−3)/(γ−1)

)
3 � γ > 2, 〈k4〉

P
= ∞ (arbitrary loops of any length) χ̃ij = χ̃0;i,j + O

(
(ij )−1/(γ−1)

)

so that the requirement NN = O(Nα) with α < 1 is equivalent
to have γ > 2, and, for N large but finite, the error we
make per spin in neglecting these O(Nα) contributions is
O[N1−γ log(N )] for γ > 2.2 As an example of a scale-free
model, we can consider the choice

f (pi,pj ) = 1 − e−cNpipj , (10)

pi
def= i−μ∑

j∈L0
j−μ

 i−μ(1 − μ)

N1−μ
, (11)

where μ ∈ [0,1). Equations (10) and (11) define the static
model introduced in [17]. Note that the so called fermionic

2It should be noted that, as a matter of fact, from the analysis
performed on J , one is allowed to make the analytic continuation to
get the results in the full set I. Notice the strict analogy with what is
usually (tacitly) done in the Ising model defined on the configuration
model [24]: One uses the local treelike ansatz to derive the equation
for the order parameter in the region γ > 3, then one extrapolates
by analytic continuation the result to the region 3 � γ > 2, where
the tree ansatz is wrong even locally. The reason why the analytic
continuation works is the same as ours: The extensive free energy
does not depend on the number of contributions for which the treelike
ansatz is wrong since this number grows less slowly than O(Nα) with
some α < 1. It should, however, be recalled that the treelike ansatz
used to get directly local quantities loop sensitive, as the spin-spin
correlations would lead to a completely wrong result for 3 � γ > 2.
The proper way to get the spin-spin correlation consists in solving
the model for γ > 3 in the presence of a nonuniform external field
and then to analytically continue the result to the range 3 � γ > 2.

constraint that avoids having multiple bonds is automatically
satisfied by Eq. (5). As has been shown, this constraint leads to
some weak disassortative degree-degree correlations for μ >

1/2 [21]. In the thermodynamic limit N → ∞, for μ ∈ (0,1),
Eqs. (10) and (11) lead to a number of long-range connections
per site distributed according to a power law with mean c and
exponent γ given by

γ = 1 + 1

μ
, (12)

so that γ ∈ (2,∞). For μ ∈ (0,1/2) (γ > 3), Eq. (10) takes the
simpler form (6), while for μ ∈ [1/2,1) (2 < γ � 3), Eq. (10)
can be written as Eq. (6) only when i and j are sufficiently
distant ij � N2−1/μ, while for lower distances ij � N2−1/μ,
we have pij (cij = 1)  1.

The free energy F and the averages 〈O〉l , with l = 1,2, are
defined in the usual (quenched) way as (β = 1/T )

−βF
def=

∑
c0,c

P (c0,c)
∫

dP( J0,J) log(Zc0,c,J ) (13)

and

〈O〉l def=
∑
c0,c

P (c0,c)
∫

dP ( J0,J) 〈O〉lc0,c,J0,J , l = 1,2

(14)

where Zc0,c,J0,J is the partition function of the quenched
system

Zc0,c,J0,J =
∑
{σi }

e−βHc0 ,c,J0 ,J ({σi }), (15)
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〈O〉c0,c,J0,J the Boltzmann average of the quenched system
(〈O〉 depends on the given realization of J , J0, {c0} and c:
〈O〉 = 〈O〉c0,c; J0,J ; for simplicity, we later will omit to write
these dependences)

〈O〉c0,c,J0,J
def=
∑

{σi } Oe−βHc0 ,c,J0 ,J ({σi })

Zc0,c,J0,J
, (16)

and dP ( J0,J) and P (c0,c) are product measures given in
terms of arbitrary measures (all normalized to 1) for the short-
and long-range couplings dμ0(J0;i,j ) � 0, dμ(Ji,j ) � 0, and
in terms of the introduced link probabilities [Eqs. (4) and (5)]
p0(ci,j ) � 0, and pij (ci,j ) � 0:

dP( J0,J)
def=

∏
(i,j ),i<j

dμ(Ji,j )
∏

(i,j )∈�0

dμ0(J0;i,j ), (17)

P (c0,c)
def=

∏
(i,j ),i<j

pij (ci,j )
∏

(i,j )∈�0

p0(c0;i,j ). (18)

B. A note on small-world networks à la Watts and Strogatz

The class of our small-world scale-free models given by
Eqs. (2)–(7) is very general. Note, in particular, that the graph
(L0,�0) is completely arbitrary and can contain closed paths
of any length. We stress that the resulting network, the union
of the graph (L0,�0) in which each link is removed with a
probability p, with the scale-free random graph c can be seen
as a scale-free grand canonical generalization of the original
small-world graph of Watts and Strogatz [13], although we do
not perform here a true rewiring. Since we let the probability
p ∈ [0,1] and the mean c ∈ (0,∞) be arbitrary, our method
to build small-world networks is more general even for the
non-scale-free case μ = 0 (γ = ∞). However, we can always
restrict our class of small-world networks to those having a
total average connectivity, which does not change with p by
choosing c such that the total number of links of the graph c is
equal to the total number of removed links of (L0,�0). Up to
corrections O(1/

√
N ), we can accomplish this for any sample

by simply taking c = c0p, where c0 is the average connectivity
of (L0,�0). We anticipate, however, that the critical behavior
of these models is not affected by any particular choice of p

and c, the only condition being c > 0. In fact, as we will see
soon in Sec. III, the sole role of the parameter p is to give
a renormalized effective coupling J0(p) to be used as though
we had the original graph (L0,�0) with no removed links.
Since the class of universality does not depend on J0 as soon
as c > 0, it follows that the critical behavior of this class of
generalized small-world models is the same for any p ∈ [0,1]
as soon as c > 0.3

C. Correlations of two given spins and correlations of two spins
at given chemical distance

The quantities of major interest are the averages and the
quadratic averages of the correlation functions, which for
simplicity will be indicated by C(1) and C(2). For example,

3In the non-scale-free case, the similarity between small-world
models obtained by pure rewiring or pure addition of links has already
been speculated by several authors but never proved.

the following are nonconnected correlation functions of
order k:

C(1) = 〈σi1 , . . . ,σik 〉, (19)

C(2) = 〈σi1 , . . . ,σik 〉2, (20)

where k � 1 and the indices i1, . . . ,ik are supposed all
different. For simplicity, we will keep using the symbols C(1)

and C(2) also for the connected correlation function since
they obey the same rules of transformations. We point out
that the set of indices i1, . . . ,ik is fixed along the process
of the two averages, with respect to the couplings (17) and
the graph realizations (18). This implies, in particular, that,
given the spin with index i and the spin with index j , once the
averages have been performed, their chemical distance remains
undefined, while the only meaningful distance between i and
j is the distance defined over L0, which we will indicate as
||i − j ||

0
. Interestingly, for the cases in which (L0,�0) is a

regular lattice, ||i − j ||
0

is a Euclidean distance. Therefore,
throughout this paper, it must be kept in mind that, for example,
C(1)(||i − j ||

0
) = 〈σiσj 〉 is very different from the correlation

function G(1)(l) of two points at a fixed chemical distance l, i.e.,
the minimum number of links to join two points among both the
links of �0 and the links of the random graph realization c. In
fact, if, e.g., for the homogeneous case pi ≡ 1/N with J0 = 0,
one considers all the possible realizations of the Poisson graph,
and then all the possible distances l between two given points
i and j , one has

C(1)(||i − j ||
0
) = 〈σiσj 〉 − 〈σi〉〈σj 〉

=
N∑

l=1

PN (l)G(1)(l), (21)

where PN (l) is the probability that, in the system with N spins,
the shortest path between the vertices i and j has length l. If
we now use G(1)(l)∼ [tanh(βJ )]l [25] (in the P region holds
the exact equality) and the fact that the average of l with
respect to PN (l) is of the order log(N ), we see that the two-
point connected correlation function (21) goes to 0 in the
thermodynamic limit. Similarly, in the Poissonian graph, all
the connected correlation functions defined in this way are
zero in the thermodynamic limit. However, as we will see in
Sec. III D, this independence of the variables holds only if
J0 = 0 and γ > 3. Furthermore, even for γ > 3, finite size
effects may result in strong correlations in the finite network.

III. AN EFFECTIVE FIELD THEORY

A. The self-consistent equation

Depending on the temperature T , and on the parameters μ

and those of the probability distributions dμ(·) and dμ0(·), the
small-world model may stably stay either in the paramagnetic
(P), in the ferromagnetic (F), or in the spin-glass (SG) phase.
In our approach for the F and SG phases, there are two natural
order parameters that will be indicated by m(F) and m(SG).
Similarly, for any correlation function, quadratic or not, there
are two natural quantities indicated by C(F) and C(SG), and
that in turn will be calculated in terms of m(F) and m(SG),
respectively. To avoid confusion, it should be kept in mind
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that, in our approach, for any observable O, there are, in
principle, always two solutions that we label as F and SG,
but, as we shall discuss soon, for any temperature, only one
of the two solutions is stable and useful in the thermodynamic
limit.

In the following, we use the label 0 to specify that we are
referring to the pure model with Hamiltonian (2). Note that
all the equations presented in this paper have meaning and
usefulness also for sufficiently large but finite size N . For
simplicity, we shall often omit to write the dependence on N .

Let m0i(βJ0,{βhj }) be the stable magnetization of the spin i

in the pure model (2) with coupling J0 and in the presence
of a generic external field {hj } at inverse temperature β. In
Appendix B, we prove that the order parameter m(F) or m(SG)

of the model defined in Eqs. (3)–(7), with the condition α < 1
(equivalent to γ > 2), satisfies the following self-consistent
equation:

m(�) =
∑

i

m0i

(
βJ

(�)
0 ; {Npjct

(�)m(�) + βh})pi, (22)

where the effective fields t (F), t (SG) and couplings J
(F)
0 and

J
(SG)
0 are given by

t (F) =
∫

dμ(J ) tanh(βJ ), (23)

t (SG) =
∫

dμ(J ) tanh2(βJ ), (24)

tanh
(
βJ

(F)
0

) = (1 − p)
∫

dμ0(J0) tanh(βJ0), (25)

and

tanh
(
βJ

(SG)
0

) = (1 − p)
∫

dμ0(J0) tanh2(βJ0). (26)

Note that |J (F)
0 | > J

(SG)
0 . For later use, we introduce also the

short notations

t
(F)
0

def= tanh
(
βJ

(F)
0

)
(27)

and

t
(SG)
0

def= tanh
(
βJ

(SG)
0

)
. (28)

The meaning of the order parameters m(�) is quite natural
being given by

(m(�))l� =
∑

i

pi〈σi〉l� , (29)

where l� = 1,2 for � = F or SG, respectively.
The free energy density f (�) coming from Eq. (13) involves

a generalized Landau free energy density L(�) from which
it differs only for trivial terms independent from m(�). The
complete expression for f (�) in terms of L(�) is reported
in Appendix C. The term L(�) reads (βf (�) = trivial terms

+L(�)/l(�), with l(�) = 1,2 for � =F, SG, respectively), and
is given by

L(�)(m(�))
def= ct (�)(m(�))2

2

+βf0
(
βJ

(�)
0 ,{Npjct

(�)m(�) + βh}),
(30)

with f0(βJ0,{βhi}) being the free energy density of the pure
model (2). For given β, among all the possible solutions of
Eqs. (22), in the thermodynamic limit, for both �= F and
SG, the true solution m̄(�)(or leading solution) is the one that
minimizes L(�).

Finally, let k be the order of a given correlation function
C(1) or C(2). The averages and the quadratic averages over the
disorder C(1) and C(2) are (see Appendix B for details)

C(1) = C(F) in F, (31)

C(1) = 0, k odd in SG, (32)

C(1) = C(SG), k even in SG (33)

and

C(2) = (C(F))2 in F, (34)

C(2) = (C(SG))2 in SG, (35)

where, for sufficiently large N ,

C(�) = C0
(
βJ

(�)
0 ; {Npjct

(�)m(�) + βh})
× O

(
1

Nδ

)
, (36)

where in turn C0(βJ0,{βhi}) is the correlation function of
the pure model (2); and, finally, δ � 1 only for k = 1, while
in general 0 � δ < 1 for k > 1 and δ = 0 if γ < 3 (see
Sec. III D).

From Eqs. (34) and (35) for k = 1, we note that the Edward-
Anderson order parameter [26] C(2) = 〈σ 〉2 = qEA is equal
to (C(SG))2 = (m(SG))2 only in the SG phase, whereas in the
F phase, we have qEA = (m(F))2. Therefore, since m(SG) �=
m(F), m(SG) is not equal to

√
qEA; in our approach, m(SG)

represents a sort of spin glass order parameter [27]. In general,
our method is able to establish exactly the phase boundary
P-F and P-SG, but not the frontiers F-SG when both the
order parameters give a nonzero solution. Furthermore, while
Eq. (29) for � = F can be derived, for � = SG it remains only
a plausible ansatz (see discussion at the end of the Sec. VII A
of Ref. [14]). Note, however, that, at least for latticesL0 having
only loops of even length, the stable P region is always that cor-
responding to a P-F phase diagram, so that in the P region the
correlation functions must be calculated only through Eqs. (31)
and (34).

As an immediate consequence of Eq. (22), we get
the susceptibility χ̃ (�) of the model (throughout the pa-
per we will use only the dimensionless definition of the
susceptibility)

χ̃ (�) def= ∂m(�)

∂(βh)
=

∑
i pi

∑
j χ̃0;i,j

(
βJ

(�)
0 ; {Nplct

(�)m(�) + βh})
1 − ct (�)N

∑
i,j χ̃0;i,j

(
βJ

(�)
0 ; {Nplct (�)m(�) + βh})pipj

, (37)
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where χ̃0;i,j stands for the two-point connected correlation
function of the pure model

χ̃0;i,j
def= 〈σiσj 〉0 − 〈σi〉0〈σj 〉0. (38)

Note that, as is evident in all the above equations, even when
the pure model in the presence of a uniform external field
is translational invariant, for any nonzero value of the order
parameter m(�), the disordered model is no longer translational
invariant. Note, in particular, that χ̃ (�) refers to the weighted
order parameter (29) so that it does not coincide with the usual
unweighted sum of the connected correlation functions. In fact,
from Eq. (22), it follows that

χ̃ (�) =
∑
i,j

pi[〈σiσj 〉l� − 〈σi〉l� 〈σj 〉l� ]. (39)

B. Critical surface (thermal and percolative)

Note that, for β sufficiently small (see later), Eq. (22) has
always the solution m(�) = 0 and, furthermore, if m(�) is a
solution, −m(�) is a solution as well. From now on, if not
explicitly said, we will refer only to the positive (possibly
zero) solution, the negative one being understood. A solution
m(�) of Eq. (22) is stable (but in general not unique) if

ct (�)N
∑
i,j

χ̃0;i,j

×(βJ
(�)
0 ; {Nplct

(�)m(�) + βh})pipj < 1. (40)

From Eqs. (22) or (40), we see that, in the thermodynamic
limit, the critical surface crossing that the system passes from
a P region to a non-P region satisfies

ct (�)
c N

∑
i,j

χ̃0;i,j
(
β(�)

c J
(�)
0 ; 0

)
pipj = 1. (41)

Equation (41) gives the critical surface of the model in the
plane (β,c) as a function of p and the other parameters of the
model (dμ0, dμ, {pi}).

1. Critical temperature

For a given value of c, Eq. (41) provides the critical
temperature. From Eq. (22), it is immediate to recognize that,
for J0 �= 0,

β(�)
c < β

(�)
c0 , (42)

while β(�)
c = β

(�)
c0 for J0 = 0, where β

(�)
c0 is the critical

temperature of the pure model with coupling J
(�)
0 . It is clear

that, when (L0,�0) is not translational invariant, there exists
an optimal choice of labeling the sites i = 1, . . . ,N , which
gives the lowest β(�)

c , and that corresponds to the choice that
maximizes the functional Fβ({pi}), where

Fβ({pi}) def= cN
∑
i,j

χ̃0;i,j
(
βJ

(�)
0 ; 0

)
pipj .

We will come back to this interesting issue in Sec. V.

2. Percolation threshold: Clustering versus percolation threshold

The theory can be projected toward the limit β → ∞
where, for � = F, we get an effective percolation theory.

Here, the region P corresponds to the region in which (in
the thermodynamic limit) the parameters (c,c0,p) are such
that no giant connected component exists (m(F ) = 0). Note,
in particular, that if c0c is the percolation threshold of the
initial graph (L0,�0) (if c0c does not exist, we can set
formally c0c = ∞) in order to remain in the region P, the
connectivity c

(p)
0 = c0(1 − p) of the graph obtained from the

graph (L0,�0) in which each link has been removed at random
with probability p must satisfy c0(1 − p) � c0c, otherwise, a
giant connected component already exists [and the stability
condition (40) at β → ∞ with m(F ) = 0 is violated]. From
Eq. (41), in the thermodynamic limit it follows the equation
for the percolation threshold cc as a function of p:

ccN
∑
i,j

χ̃0;i,j [tanh−1(1 − p); 0]pipj = 1

(43)
with c0(1 − p) � c0c,

where we have used the fact that limβ→∞ tanh(βJ
(F)
0 ) =

tanh(1 − p). Alternatively, Eq. (43) can be rewritten in terms
of only graph elements as

ccN
∑
i,j

(
δi,j + N (p)

0;i,j

)
pipj = 1, c0(1 − p) � c0c (44)

where N (p)
0;i,j = 1 if, in the graph (L0,�0) from which each link

has been removed at random with probability p, between the
vertex i and the vertex j there exists at least a path of links
and N (p)

0;i,j = 0 otherwise.
Given p, if the condition c0(1 − p) � c0c is not satisfied,

then a giant connected component is present and we can set
cc = 0. It is interesting to see in more details the case in which
we choose c = c0p so that, as we vary p, the total connectivity
is fixed and equal to c0 (the “rewired” small world). This study
is important since it leads us to understand how the presence
of short loops affects diffusion processes on general networks.
In particular, a strong interest concerns the following question:
In the presence of short loops, how does the percolation
threshold change? If we set c = c0p, from Eq. (44) we get
the percolation threshold c0c as a function of the rewiring
parameter p:

c
(p)
0c pN

∑
i,j

(
δi,j + N (p)

0;i,j

)
pipj = 1, c

(p)
0 (1 − p) � c0c.

(45)

From Eq. (45), we see that p has two effects on c
(p)
0c : the

prefactor p in the left-hand side of Eq. (45) tends to decrease
c

(p)
0c , while the other tends to decrease N (p)

0;i,j and then to

increase c
(p)
0c . However, as we shall see soon, in general, c

(p)
0c

decreases with p due to the general mechanism according to
which clustering diminishes the percolation threshold.

A special case is the one in which pi ≡ 1/N ; i.e., the
classical small world (no heterogeneity). In this case, Eq. (43)
simplifies as

c
(p)
0c pχ̃0[tanh−1(1 − p); 0] = 1, c

(p)
0 (1 − p) � c0c. (46)
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So, for example, if (L0,�0) is the Erdös-Rényi random graph
[15] (in the canonical representation), with mean connectivity
c0, from (valid in the P region)

χ̃0(βJ0; 0) = 1

1 − c0 tanh(βJ0)
(47)

to be inserted in Eq. (46), we get back obviously the well
known percolation threshold c

(p)
0c = 1, independently of the

value of p. Depending on the problem, given c0 < c0c, in
general one can be more interested in reading Eq. (43) either
as an equation for p or for c. We can consider, for example, the
case in which (L0,�0) is an ensemble of arbitrary disconnected
finite clusters (dimers, triangles, ..., or mixtures of them) for
which there is no percolation threshold (or formally cc0 = ∞).
For example, for a set of N/2 disconnected dimers (c0 =
1), N/3 disconnected triples (c0 = 1 × 2/3 + 2 × 1/3), N/3
disconnected triangles (c0 = 2), N/4 disconnected squares
(c0 = 2), and N/5 disconnected pentagons (c0 = 2), we have,
respectively,

χ̃0(βJ0; 0) = 2eβJ0

eβJ0 + 2e−βJ0
(dimers), (48)

χ̃0(βJ0; 0) = 1

3

9e2βJ0 + 2 + 2e−2βJ0

e2βJ0 + 2 + e−2βJ0
(triples), (49)

χ̃0(βJ0; 0) = 3e3βJ0 + e−βJ0

e3βJ0 + 3e−βJ0
(triangles), (50)

χ̃0(βJ0; 0) = 4e4βJ0 + 4

e4βJ0 + 7
(squares), (51)

χ̃0(βJ0; 0) = 5e5βJ0 + 11eβJ0

e5βJ0 + 15eβJ0
(pentagons). (52)

If we consider the case with no heterogeneity pi ≡ 1/N ,
from Eqs. (48)–(52) plugged in Eq. (43) for p = 0, we get,
respectively, the following percolation thresholds cc:

cc = 1/2 (dimers), (53)

cc = 1/3 (triples), (54)

cc = 1/3 (triangles), (55)

cc = 1/4 (squares), (56)

cc = 1/5 (pentagons), (57)

and, in general, for polygons of m � 3 sides (c0 = 2),

cc = 1/m (polygons of m sides). (58)

Notice that the clustering coefficient for dimers and triples
is zero, and for closed polygons of m sides decreases with
m. Of course, one recovers that cc = 1/m → 0 for m → ∞
since an ensemble of N/m disconnected polygons of length
m for m = N → ∞ becomes equivalent to a closed chain
for which we already know that cc = 0. Eqs. (48)–(52)
can be used in general also for p > 0. So, for example,
from Eqs. (46) and (50), by using the replacement βJ0 →
tanh−1(1 − p), we get the equation for the percolation thresh-
old pc of an ensemble of disconnected triangles (c0 = 2)
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FIG. 1. Plot of the left-hand side of Eq. (59) [(L0,�0) is a set of
disjoint triangles] as a function of the dilution probability p.

from which each link has been removed with probability
p (c(p)

0 = 2p) and “rewired” as a “long-range” link:

2p
3e3 tanh−1(1−p) + e− tanh−1(1−p)

e3 tanh−1(1−p) + 3e− tanh−1(1−p)
= 1. (59)

In Fig. 1, we plot the left-hand side of Eq. (59) as a function
of p. Equation (59) is solved for pc = 0.183 406.

Let us come back now to the general heterogeneous case.
From Eq. (45), we see that, given two regular graphs (L0,�0)
and (L0,�

′
0), both having the same average connectivity

c0 = c′
0 (so that |�′

0| = |�0|), between (L0,�0) and (L0,�
′
0),

the sum in the left-hand side of Eq. (45) will be greater for the
graph having the smaller clustering coefficient, which in turn
will result in a lower value for c

(p)
0c . In fact, given a vertex i

and its local connectivity c0(i), the smaller the clustering
coefficient around the vertex i is, the larger the number of
different vertices j connected to i (while when the clustering
coefficient is large, a same vertex j will be reached from the
vertex i by many different paths) will be, so that

∑
j N0;i,j

will be greater, which in turn will give rise, via Eq. (45), to
a smaller clustering coefficient, and similarly for N (p)

0;i,j for
any given p. In conclusion, as already discussed in [28–30],
clustering increases the percolation threshold. Equation (58)
for the polygons represents a clear example of this mechanism
for the particular choice c0 = 2, p = 0, and pi ≡ 1/N .

We conclude this section with a remark on the recent
methods used by Newman [8] and Gleeson [12] by which
families of clustered networks are introduced and analytically
exactly solved by generating function techniques. Although
these networks have a finite clustering coefficient, they can still
be mapped to effective treelike graphs. So, for example, for the
ensemble of disconnected finite clusters as the ones we have
analyzed in Eqs. (48)–(58), we could also use the method [8] to
solve the percolation problem,4 but not, for example, the case
in which (L0,�0) is a d0 dimensional lattice. In fact, the main
condition that allows the methods [8] or [12] to be applied is

4For example, for the ensemble of disconnected triangles, by using
the same formalism of [8], it is easy to see that by choosing ps,t =
psδt,1, ps being Poissonian with mean μ = c, we reach Eq. (55).
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the absence of overlaps among the module elements (links or
triangles or any kind of finite cluster) while, for example, in
a two-dimensional lattice, we always have overlap among the
square “module elements.”

C. Critical behavior

In this section, we prove that the critical behavior of an
arbitrary heterogeneous graph as defined through Eq. (5),
which includes, in particular, scale-free graphs, is robust
with respect to the addition of any graph (L0,�0) provided
(L0,�0) is not in turn a heterogeneous graph. In [14], we have
shown this result for the homogeneous small-world model
corresponding to the case pi ≡ 1/N . More precisely, the
critical behavior for pi ≡ 1/N and p = 0 has been shown to be
classical mean field for t

(F)
0 � 0, while for t

(F)
0 < 0, first-order

phase transitions are also possible (see also [31]). Here, we
will restrict the analysis only to the case t

(F)
0 � 0. First of

all, from Eqs. (37) and (41) we observe immediately that the
critical exponents for the susceptibility, above and below the
critical temperature, are both equal to 1. Note in particular
that, above the critical temperature and zero external field, the
susceptibility can be written in the simpler form

χ̃ (�) =
∑

i pi

∑
j χ̃0;i,j

(
βJ

(�)
0 ; {0})

1 − t (�)/t
(�)
c

. (60)

Let us now turn to the analysis of the order parameter near the
critical point. For J0 = 0, i.e., for the pure static model, we
have

m0i

(
βJ

(�)
0 ; {βhj }

) = tanh(βhi) (61)

so that the self-consistent equation (22) strongly simplifies in

m(�) = g(m(�)), (62)

where

g(m(�))
def=

∑
i

tanh(Npict
(�)m(�))pi. (63)

The critical behavior of the pure static model, i.e., with
J0 = 0 for the scale-free choice [Eqs. (10) and (11)], has
been studied in Ref. [32]. Let us focus on the P-F transition.
For � = F, Eq. (62) is equal to Eq. (21) of [32]. We recall
that, due to the power-law character of the distribution {pj },
we can not derive the correct critical behavior by simply
expanding in the sum in g(m(F)) term by term for small
m(F). As shown in [32], it is necessary to keep track of
all the terms of the sum present in g(m(F)). This is done
by evaluating the sum with the corresponding integral that
gives rise to a singular term proportional to (m(F))γ−2 plus
regular terms proportional to (m(F)), (m(F))3, and so on. As a
consequence, when we solve the self-consistent equation to
leading order in m(F), if T and τ indicate the temperature and
the reduced temperature, respectively, we get the well known
anomalous mean-field behavior m(F) ∼ O(τ 1/2) (i.e., classical
mean field) for γ > 5, m(F) ∼ O(τ 1/(γ−3)) for 3 < γ < 5,
and m(F) ∼ O(T −(γ−2)/(3−γ )) for 2 < γ < 3. Note that the
critical behavior of the order parameter m(F) = ∑

i 〈σi〉pi is
different from the unweighted one defined as m = ∑

i 〈σi〉/N
when 2 < γ < 3. In such a case, from Eq. (36) one can use

m ∼ t (F)m(F) from which it follows that m ∼ O(T −1/(3−γ )) for
2 < γ < 3.

Let now J0 �= 0. It is clear that if the graph (L0,�0) is in
turn a pure scale-free graph with exponent γ ′, then the joined
network will have an anomalous critical behavior characterized
by the minimum between γ and γ ′. Less obvious is to
understand what happens if (L0,�0) has a finite-dimensional
structure or some special topology with short loops. In
particular, we can pose the following question: Does the
critical behavior change by adding, via short loops, many
paths between far spins, or may the critical exponent for m

depend on J0? Let us consider the self-consistent equation (22)
in general. The exact expression of m0i(βJ

(F)
0 ; {βhj }) for

a generic nonhomogeneous external field {hj } represents a
formidable task. Note that, as mentioned above, to analyze the
critical behavior, we can not expand for small fields {βhj }.
We can, however, perform an expansion to the lowest order in
t

(F)
0 = tanh(βJ

(F)
0 ). It is then easy to see that, for {hj } �= 0, at

the order O(t (F)
0 ) we have

m0i(βJ0; {βhj }) = tanh(βhi) + t
(F)
0 [1 − tanh2(βhi)]

×
∑

j∈N0(i)

tanh(βhj ), (64)

where N0(i) is the set of the first neighbors of the vertex i in
the graph (L0,�0). It must be said that without the condition
{hj } �= 0, Eq. (64) might be wrong since the lowest nonzero
terms in t

(F)
0 would involve closed paths of at least length 3,

while Eq. (64) contains only paths of length 1. More precisely,
near the critical point, due to the fact that the fields {hj }
are infinitesimal but not zero, we can neglect higher order
corrections in t

(F)
0 . By plugging Eq. (64) into (22) for � = F,

we have

m(F) = g(m(F)) + 1(m(F)) + 2(m(F)), (65)

where we have introduced

1(m(F))
def= t

(F)
0

∑
i

pi

∑
j∈N0(i)

tanh(Npjct
(F)m(F)), (66)

2(m(F))
def= t

(F)
0

∑
i

pi tanh2(Npict
(F)m(F))

×
∑

j∈N0(i)

tanh(Npjct
(F)m(F)), (67)

both to be compared with the J0 independent term g(m(F)).
Let us analyze the bigger contribution 1(m(F)) and focus
on the simpler cases in which the graph (L0,�0) has a
fixed connectivity |N0(i)| ≡ c0, where |N0(i)| stands for
the cardinality of the set N0(i). Let us suppose first that
c0 = 1 [i.e., (L0,�0) is an ensemble of dimers]. In general,
given any normalized distribution pi � 0 different from the
homogeneous one, and any function f (x) � 0 increasing with
x, the following property holds:∑

i

pif (pj0(i)) <
∑

i

pif (pi), (68)
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where j0(i) stands for the first single neighbor of i in (L0,�0),
while ∑

i

pif (pj0(i)) =
∑

i

pif (pi) (69)

only for pi ≡ 1/N . Note that, by definition, i → j0(i) is a
bijection on L0 and that j0(i) �= i. We can, however, formally
enlarge the definition of j0(i) �= i to include also the case
j0(i) = i (a self-link). The inequality (68) tells us that when
we choose j0(i) = i, we get an optimal overlap between the
distribution {pi} and the function f (·). For the general case
|N0(i)| ≡ c0 � 1, given a vertex i, we can enumerate the
c0 neighbors of i as j

(1)
0 (i), . . . ,j (c0)

0 (i). Each upper index
l = 1, . . . ,c0 represents an oriented axis so that, for each
l = 1, . . . ,c0, the function j

(l)
0 (i) is a bijection on L0. For

example, if (L0,�0) is the one dimensional ring, we have the
two bijections j

(1)
0 (i) = i + 1 and j

(2)
0 (i) = i − 1. By applying

Eq. (68) to each oriented axis, we then get∑
i

pi

∑
j∈N0(i)

f (pj )

=
c0∑

l=1

∑
i

pif (p
j

(l)
0 (i)) < c0

∑
i

pif (pi). (70)

By using Eq. (70) to our case with f (x) = tanh(x) and for
t

(F)
0 > 0, we see that, for m(F) > 0, we have always

0 < 1(m(F)) < t
(F)
0 c0g(m(F)). (71)

In turn, 0 < 2(m(F)) < 1(m(F)) and, furthermore, as already
mentioned, near the critical point, higher order corrections
in t

(F)
0 will be all lower than the first term proportional to

t
(F)
0 . In conclusion, for t

(F)
0 > 0, from Eq. (22) and the above

inequalities, we get

g(m(F)) < m(F) <
(
1 + t

(F)
0 c0

)
g(m(F))

O
(
t2
0

)
g(m) + o[g(m(F))], (72)

where o[g(m(F))] stands for corrections smaller than g(m(F)).
In general, for t0 finite, it is possible to prove that

g(m) < m < χ̃0
(
βJ

(F)
0 ; 0

)
g(m) + o[g(m)], (73)

where χ̃0(βJ
(F)
0 ; 0) is the susceptibility of the pure model (2)

with coupling J
(F)
0 and hi ≡ 0. The proof is given in

Appendix D. Since near the critical point in the region
β

(F )
c0 > β > βc, it is χ̃0(βJ

(F)
0 ; 0) < ∞, we see that Eq. (73)

implies that the critical behavior of Eq. (22) remains always
as that corresponding to the term g(m), i.e., as if it were
J0 = 0. We can finally consider the case in which (L0,�0)
is a Poissonian graph (Erdös-Rényi random graph in the
canonical representation) with mean connectivity c0. To this

aim, we can start from the fully connected graph and remove
from it randomly each of its N (N − 1)/2 links with a
probability p = 1 − c0/N ; the resulting graph will be our
Poissonian graph with mean connectivity c0. Since we have
already proved that when (L0,�0) is the fully connected graph
with a coupling O(1/N ), the critical behavior remains equal
to that of the model with J0 = 0 [the effective couplings
in this case being given by tan(βJ

(F)
0 ) = tanh(βJ0)c0/N],

we conclude that, also for a Poissonian graph, the critical
behavior of the small-world model remains the same as if it
were J0 = 0.

For the P-SG transition of the model with J0 = 0, we can
evaluate the weighted Edward-Anderson order parameter as
qEA = (m(SG))2. Since the critical behavior of m(SG) is identical
to that of m(F), we get that the critical exponent for qEA is
simply given by twice the γ dependent critical exponent for
m(F) that we have discussed before. This result is in contrast
with that of Ref. [32] for the region 4 < γ < 5. The source
of such a contrast might be related to the already mentioned
fact that Eq. (29) for � = SG remains only a plausible ansatz.
We do not discuss here this issue further, but we stress that,
whatever the critical P-SG behavior of the model with J0 = 0
may be, by applying the same procedure as done above for the
case P-F, we arrive at the conclusion that also the critical P-SG
behavior is infinitely robust with respect to the addition of any
nonheterogeneous graph (L0,�0). The same conclusions also
hold, of course, for the critical exponent of the order parameter
of the percolation problem.

D. Correlation functions

Another remarkable consequence of our theory comes from
Eq. (36). We see in fact that, in the thermodynamic limit, any
correlation function of the model, at least for γ > 3, fits with
the correlation function of the pure model but immersed in
an effective field that is exactly zero in the P region and zero
external field ({h = 0}). In other words, in terms of correlation
functions, in the P region, the small-world model and the
pure model are indistinguishable (modulo the transformation
J0 → J

(SG)
0 for � = SG). Note, however, that this assertion

holds only for a given correlation function calculated in the
thermodynamic limit. In fact, the corrective O(1/Nδ) term
appearing in the right-hand side of Eq. (36) can not be
neglected when we sum the correlation functions over all the
sites i ∈ L0, as to calculate the susceptibility; yet, it is just this
corrective O(1/Nδ) term that gives rise to the singularities
of the model. More precisely, for the two-point connected
correlation function defined as

χ̃
(�)
i,j

def= 〈σiσj 〉l� − 〈σi〉l� 〈σj 〉l� , (74)

where l� = 1,2 for � = F, SG, respectively, we have

χ̃
(�)
i,j = χ̃0;i,j

(
βJ

(�)
0 ; {Npjct

(�)m(�) + βh})
+ ct (�)N

∑
l χ̃0;i,l

(
βJ

(�)
0 ; {Npqct

(�)m(�) + βh})pl

∑
n pnχ̃0;n,j

(
βJ

(�)
0 ; {Npqct

(�)m(�) + βh})
1 − ct (�)N

∑
l,n χ̃0;l,n

(
βJ

(�)
0 ; {Npqct (�)m(�) + βh})plpn

, (75)
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where the dependence on N in χ̃
(�)
i,j and χ̃0;i,j is understood. In the homogeneous case pi ≡ 1/N , Eq. (75) becomes

χ̃
(�)
i,j = χ̃0;i,j

(
βJ

(�)
0 ; Nct (�)m(�) + βh

)
+ ct (�)

N

∑
l χ̃0;i,l

(
βJ

(�)
0 ; ct (�)m(�) + βh

)∑
n χ̃0;n,j

(
βJ

(�)
0 ; ct (�)m(�) + βh

)
1 − ct (�)χ̃0

(
βJ

(�)
0 ; ct (�)m(�) + βh

) , (76)

which, when (L0,�0) is in turn homogeneous, reduces to [14]

χ̃
(�)
i,j = χ̃0;i,j

(
βJ

(�)
0 ; Nct (�)m(�) + βh

)
+ ct (�)

N

[
χ̃0
(
βJ

(�)
0 ; ct (�)m(�) + βh

)]2
1 − ct (�)χ̃0

(
βJ

(�)
0 ; ct (�)m(�) + βh

) . (77)

Equation (75) is easily obtained by derivation of the
mean-field equation (22) generalized to the case of an arbitrary
external field {hi} (see Appendix E). Equation (75) clarifies the
structure of the correlation functions in general small-world
models. In the right-hand side, we have two terms: the former is
a distance-dependent [the distance, if any, defined in the graph
(L0,�0)] short-range term whose finite correlation length for
T �= T

(�)
c0 makes it summable [over all the nodes (i,j )], and the

latter is instead a term that takes into account the heterogeneity
of the system, possibly power-law-like, also in the P phase,
which turns out to be summable thanks to a global 1/Nδ

factor, where δ is the exponent appearing in Eq. (36). For
the two-point connected correlation function, at least for the
case in which (L0,�0) is a regular lattice, as will be clear in
the next section, δ takes the value

δ =
{ γ−3

γ−1 for γ > 3,

0 for 2 < γ � 3.
(78)

Once we perform the weighted sums with the distribution {pi},
both the terms in the right-hand side of Eq. (75) give a finite
contribution to the susceptibility. It is, in fact, immediate to
verify that, by inserting Eq. (75) in (39), we get back Eq. (37).

We see here a novel fact: In scale-free models in finite but
large systems, correlations between two given spins can be
power-law-like even above the critical surface. Furthermore,
we see from Eq. (78) that such phenomena become persistent
even in the thermodynamic limit when γ � 3. At this point,
it is worth comparing these scenarios with the scenarios one
has in other systems. By focusing only on the second term
of the right-hand side of Eq. (75), we find the following.
In finite d-dimensional models, according to the Ornstein-
Zernike form [33], at any T but the critical one Tc, one has
exponentially small correlations, while at Tc, the correlation
function decays as a power law with the distance with an
exponent d − 2 + η, where η is the critical exponent of the
correlation length. Roughly speaking, this implies that, in
finite-dimensional models, there are essentially two possible
correlations for near [i.e., at a distance O(1) at T �= Tc] and
far [i.e., at a distance O(N ) at T = Tc] spins, with values O(1)
and O(1/Nd−2+η), respectively, and the total number of such
couples of spins are O(N ) and O(N2), respectively. In the
fully connected model with a coupling O(1/N), or in classical
random graphs, or in homogeneous small-world models, at
any T the correlation function decays instead as 1/N for any

couple of the N (N − 1)/2 spins, with no spatial dependence
(the correlation length goes to infinity). As will be clear in the
next section, in heterogeneous small-world networks with a
power-law degree distribution k−γ , at any T we can instead
distinguish three families of correlations: Given two spins that
are both far from a hub, they have correlations O(1/N ), and the
total number of such couples of spins is of the order O(aN2)
with a < 1; given two spins, one of which is a hub and the other
not, they have correlations O(1/N (γ−2)/(γ−1)), and the number
of such couples of spins is O(bN ), where b is a decreasing
function of 1/γ ; finally, given two spins, which are both a hub,
they have correlations O(1/N (γ−3)/(γ−1)), and the number of
such couples of spins is O(1).

IV. EXAMPLES

In Sec. III B 2, we have seen some simple applications to
the homogeneous case (pi ≡ 1/N ). Here, we discuss some
examples where we can apply, analytically, the general results
of the previous section to the heterogeneous case. Since we
have already solved the issues for the critical behavior, we
will focus only on the critical surface and on the correlation
functions.

A. Viana-Bray on the scale-free graph

In the case J0 = 0 so that there is no additional graph, for
historical reasons we refer to this as the Viana-Bray model [34]
on the scale-free graph. This model was solved in [32] and, for
the network version called “configuration model” (which is a
network realization slightly different from the hidden variables
network), the Ising model was already extensively studied
in [24] almost one decade ago. Since J0 = 0 for m0, we can use
Eq. (61) from which in particular it follows that, for β < βc0,
we have χ̃0;i,j = δi,j . By inserting this in Eq. (41), we get the
critical surface t (�)

c

ct (�)
c N

∑
i

p2
i = 1, (79)

which, for large N under the choices (10) and (11), gives

ct (�)
c

(1 − μ)2

(1 − 2μ)
(1 − N2μ−1) = 1. (80)

The critical surface given by Eq. (79) coincides with the one
found in [32]. Note that N

∑
i p

2
i is related to the second and

first moments of the degree distribution P (k), 〈k〉
P

= c and
〈k2〉

P
, in terms of which Eq. (79) becomes identical to the

critical surface valid for the pure scale-free graph obtained by
using the configuration model [24] when 〈k2〉

P
< ∞ [note,
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however, that Eq. (80) is valid in general also when 1 < 2μ <

2 where 〈k2〉
P

= ∞]:

t (�)
c

〈k2〉
P

− 〈k〉
P

〈k〉
P

= 1. (81)

As anticipated before, we find out instead a quite uncommon
behavior for the correlation functions which was not observed
previously. Let us consider only the case � = F in the P region
and let us consider the choices (10) and (11). From Eq. (80) we
see that, when N grows, t (F)

c and t (F) in the P region remain finite
for 2μ < 1, while they go to 0 for 2μ > 1 (logarithmically for
2μ = 1); therefore, in the latter case, for finite N , we can
evaluate the correlation function at a temperature scaling with
the critical one. In conclusion, from Eqs. (80) and (75) applied
with χ̃0;i,j |{hl=0} = δi,j in the finite network for 2μ < 1 and at
any temperature above the critical one, we have

χ̃
(F)
i,j = δi,j + t (F)

t
(F)
c

(1 − 2μ)(
1 − t (F)/t

(F)
c

) (ij )−μ

N1−2μ
, (82)

whereas for 2μ > 1 at any temperature scaling with the critical
one and in the P region (β < βc), we have

χ̃
(F)
i,j = δi,j + β

β
(F)
c

(
2μ − 1)(

1 − β/β
(F)
c

) (ij )−μ, (83)

where we have made use of the fact that, up to negligible terms
for N large, t (F)/t (F)

c = β/β(F)
c . By using pi  〈ki〉/

∑
j 〈kj 〉,

〈ki〉 being the average degree of the vertex i, we can express
approximately Eqs. (82) and (83) in terms of the vertex degree
as

χ̃
(F)
i,j  δi,j + t (F)

t
(F)
c

(1 − 2μ)

(1 − μ)2
(
1 − t (F)/t

(F)
c

) 〈ki〉〈kj 〉
〈k〉2

P
N

(84)

for 2μ < 1, and

χ̃
(F)
i,j  δi,j + β

β
(F)
c

(2μ − 1)

(1 − μ)2
(
1 − β/β

(F)
c

) 〈ki〉〈kj 〉
〈k〉2

P
N2μ

(85)

for 2μ > 1. However, by using only Eqs. (75) and (79), we
can get the correlation function in a form that is completely
independent of the form for the pi’s,

χ̃
(F)
i,j  δi,j + t (F)(

1 − t (F)/t
(F)
c

) 〈ki〉〈kj 〉
〈k〉

P
N

. (86)

Comparison of Eq. (86) with Eqs. (82) and (83) shows that the
strongest correlations involve the nodes i’s with the highest
degree with 〈ki〉 ∼ O(Nμ) for μ < 1/2 (γ > 3) and 〈ki〉 ∼
O(N1/2) for μ � 1/2 (γ � 3).

B. “Gas” of dimers in a scale-free network

Here, we consider the case in which (L0,�0) is a set of
N disconnected dimers (so that there are 2N sites). This
case represents the simplest example with J0 �= 0 in which
m0i(βJ

(�)
0 ; {βhj }) can be exactly calculated. We have

m0i

(
βJ

(�)
0 ; {βhj }

) = tanh(βhi) + t
(�)
0 tanh(βhj0(i))

1 + t0 tanh(βhi) tanh(βhj0(i))
, (87)

where t
(�)
0 = tanh(βJ

(�)
0 ) and j0(i) stands for the first neighbor

of i. By derivation, we get the correlation function of the pure
model χ̃0;i,j which, in the P region, takes the form

χ̃0;i,j
(
βJ

(�)
0 ; 0

) =
{

1, j = i

t
(�)
0 , j = j0(i).

(88)

Therefore, for the critical surface, we have

ct (�)
c N

[∑
i

p2
i + t

(�)
0

∑
i

pipj0(i)

]
= 1. (89)

With respect to the critical surface of the model with J0 = 0
(the above Viana-Bray case), we see in Eq. (89) the presence
of a term proportional to t

(�)
0 . How much this term affects t (�)

c

depends on how the dimers are placed, i.e., on how we choose
the first neighbors {j0(i)}. Since by definition the dimers are
not connected, in general, for j0(i) we can take j0(i) = i +
k, mod N where k is a constant integer in the range [1,N ]. The
exact evaluation of t (�)

c for N large remains simple only if k

does not depend on N or k = O(N ). Under the choices (10)
and (11), for the former case we get

ct (�)
c

(
1 + t

(�)
c0

)
(1 − μ)2

(1 − 2μ)
(1 − N2μ−1) = 1, (90)

whereas for the latter case, the critical surface remains not
affected by t

(�)
0 as in Eq. (80). When k does not grow with N ,

for the correlation function for the � = F case in the P region
for 2μ < 1, we have

χ̃
(F)
i,j = χ̃0;i,j + t (F)

t
(F)
c

(1 − 2μ)(
1 + t

(F)
0

)(
1 − t (F)/t

(F)
c

)
×
{
i−μ + t

(F)
0 [j0(i)]−μ

}{
j−μ + t

(F)
0 [j0(j )]−μ

}
N1−2μ

, (91)

whereas for 2μ > 1 at a temperature scaling with the critical
one, we have

χ̃
(F)
i,j = χ̃0;i,j + β

β
(F)
c

(2μ − 1)(
1 + t

(F)
0

)
(1 − β/β

(F)
c )

× {i−μ + t
(F)
0 [j0(i)]−μ

}{
j−μ + t

(F)
0 [j0(j )]−μ

}
. (92)

Similar expressions hold for the correlation in the case in
which k = O(N ), the only difference being the absence of
the prefactor 1/(1 + t

(F)
0 ). More, in general, independently of

the form for the pi’s, in terms of the average degrees we
have

χ̃
(F)
i,j  δi,j + t (F)(

1 − t (F)/t
(F)
c

)
×
[〈ki〉 + t

(F)
0 〈kj0(i)〉

][〈kj 〉 + t
(F)
0 〈kj0(j )〉

]
〈k〉

P
N

. (93)

C. A one dimensional chain through the scale-free network

Here, we consider the case in which (L0,�0) is a a one
dimensional chain with periodic boundary conditions and such
that the first site of the chain corresponds to the site i = 1 of
the static network, the second site of the chain corresponds to
the site i = 2 of the static network, and so on. As we have
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learned in Sec. III C, this or any other choice will not alter the
critical behavior of the whole system that remains the same
as in the absence of the chain. In the P region, the correlation
function of the pure model is given by

χ̃0;i,j
(
βJ

(�)
0 ; 0

) = [
t

(�)
0

]|j−i|
, (94)

from which [by using Eq. (41)] we get the critical surface

ct (�)
c N

∑
i,j

pipj

[
t

(�)
0

]|j−i| = 1. (95)

Let us consider the choices (10) and (11). For |t (�)
0 | � 1, we

need to keep track only of the term O(t (�)
0 ) and, for N large,

we get

ct (�)
c

(
1 + 2t

(�)
c0

)
(1 − μ)2

(1 − 2μ)
(1 − N2μ−1) = 1. (96)

In general, Eq. (96) is exact only in the region 2μ � 1 so that
t

(�)
c0 → 0 for N → ∞. Notice the difference with respect to

the gas of dimers case in Eq. (90) for the presence of a factor
2 in front of the term proportional to t

(�)
c0 . When |t (�)

0 | � 1,
for the correlation function for the � = F case in the P region
with 2μ < 1, we have

χ̃
(F)
i,j  [

t
(F)
0

]|j−i| + t (F)

t
(F)
c

(1 − 2μ)(
1 − t (F)/t

(F)
c

)
×
(
1 + 2t

(F)
0

)
(ij )−μ

N1−2μ
, (97)

whereas for 2μ > 1 at a temperature scaling with the critical
one, we have (with a better approximation)

χ̃
(F)
i,j  [

t
(F)
0

]|j−i| + β

β
(F)
c

(2μ − 1)(
1 − β/β

(F)
c

)
× (1 + 2t

(F)
0

)
(ij )−μ, (98)

where we have approximated i + 1  i − 1  i. The analyt-
ical evaluation of the left-hand side of Eq. (95) for t

(�)
0 finite

remains a difficult task and we have to resort to a numerical
evaluation at a sufficiently large value of N such that finite
size effects become negligible. As we have just learned, finite
size effects can have a very slow relaxation rate in scale-free
graphs; in evaluating the correlation functions, when μ < 1/2
(γ > 3), they decay as slowly as 1/N1−2μ, while they persist
even in the thermodynamic limit when μ > 1/2 (γ � 3). As
we have seen above, however, we can easily handle the latter
case since t

(�)
0 is always small. We see then that the most

difficult numerical task in the evaluation of the left-hand side
of Eq. (95), as well as in general formulas involving sums of
correlation functions, occurs in the case of a distribution with
μ → 1/2− (γ → 3−).

In Fig. 2, we plot simulations for the susceptibility χ and
for the Binder cumulant U [35], respectively, as a function of
the temperature T for several system sizes N and compare the
location of the maximums with the theoretical Tc evaluated at
a very large value of N where we observe stationarity within
the statistical errors. Finally, in Fig. 3, for growing but finite
sizes N , we plot the position of the “finite size Tc(N ),” defined
as the position of the maximum of the susceptibility χ with
respect to the temperature. We evaluate such quantities for
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FIG. 2. (Color online) Plots of the susceptibility χ (top panel)
and of the Binder cumulant U (bottom panel) as a function of the
temperature T for the random models (3)–(5) in which (L0,�0) is
a one dimensional chain and the random network is generated via
the choices (10) and (11) with μ = 1/3 (corresponding to γ = 4).
The other parameters of the model are c = 1, J = J0 = 1, and
p = 0. The vertical line comes from the solution of Eq. (95) with
N = 131 072.

both simulations and theoretical data of the same system as
a function of N1/2. Note that the latter evaluation coincides
simply with the solution coming from Eq. (95). From Fig. 3,
we find confirmation of two facts: (i) Eq. (95) (as well as
all the effective field theory in general) has a clear meaning
also at finite sizes; (ii) since for a mean-field universality class
it is expected to be at criticality χ̃c(N ) ∼ N1/2 [36], as also
confirmed in [31], and since, on the other hand, from Eq. (60)
for finite N , we have χ̃c(N ) ∼ O(1)/[Tc(N ) − Tc], we get
Tc(N ) ∼ Tc + O(1)/N1/2, in accordance with Fig. 3.

V. APPLICATION TO NETWORK DESIGN

As we have seen in Sec. III B 2, if (L0,�0) is a homogeneous
graph, i.e., its adjacency matrix c0;i,j has some periodicity,
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FIG. 3. Plots of the “finite size critical temperature” Tc(N ) as a
function of the system size N for theoretical (dots) and for simulation
data (crosses) of the same system of Fig. 2. We stress that, although
the accordance between the theoretical and the simulation data is
poor for relatively small values of N , as explained at the end of
Sec. IV C, the two trends for large N must fit with a N1/2 behavior
and approach the same value in the limit N → ∞. The figure confirms
our analysis.

clustering increases the percolation threshold. A different
question arises instead if between the {pi} and the {c0;i,j } there
is some correlation. Given the desired degree sequence and
then the weights {pi}, we see that, if (L0,�0) is not translational
invariant, we can optimize the percolation by labeling the sites
in such a way that the functional F∞({pi}) is maximized, where
[as before here p is the probability by which each link of the
pure graph (L0,�0) is removed]

F∞({pi}) def= cN
∑
i,j

χ̃0;i,j [tanh−1(1 − p); 0]pipj . (99)

Alternatively, Eq. (99) can be rewritten in terms of the graph
elements of (L0,�0) as

F∞({pi}) = cN
∑
i,j

(
δi,j + N (p)

0;i,j

)
pipj , (100)

where N (p)
0;i,j = 1 if, in the graph (L0,�0) from which each link

has been removed at random with probability p, between the
vertex i and the vertex j there exists at least one path of links,
and N (p)

0;i,j = 0 otherwise.
Once the {pi} that optimizes F∞({pi}) has been found

through a suitable labeling, the corresponding network will
have, in general, a percolation threshold cc given by the
equation F∞({pi}) = 1 that is a minima with respect to all
the possible N ! labelings. From Eq. (99), we see that a simple
approximate heuristic receipt to approach this optimum con-
sists in choosing a labeling of the weights {pi}, i1,i2, . . . ,iN ,
such that

pi � pj , ⇔ χ̃0;i � χ̃0;j , ∀i,j ∈ L0, (101)

where χ̃0;i[tanh−1(1 − p); 0] stands for the total correlation of
the graph (L0,�0) at zero temperature at the point i:

χ̃0;i
def=

∑
j

χ̃0;i,j [tanh−1(1 − p); 0] (102)

or, alternatively,

χ̃0;i = 1 +
∑

j

N (p)
0;i,j , (103)

i.e., χ̃0;i can be seen as the average total number of nodes
connected to i (including the node i itself) in the graph
(L0,�0) from which each link has been removed at random
with probability p.

Our optimal design problem can be precisely formulated
as follows. Given a graph (L0,�0) in which each link is
removed with probability p, and given a desired additional
degree sequence {k̄i} (proportional to the weights {pi}) having
an average connectivity c, we have to place the L = cN/2
additional “long-range” links on (L0,�0) in such a way that
the resulting graph has a maximal percolating cluster. Within
our effective field theory, this task amounts to say that F∞({pi})
is maximized. As we have explained in [37], however, a
network, at least in the absence of congestion [38], benefits
from optimal communication features at the percolation point.
Adding further links after this point makes the network less
sensitive to signals. On the other hand, if, for a given value of c,
we have found an optimal labeling that maximizes F∞({pi}),
from Eq. (99) we see that changing only c will leave still the
choice of the labeling as an extremal choice for F∞({pi}).
Therefore, we can speak of label optimization for F∞({pi})
regardless of the value of c. In particular, after finding the
optimal labeling, we will be free to choose for c a value
such that F∞({pi}) = 1, so that we will be in the percolation
threshold. Among all the other possible labelings, the network
will have a minimal percolation threshold. This implies that,
for the found optimal labeling, the graph will benefit from
optimal communication features but with minimal cost (if the
cost is given by c). Our design strategy is therefore in the same
philosophy of [39], where the optimality was defined with
respect to synchronization. Although, in general, these two
different criteria of design may give rise to different networks,
we argue that, in the absence of congestion, some general
properties about efficient communication are shared.5

A particularly interesting case is the one in which the graph
(L0,�0) is split into disjoint subsets, which we could then call
isolated communities. In [37], we had considered the problem
of percolation for a generic set of n communities, isolated or
not, in which the additional “long-range” links were defined
through an additional n × n matrix c of intraconnectivities
(inside the community) and interconnectivities (among the
communities). In that problem, the unknown quantity to be
found was the critical matrix c at which percolation sets in,

5We think that if our optimal-percolation criterion is equipped with
further constraints on the {pi}, the two keys of design would share
more and more properties.
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and it was easy to find that the critical c must satisfy the
equation

det(1 − χ̃0 · c) = 0, (104)

χ̃0 being the matrix of the relative intrasusceptibilities and
intersusceptibilities among the communities. In particular,
Eq. (104) for the case in which (L0,�0) is simply a disjoint set
of nodes becomes

det(c) = 1, (105)

which constitutes a clean generalization of the well known
percolation threshold c = 1 of the case n = 1 corresponding
to the Erdös-Rényi random graph [15]. However, Eq. (104)
is a single equation in the n × n unknown matrix elements
of c, c(l,m), therefore, there are infinite solutions for n > 1.
Given the matrix χ̃0, now, the analogous optimization problem
that we have defined before amounts to look for the matrix c
that gives the maximum value of the largest eigenvalue of
the matrix χ̃0 · c under the constraint that the total cost
is fixed:

∑
l,m c(l,m)/n = c [40]. In general, in this kind of

problem, one can find several solutions that represent the local
maximum, but the asymmetric ones, if any, are those that
guarantee better communication performance [37]. This fact
is reminiscent of the so called “starlike” configuration, which
is known to provide the best communication and searchability
performance in the absence of congestion [38]. In the problem
considered in [37], however, the additional “long-range” links
were uniformly distributed among the communities, although
with the use of n × n different average connectivities c(l,m).
Here we face instead the problem in which we have one single
additional connectivity c, but the “long-range” links follow
a generic desired degree sequence {pi}, which, in particular,
can be scale free. We observe that, in the case in which the
graph (L0,�0) is split into n disjoint communities (L(l)

0 ,�
(l)
0 ),

l = 1, . . . ,n, the heuristic solution (101) provides the exact
minima for F∞({pi}) when all the communities have equal
size and are internally homogeneous (i.e., χ̃0;i,j is the same for
any i,j ∈ L(l)

0 ).
Let us consider, for example, the case in which we have

n disjoint communities of size N (l), l = 1, . . . ,N , such that
N = ∑

l N
(l). Let us suppose that each community (L(l)

0 ,�
(l)
0 )

consists in a homogeneous random graph with average
connectivity c

(l)
0 < 1 [we want to consider only situations in

which the set (L0,�0) is not already a percolating cluster].
From Eq. (77), we have simply

χ̃0;i,j = δi,j + c
(l)
0

N (l)
[
1 − c

(l)
0

] , i,j ∈ L(l)
0 , l = 1, . . . ,n,

(106)

from which we get the following total correlator [Eq. (102)
with the choice p = 0], which depends only on the community
index l:

χ̃
(l)
0

def= χ̃0;i = 1 + c
(l)
0

1 − c
(l)
0

, i ∈ L(l)
0 , l = 1, . . . ,n.

(107)

Taking into account that the n communities of (L0,�0) do
not interact (there is no interlink), by plugging Eq. (106) in
Eq. (99), we have

F∞({pi}) = cN
∑

i

p2
i

+
n∑

l=1

cc
(l)
0

α(l)
[
1 − c

(l)
0

]
⎡
⎢⎣
⎛
⎝∑

i∈L(l)
0

pi

⎞
⎠

2

−
∑
i∈L(l)

0

p2
i

⎤
⎥⎦ ,

(108)

where α(l) def= N (l)/N . For N large, Eq. (108) becomes

F∞({pi}) = cN
∑

i

p2
i

+ c

n∑
l=1

c
(l)
0

α(l)
[
1 − c

(l)
0

]
⎛
⎝∑

i∈L(l)
0

pi

⎞
⎠

2

, (109)

which, in turn, can be rewritten in terms of the χ̃
(l)
0 as

F∞({pi}) = cN
∑

i

p2
i

+ c

n∑
l=1

χ̃
(l)
0 − 1

α(l)

⎛
⎝∑

i∈L(l)
0

pi

⎞
⎠

2

. (110)

From Eq. (110), we see that the heuristic solution (101)
provides manifestly the global maximum for F∞({pi}) only
when all the communities have the same size α(l) = 1/n,
otherwise, the exact global maximum will be provided by
the labelings of the pi’s such that

pi � pj , ⇔ χ̃
(l)
0 − 1

α(l)
� χ̃

(m)
0 − 1

α(m)
,

(111)
∀i ∈ L(l)

0 ,∀j ∈ L(m)
0 .

Of course, due to the homogeneity of the communities, we
have at least as many equivalent global maxima as

∏n
l=1 N (l)!

(if the ratios [χ̃ (l)
0 − 1]/α(l) are not all different, the number of

equivalent global maxima is greater).
In the above example, we had three important simplifi-

cations: (i) the communities were not interacting; (ii) each
community was homogeneous; and (iii) we were able to
calculate analytically the terms χ̃0;i,i . In the most general case,
none of the above conditions are satisfied. In particular, when
condition (iii) is not satisfied, to calculate the total correlator
χ̃

(l)
0 of the lth community, defined as

χ̃
(l)
0

def=
∑

i,j∈L(l)
0

χ̃0;i,j , l = 1, . . . ,n (112)

we have to resort to a Monte Carlo strategy either by an Ising
model at low temperature (simulated annealing) [in view of
Eq. (99)] or by a direct graph analysis [in view of Eq. (100)].
However, if conditions (i) and (ii) are satisfied, Eq. (110) is still
exact and the global maximum will be given by Eq. (111) with
the total correlator defined by Eq. (112). It is interesting to note
that if, as usually happens, the communities are hierarchically
organized in nested communities at deeper and deeper levels,
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and conditions (i) and (ii) are still satisfied at each level of
the hierarchy, we can iterate the above procedure through a
natural generalization of Eqs. (110)–(112) at each level of
the hierarchy. For example, if the communities are organized
into two levels, i.e., (L0,�0) is split in n1 communities l1 =
1, . . . ,n1, each one in turn split in nl1 communities as

(L0,�0) = ∪n1
l1=1

(
L(l1)

0 ,�
(l1)
0

)
= ∪n1

l1=1 ∪nl1
l2=1

(
L(l1,l2)

0 ,�
(l1,l2)
0

)
, (113)

it is then easy to see that Eq. (110) generalizes to

F∞({pi}) = cN
∑

i

p2
i

+ c

n1∑
l1=1

nl1∑
l2=1

χ̃
(l1,l2)
0 − 1

α(l1,l2)

⎛
⎜⎝ ∑

i∈L(l1 ,l2)
0

pi

⎞
⎟⎠

2

, (114)

which has a global maximum in correspondence of the
following labeling, natural generalization of Eq. (111):

pi � pj , ⇔ χ̃
(l1,l2)
0 − 1

α(l1,l2)
� χ̃

(m1,m2)
0 − 1

α(m1,m2)
,

(115)
∀i ∈ L(l1,l2)

0 , ∀j ∈ L(m1,m2)
0 ,

where now the total correlators χ̃
(l1,l2)
0 and the coefficients

α(l1,l2) are defined as

χ̃
(l1,l2)
0

def=
∑

i,j∈L(l1 ,l2)
0

χ̃0;i,j , (116)

α(l1,l2) def= N

N (l1,l2)
, (117)

with N (l1,l2) def= |L(l1,l2)
0 |.

Whatever the graph (L0,�0) may be, the task to compute
via a Monte Carlo method the total correlators usually requires
a computational cost, which grows only polynomially in
the system size N . A serious problem comes, however,
when conditions (i) or (ii) are not satisfied. In this case,
in fact, the heuristic solution (111) (or its generalization to
the hierarchical case) in general will not provide the global
maximum for F∞({pi}). As an intermediate situation, it may
happen that condition (i) is not exactly satisfied, but the
interaction among different communities is weak so that
the heuristic solution (111) (or its generalizations), via the
evaluation and comparison of the total correlators, is still a
good starting point for the numerical search of the exact global
maximum of F∞({pi}), especially when also condition (ii) is
almost satisfied. However, when the communities are well
connected to each other, or there is no community structure
at all, F∞({pi}) in general presents an exponential number
of local maximum and, in fact, the computational complexity
of the search for the global maximum of F∞({pi}) becomes
equivalent to the traveling salesman problem, which is an
NP-hard problem [41]. In this case, in the graph (L0,�0) there
is a high degree of frustration and the heuristic ansatz (101)
might be very far, not only from the exact global solution,
but in general also from the local solutions. We conclude,
however, by stressing that, despite this worst case scenario

for the most general optimization problem in which one is
forced to check for almost all the possible N ! labelings of the
pi’s, the optimization of F∞({pi}) remains still exponentially
advantageous with respect to a direct inspection (in which c is
supposed to be given) of all the possible graphs that one can
build up by adding L = cN/2 long-range links over the graph
(L0,�0). In fact, given c, if we evaluate the number of ways
Nc to lie L = cN/2 long-range links among N nodes, for
c finite and N large, we get

Nc =
⎛
⎝ N(N−1)

2

cN
2

⎞
⎠

∼ exp

[
N (N − 1)

2
+
( c

2
− 1

)
N log(N )

]
� N !.

(118)

VI. CONCLUSIONS

In this paper, we have considered in detail, and in a more
general framework, the heterogeneous small-world model that
was briefly presented in Ref. [22], providing now all the
complete proofs and new applications. By using an effective
field theory, we prove in particular that the critical behavior
is never affected by the presence of short loops (see Table I).
We then apply the general result to the study of percolation,
correlation functions, and network design.

By studying the percolation, we have shown, by considering
several analytically solvable examples, the role played by short
loops in modifying the percolation threshold in networks.
In particular, we have seen how the presence of short loops
increases the percolation point [see Eq. (58)].

By studying the correlation functions, we have found that,
for a scale-free network with or without short loops, finite
size effects can be very strong [see Table II and Eqs. (36)
and (78)]. Moreover, when γ , the exponent of the degree
distribution, is as small as γ � 3, the finite size effects become
persistent even in the thermodynamic limit, with the strongest
correlations being those among hubs. We stress that this is
true even in the paramagnetic region and with or without
short-range couplings, contradicting then the common opinion
that correlations in purely mean-field models always disappear
in the thermodynamic limit.6

Finally, we have seen that the formula for the percolation
threshold suggests a natural way to optimize the communi-
cation features among communities even if they interact. We
propose and discuss the efficiency of a heuristic solution [see
Eqs. (101)–(103)] at several levels: isolated and homogeneous
communities, weakly interacting communities, and ill defined
communities. The worst case scenario, in which there is
no evident community structure, is an NP-hard problem
equivalent to the traveling salesman problem, nevertheless,
the use of the formula is still exponentially convenient with

6This scenario, however, is compatible with the fact that, when
γ � 3, a network can be ultra-small-world with an average distance
between nodes, which can be of the order log[log(N )], or even finite
in the thermodynamic limit [2].

061149-16



CRITICAL BEHAVIOR AND CORRELATIONS ON SCALE- . . . PHYSICAL REVIEW E 83, 061149 (2011)

respect to a direct inspection of the network. We think that, at
least in the absence of load congestion, our algorithm can find
important real-world applications.
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APPENDIX A: BOUNDING NN

By using, as in [21], the approximation k̄i/
∑

j k̄j ∼ pi ,
where k̄i is the average degree of the vertex i, from Eq. (8) we
have

NN =
∑
i<j

θ

(
k̄i k̄j

Nc
− 1

)
, (A1)

which can be rewritten as

NN = N

2

∑
i

P
(

k >
Nc

ki

|ki

)
p(ki), (A2)

where p(ki) is the probability that vertex i has degree ki ,
and P(k > Nc

ki
|ki) is the conditional probability that, given

that the vertex i has degree ki , a randomly chosen vertex
different from i has degree greater than Nc/ki . Due to the
weak degree-degree correlation of the network, from P(k >
Nc
ki

|ki) ∼= P(k > Nc
ki

), from Eq. (A2) we have

NN = N

2

∑
i

p(ki)
∫ kM (N)

Nc
ki

dk p(k), (A3)

where p(k) is the probability that a randomly chosen vertex
has degree k and kM (N ) is the maximum allowed degree in the
network. Of course, it is always kM (N ) � N . By using now
the hypothesis that for k large p(k) ∼ k−γ , we arrive at

NN <
N

2(γ − 1)

∫ kM (N)

1
dk p(k)kγ−1(Nc)1−γ

<
N2−γ c1−γ

2(γ − 1)
log(N ), (A4)

where we have used kM (N ) � N .

APPENDIX B: DERIVATION OF THE SELF-CONSISTENT
EQUATION

In this appendix, we derive Eqs. (22)–(26). Sometimes, to
indicate a link we will use the symbol (i,j ), or more simply

ij . Let us rewrite explicitly the adimensional Hamiltonian (3)
as follows:

βHc0,c = −
∑

(i,j )∈�0

(c0;ij βJ0;ij + cijβJij )σiσj

−
∑

i<j,(i,j )/∈�0

cijβJijσiσj − βh
∑

i

σi . (B1)

In [42], we have introduced the following mapping. Given
a lattice L with N = |L| spins, and a generic quenched
Hamiltonian H J̃ ,

βH J̃ = −
∑
i<j

βJ̃ij σiσj − βh
∑

i

σi, (B2)

where the couplings {J̃ij } are distributed according to a given
distribution {dμ̃ij }, let us consider the two following related
nonrandom Ising Hamiltonians with labels � = F and SG:

βH (�) = −
∑
(i,j )

βJ̃
(�)
ij σiσj − βh

∑
i

σi, (B3)

where the effective couplings βJ̃
(�)
ij are given by

tanh(βJ̃
(�)
ij ) =

∫
dμ̃ij (J̃ij ) tanhl� (βJ̃ij ), (B4)

with l� = 1,2 for � = F or SG, respectively. In [42], we
have shown that, if the effective couplings βJ̃

(F)
ij or βJ̃

(SG)
ij

are at least O(1/N ) on the fully connected graph (also called
complete graph) (L,�f ), then, in the paramagnetic (P) region,
the pure model with the effective Hamiltonian H (�), with � =
F or SG, gives rise to the same nontrivial part of the free
energy (see Appendix C) and the same correlation functions
of the original Hamiltonian H J̃ , the stable phase between F and
SG being determined by the minimum of the corresponding
associated free energies f (F) or f (SG). This, in particular,
gives us the exact critical surfaces paramagnetic-ferro (P-F)
and paramagnetic spin-glass (P-SG) and, by a simple analytic
continuation, approximations also out of the P region, which
allow us to get the critical behavior. The above condition
on the effective couplings can be expressed as an infinite
dimensionality of the model. Let us apply the mapping to our
small-world scale-free case. The quenched Hamiltonian (B1)
can be rewritten in the form (B2) where

J̃ij
def=

{
c0;ij J0;ij + cij Jij , (i,j ) ∈ �0

cij Jij , (i,j ) /∈ �0.
(B5)

By applying Eq. (B4) to our case with the independent
measures p0(c0;i,j ) and pij (ci,j ) defined by Eqs. (4) and (5)
and with dμ0ij = dμ0 and dμij = dμ being two arbitrary
independent measures, we arrive at the following effective
couplings:

tanh(βJ̃
(�)
ij ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − p)
∫

dμ0(J0) tanhl� (βJ0) + O

(
1

N

)
, (i,j ) ∈ �0

f (pi,pj )
∫

dμ(J ) tanhl� (βJ ), (i,j ) /∈ �0.

(B6)
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In particular, for large N , in the region J where the factoriza-
tion (6) f (pi,pj ) = cNpipj takes place, from Eqs. (B6) we
get

J̃
(�)
ij =

⎧⎨
⎩

tanh−1
[
t

(�)
0

]
, (i,j ) ∈ �0

cNpipj t
(�), (i,j ) /∈ �0

(B7)

where t
(�)
0 and t (�) are defined as in Eqs. (23)–(26).

We have to evaluate the partition function

Z(�) =
∑
{σi }

e−βH
(�)
0 +t (�) ∑

i<j f (pi ,pj )σiσj +βh
∑

i σi ,

where

H
(�)
0 = −βJ

(�)
0

∑
(i,j )∈�0

σiσj .

By using Eq. (B7), we rewrite Z(�) as

Z(�) =
∑
{σi }

e−βH
(�)
0 +t (�)cN

∑
i<j pipj σiσj

× eβh
∑

i σi+O[N2−γ log(N)], (B8)

where O[Nα log(N )] stands for the contributions coming from
the links (i,j ) for which the factorization in the second line of
Eq. (B7) is not true and we have used Eq. (A4). For N large
but finite, the corrective term O[Nα log(N )] can always be
neglected, the error per spin being of order O[N1−γ log(N )].

In the following, we will suppose that t (�) is positive. The
derivation for t (�) negative differs from the other derivation
just for a rotation of π/2 in the complex m plane, and leads to
the same result that one can obtain by analytically continuing
the equations derived for t (�) > 0 to the region t (�) < 0. By
using the Gaussian transformation, we can rewrite Z(�) as

Z(�) = cN

∑
{σi }

e−βH
(�)
0

∫ ∞

−∞
dm e− 1

2 t (�)cNm2

× e
∑

i(t (�)cNmpi+βh)σi , (B9)

where cN is a normalization constant

cN =
√

t (�)cN

2π
,

and, in the exponent of Eq. (B9), we have again neglected terms
of order O(1). For finite N , we can exchange the integral and
the sum over the σ ’s. By using the definition of the pure model
with Hamiltonian H0, Eq. (2), whose free energy density, for
a given coupling βJ0 and for an arbitrary (inhomogeneous)
external field {βhi}, is indicated by f0(βJ0,{βhi}), we arrive
at

Z(�) = cN

∫ ∞

−∞
dm e−NL(�)(m), (B10)

where we have introduced the function

L(�)(m) = 1

2
ct (�)m2

+βf0
(
βJ

(�)
0 ,{t (�)cNmpj + βh}). (B11)

By using ∂βhi
Nβf0(βJ0,{βhj }) = −m0i(βJ0,{βhj }) and

∂βhj
; m0(βJ0,{βhl}) = χ̃0;i,j (βJ0,{βhl}), where χ̃0;i,j

def=
〈σiσj 〉0 − 〈σi〉0〈σj 〉0, we get

L
′(�)(m) = t (�)c

×
[
m −

∑
i

m0i

(
βJ

(�)
0 ,{t (�)cNmpj + βh})pi

]
,

(B12)

L
′′(�)(m) = t (�)c

[
1 − t (�)cN

×
∑
i,j

χ̃0;i,j
(
βJ

(�)
0 ,{t (�)cNmpl + βh})pipj

]
.

(B13)

If the integral in Eq. (B10) converges for any N , by performing
saddle point integration, we see that the saddle point m(�) is
solution of the equation

m(�) =
∑

i

m0i

(
βJ

(�)
0 ,{t (�)cNm(�)pj + βh})pi, (B14)

so that, if the stability condition

t (�)cN
∑
i,j

χ̃0;i,j
(
βJ

(�)
0 ,{t (�)cNm(�)pl + βh})pipj < 1

is satisfied, in the thermodynamic limit we arrive at the
following expression for the free energy density f (�) of the
related Ising model:

βf (�) =
[
t (�)

2
cm2 +βf0

(
βJ

(�)
0 ,{t (�)cNmpj + βh})]

m=m(�)

.

(B15)

Similarly, in the thermodynamic limit,7 any correlation func-
tion C(�) of the related Ising model is given in terms of the
correlation function C0 of the pure model by the following
relation:

C(�) = C0
(
βJ

(�)
0 ,{t (�)cNmpj + βh})∣∣

m=m(�) . (B16)

The saddle point solution m(F) represents the weighted
magnetization (29) of the related Ising model, as can be
checked directly by deriving Eq. (B15) with respect to βh

and by using Eq. (B14). For � = SG, Eq. (29) remains an
ansatz.

If the saddle point equation (B14) has more stable solutions,
the “true” free energy and the “true” observable of the
related Ising model will be given by Eqs. (B15) and (B16),
respectively, calculated at the saddle point solution that
minimizes Eq. (B15) itself and that we will indicate with m(�).

Let us call β
(�)
c0 the inverse critical temperature of the pure

model with coupling J
(�)
0 and zero external field, possibly

7Note, however, that finite size effects are responsible for the critical
behavior of the system and, furthermore, as we show in Sec. III D,
the case for 2μ > 1 must be carefully calculated since the correction
terms responsible for the critical behavior, for suitable choices of the
spin indices i and j , may take values up to O(1).
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with β
(�)
c0 = ∞ if no phase transition exists in the pure

model. As stressed in Sec. III B, for the pure model we
use the expression “critical temperature” for any temperature
where the magnetization m0 at zero external field passes
from 0 to a nonzero value, continuously or not. Note that,
as a consequence, if J

(�)
0 < 0, we have formally β

(�)
c0 = ∞,

independently from the fact that some antiferromagnetic order
may be not zero in the pure model. Let us start to make the
obvious observation that a necessary condition for the related
Ising model to have a phase transition at h = 0 and for a
finite temperature is the existence of some paramagnetic region
P(�), where m(�) = 0. By expanding for small m(�) = 0, we
see from the saddle point equation (B14) that, for h = 0, a
necessary condition for m(�) = 0 to be a solution is that be
β � β

(�)
c0 for any β in P(�). In a few lines we will see, however,

that the inequality must be strict if β
(�)
c0 is finite, which, in

particular, excludes the case J0 < 0 (for which the inequality
to be proved is trivial). Let us suppose for the moment that
be β(�)

c < β
(�)
c0 . For β < β

(�)
c0 and h = 0, the saddle point

equation (B14) has always the trivial solution m(�) = 0, which,
according to the stability condition, is also a stable solution if

t (�)cN
∑
i,j

χ̃0;i,j
(
βJ

(�)
0 ,{0})pipj < 1. (B17)

The solution m(�) = 0 starts to be unstable when

t (�)cN
∑
i,j

χ̃0;i,j
(
βJ

(�)
0 ,{0})pipj = 1. (B18)

Equation (B18), together with the constraint β(�)
c � β

(�)
c0 ,

gives the critical temperature of the related Ising model β(�)
c .

In the region of temperatures where Eq. (B17) is violated,
Eq. (B14) gives two symmetrical stable solutions ±m(�) �= 0.
Furthermore, from Eqs. (B14) and (B18), we see also that,
if we make the very plausible assumption that the number
of vertices i for which pi � 1/N grows with N as aN [see
Eq. (11)], with a asymptotically constant for N large, due to the
fact that the pure model has a divergent susceptibility at β

(�)
c0 ,

the case β(�)
c = β

(�)
c0 is impossible unless be t (�) = 0. We have

therefore proved that β(�)
c < β

(�)
c0 . Note that, for J

(�)
0 � 0 and

β < β
(�)
c0 , Eq. (B17) is violated only for β > β(�)

c , whereas for
J

(�)
0 < 0, Eq. (B17) in general may be violated also in finite

regions of the β axis.

APPENDIX C: FREE ENERGY

Concerning the full expression of the free energy density,
we proceed as follows. If ϕ(�) is the high temperature part of
the free energy density f (�) of the related Ising model that we
have solved in Appendix B, then

−βf (�) = lim
N→∞

1

N

∑
(i,j )∈�0

log
[

cosh
(
βJ

(�)
0

)]

+ lim
N→∞

1

N

∑
i<j

log
[

cosh
(
ct (�)Npipj

)]
+ log [2 cosh(βh)] + ϕ(�). (C1)

On the other hand, the free energy of the model obeys

−βf = log [2 cosh(βh)] + ϕ

+ lim
N→∞

1

N

∑
(i,j )∈�0

∫
dμ0(J0)(1 − p) log [cosh(βJ0)]

+ lim
N→∞

1

N

∑
i<j

∫
dμ(J ) log [cosh (βJ )] cNpipj .

(C2)

Therefore, by using the mapping ϕ = ϕ(�)/l� and βf (�) =
L(�)(m(�)), where L(�) is given by Eq. (B11), and m(�) is
the solution of the self-consistent Eq. (22), and by choosing
� according to which is minimum between L(F)(m(F)) and
L(SG)(m(SG)), comparing Eq. (C1) with (C2) we get the total
free energy βf . It is clear, however (as already anticipated),
that the only part of the free energy that depends on the order
parameter and that is therefore responsible for the critical
behavior of the system and the correlation functions is ϕ. The
rest of the free energy is important only to calculate the total
specific heat.

APPENDIX D: PROOF OF EQ. (73)

Let us start to express the partition function of the pure
model in the high temperature expansion. In general, for the
partition function Z of an Ising model having a set of links
b ∈ � taking the couplings {Jb} and in the presence of arbitrary
external fields {hi}, we have

Z ({Jb}; {hi}) =
∏
b∈�

cosh (βJb)
N∏

i=1

cosh (βhi)

×
∑
{σi }

∏
b∈�

[1 + σibσjb
tanh(βJb)]

×
N∏

i=1

[1 + σi tanh (βhi)] , (D1)

where ib and jb are the two sites linked by the link b. It is not
difficult to recognize that Z can be rewritten as a sum over
paths as follows:

Z ({Jb}; {hi}) =
∏
b∈�

cosh (βJb)
N∏

i=1

cosh (βhi)

×
∑
γ∈T

∏
b∈γ

tb
∏
i∈∂γ

ti , (D2)

where T is the set of all possible multipaths on �, including
then all the possible combinations of closed and open paths;
∂γ stands for the subset of vertices that belong to the border
of the multipath γ (if it has at least one open path component);
and we have introduced the short notations tb = tanh(βJb) and
ti = tanh(βhi). Note that the cardinality |∂γ | is always an even
number. We now want to calculate the average magnetization
〈σi〉. By derivating Eq. (D2) with respect to βhi , we get

〈σi〉 = ti + (
1 − t2

i

)∑γ∈T (i)

∏
b∈γ tb

∏
j∈∂γ \i tj∑

γ∈T
∏

b∈γ tb
∏

j∈∂γ tj
, (D3)

where T (i) stands for the subset of T having at least one open
path component that passes through the vertex i. As done in
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Sec. III D, we can not expand the terms ti for small hi , but we
can neglect (ti)2 terms. In other words, we expand 〈σi〉 at the
least nonzero order (not in the {hj }, and nor in the {tb}) but in
the {tj }. Within this approximation, Eq. (D3) becomes

〈σi〉 = ti +
∑

γ∈T (i)
1

∏
b∈γ tbtj (i)∑

γ∈C
∏

b∈γ tb
+ O

({
t2
j

})
, (D4)

where now T (i)
1 stands for the subset of T having one and only

one open path component that passes through the vertex i, j (i)

is second end of this path component passing through i, and
C stands for the set of all the closed multipaths on �. Notice
that, as anticipated, this latter definition makes the calculation
exact with respect to the presence of loops of any length and
taking any coupling. Similarly, for the connected correlation
function, by deriving once more with respect to βhj we get

χ̃ij = δi,j +
∑

γ∈T (i,j )
1

∏
b∈γ tb∑

γ∈C
∏

b∈γ tb
+ O

({
t2
j

})
, (D5)

where T (i,j )
1 stands for the subset of T having one and only

one open path component that passes through both the vertices
i and j . From Eq. (D5), one can obtain the susceptibility χ̃ up
to O({t2

j }) terms by summing over i and j and dividing by N .
In particular, for a regular lattice, we have

χ̃ = 1 +
∑

γ∈T (i0)
1

∏
b∈γ tb∑

γ∈C
∏

b∈γ tb
+ O

({
t2
j

})
, (D6)

where i0 is an arbitrary vertex chosen as reference. If we now,
for a regular lattice, plug in Eq. (D4) in the self-consistent
equation (22), use the definition (63) and the property (68), we
get the bound

m < g(m) +
∑

γ∈T (i0)
1

∏
b∈γ tbg(m)∑

γ∈C
∏

b∈γ tb
+ O

({
t2
j

})
, (D7)

which, by using (D5), leads immediately to Eq. (73).

APPENDIX E: DERIVATION OF EQ. (75)

Equations (B10)–(B14) are already in a form able to take
into account the presence of an arbitrary inhomogeneous
external field {hj }; in these equations, we simply have to
substitute everywhere in their arguments {h} with {hj }. Then,
by deriving L(�)(m) with respect to βhi and by using, as
in Appendix B, ∂βhi

Nβf0(βJ0,{βhj }) = −m0i(βJ0,{βhj })
and ∂βhj

; m0(βJ0,{βhl}) = χ̃0;i,j (βJ0,{βhl}), and the self-
consistent equation for the order parameter m(�), we get
immediately

m
(�)
i = m0i

(
βJ

(�)
0 ,

{
t (�)cNm(�)pj + βhj

})
, (E1)

which confirms Eq. (75) for the correlation functions of order
k = 1. Then, by deriving in turn m

(�)
i with respect to βhj , and

by using

∂m(�)

∂(βhj )
=

∑
n pnχ̃0;n,j

(
βJ

(�)
0 ; {Npqct

(�)m(�) + βh})
1 − ct (�)N

∑
l,n χ̃0;l,n

(
βJ

(�)
0 ; {Npqct (�)m(�) + βh})plpn

, (E2)

we reach immediately Eq. (75).
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[9] M. A. Serrano and M. Boguñá, Phys. Rev. E 74, 056115 (2006).

[10] M. A. Serrano and M. Boguñá, Phys. Rev. Lett. 97, 088701
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B 9, 289 (1999).

[37] M. Ostilli and J. F. F. Mendes, J. Stat. Mech.: Theory Exp. (2009)
L08004.
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