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Suppression of noise in magnetic layers by a periodic spin torque
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The simultaneous effect of thermal noise and time-periodic spin torques on magnetic multilayers are treated
in this work. Using two commonly studied magnetic systems with multiple stable states at zero temperature as
examples, we show that periodic spin torques can enhance the stability of the system and suppress the noise
due to interwell transitions. In the case of weak periodic spin torques, stochastic resonance, which is usually
associated with ac magnetic fields, is also manifested for nonconservative torques. In more complex systems
with a relatively low energy barrier, it is shown that high-frequency spin torques can inhibit interwell transitions
and in effect suppress the telegraph noise due to the switching between neighboring states.
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I. INTRODUCTION

The application of stochastic resonance (SR) [1] to increase
the signal-to-noise ratio (SNR) is now well established in many
physical systems [2] and has also been shown to increase the
stability of a system [3]. Particle production in a quantum field
can also be enhanced in the presence of noise [4]. The SNR is
enhanced by adding noise to the system as it is being driven by
an external periodic force or vice versa. Hence the presence of
noise in a device is not necessarily detrimental to its operational
use and understanding its effects on the dynamic of the system
can, in many cases, help us figure out the underlying physics
in a device [5]. However, until now, mostly one-dimensional
systems with additive noise have been studied and shown to
have this interesting property of increasing the SNR with the
addition of noise as it is being driven by a weak periodic force.
In systems subjected to strong periodic forces, it has been
shown that SR becomes frequency dependent [6]. For linear
systems, SR is absent with additive noise, but it was shown
that, if multiplicative colored noise is added to the system, SR
becomes possible [7]. Multiplicative white noise has also been
shown to give rise to SR in nonlinear one-dimensional systems
[8] and in systems where both multiplicative and additive noise
are present [9]. In this work, we will be mainly interested in
multiplicative noise in a magnetic structure of current interest
in spintronics and information storage [10].

This counterintuitive physical effect, i.e., SR, is inherently
related to the nonlinearities present in these systems. One
might therefore ask if a similar behavior can persist in higher
dimensional systems, in particular magnetic systems, sub-
jected to periodic nonconservative fields. Such an application
is lacking in the current literature. Here we expand the study
to this kind of system. In particular, we treat a spin valve with
one free and one fixed magnetic layer separated by a normal
conductor and with a current crossing the whole stack [10].

In the spin-valve geometry, the magnetization can be in-
plane or perpendicular to the plane. In this paper, we will treat
both cases with the magnetization taken to be nonuniform in
the former and uniform in the latter. Since in this configuration
the current traversing the structure is perpendicular to the plane
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(CPP), an additional torque between the layers exists called
the spin torque [11,12]. This torque is not derivable from a
potential and is usually taken static in current experiments [10].
Because of the constant drive to make every device smaller,
thermal fluctuations are also becoming a bigger problem and
hence new solutions to suppress this noise are needed. To
address this problem in spin valves, we suggest the addition of
an ac component to the current. This in turn will give rise to
a periodic torque, which will be present in addition to thermal
fluctuations in the spin valve. Hence our motivation to study
SR-related physics in these systems.

In this paper, we will use both analytical calculations
and numerical simulations to study the suppression of noise
in magnetic systems with various energy landscapes using
periodic spin torques. In the first part of the paper, we apply
the Kramers-Brown theory [13] to calculate transition rates
in a uniform magnetic layer with uniaxial anisotropy along
the direction of current and under the simultaneous action
of thermal fluctuations and a periodic spin torque with the
current polarized along the easy axis. Brown [13] considered
only the action of conservative fields, but in our case we will
be dealing with fields that are not derivable from a potential
and, in addition, are time dependent. To be able to carry out
the calculations, we restrict ourselves to the adiabatic limit.
Moreover, we will use the two-state approximation and the
theory developed by Gardiner [14] to calculate the probability
distribution of the orientations of the magnetization. This will
then enable us to use the theory of McNamara and Wiesenfeld
[15] to calculate the signal-to-noise ratio (SNR) in the system
and show that it is enhanced by a weak periodic spin torque and
hence SR is fully exhibited by this system. As far as we know,
stochastic resonance (SR) has not been exploited in magnetic
systems. The work by Mantega et al. [16] provides the only
application we are aware of; it applies SR to the measurement
of hysteresis loops in magnetic systems described by the
Preisach model using periodic magnetic fields. Our calculation
therefore shows that, while spin torques are usually used to
switch the magnetization, they can also be exploited to induce
SR in a magnetic system and help the suppression of telegraph
noise observed in spin valves with perpendicular media [10].

In the second half of the paper, we relax the assumptions of
uniform magnetization, high energy barrier, and low frequency
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used in the first part to discuss a more complex energy
landscape. A solution of the noise-periodic spin torque physics
in this system requires a numerical solution. In this system,
the Kramers approximation is no longer valid. Moreover,
the current we use is of a frequency comparable to that of
the system and hence the adiabatic approximation cannot be
applied either. The solution in this case requires a full numer-
ical micromagnetic solution. We use the stochastic Landau-
Lifshitz equation [13] to solve for the spectral densities of the
magnetic state from which we can extract information about
the signal and the background noise in the magnetic structure.
In the presence of thermal fluctuations, the system is unstable.
The magnetization is constantly switching between two states.
We show that, depending on the frequency of the spin torque,
the noise due to the interwell transitions can be suppressed
in this case and hence the system becomes more stable. This
proves the potential of using ac currents in spin valves in
realistic systems, since most practical configurations will fall
in between the two extremes we study here.

II. STOCHASTIC RESONANCE IN THE PRESENCE OF A
PERIODIC SPIN TORQUE

In this section, we consider a relatively simple, but
important, magnetic system of a uniform magnetization with
uniaxial anisotropy along the z axis traversed by a current
polarized by another pinned magnetic layer. The pinned layer
has a magnetization in the z direction along the current.
Both layers are usually separated by a normal conductor.
Such a spin-valve configuration has possible applications in
high-density information storage devices and was recently
shown to exhibit telegraph noise [10] due to creation and
annihilation of domain walls. This telegraph noise is due to
both the thermal fluctuations in the system and the static spin
current. This kind of noise has already been predicted in the
simulations on single domain particles discussed in Ref. [17].

A. Perpendicularly magnetized nanoparticle with a
time-independent spin torque

The dynamic of the averaged magnetization in a particle
with unit volume is well described by the Landau-Lifshitz
(LL) equation [18]

dM
dt

= −γ M × Heff − γ
α

Ms

M × (M × Heff), (1)

where γ is the gyromagnetic ratio, α is the damping constant,
and Ms is the constant magnitude of the magnetization
vector M. The effective field Heff is derivable from an
energy functional E(M), Heff = − δE

δM . To account for thermal
agitation, a white noise stochastic field ξ with zero average is
usually added to the effective field. However, in this section,
we use the Fokker-Planck approach, since it is easier to find an
analytical solution to the magnetic noise with this method [19].

For a single domain particle with uniaxial anisotropy, the
energy is given by

E(M) = U (θ ) = −1

2
HKMs cos2 θ, (2)

where HK is the strength of the anisotropy field along
the z axis. This energy has two stable states along the z

FIG. 1. (Color online) Potential of a uniaxial thin film with high
anisotropy along the direction of the polarized current. The stable
states are at θ− = 0 and θ+ = π . The unstable point θm ≈ π/2. The
energy barrier is assumed much higher than kBT , the thermal energy.

axis, M± = ±Msz, and one unstable state, M0, in the plane
perpendicular to the anisotropy field, Fig. 1. We are interested
in the most practical case, where the energy barrier, Eb =
E(M0) − E(M±), is much larger than kBT . Hence, in this case,
thermal fluctuations cause very few transitions between the
two stable states. To make the system more stable against this
thermal noise, a much higher anisotropy is needed; however,
this is not desirable for practical reasons, since we still want
to switch between the two stable states in a predictive manner
with as small fields as possible. One recent idea is to use
polarized currents rather than fields to switch the nanoparticles.
It has been shown that a current polarized in the direction of
the magnetization of the pinned layer, ẑ, induces an additional
field on the magnetization M in the free layer [11,12]. The
field associated with this spin momentum transfer (SMT) is

HSMT = as

Ms

ẑ × M, (3)

where the constant as is proportional to the current intensity
and degree of polarization. This result is a by-product of
angular momentum conservation between the conduction
electrons and the local moments. This spin-transfer field,
unlike the anisotropy field, is not derivable from an energy
functional and requires a modified Kramer’s theory [20] to
calculate escape rates in its presence [14,21,22]. Therefore,
for a uniaxial single domain nanopillar with polarized current
applied perpendicular to the plane, the total field acting on the
magnetization cannot, in general, be written in terms of an
energy functional:

Htotal = HK

Ms

Mzz + HSMT. (4)

To study the effect of noise on the stability of the magnetic
state and calculate the SNR, we use the Fokker-Planck (FP)
equation in angular form (θ,φ), since the magnetization has
constant magnitude. This problem can be solved analytically
in the high energy barrier case. The FP expresses the evolution
in time of the magnetization probability density P (M) [13,23]

∂P

∂t
+ ∇M · J = 0, (5)
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where J is the magnetization current density

J = 1

Ms

dM
dt

P − D∇aMP. (6)

The diffusive part of the current corresponds to the dissipation
term in the LL equation, Eq. (1), in the absence of the spin
torque term. At equilibrium, the solution of Eq. (6) must be
a Boltzmann distribution P = N exp[−U (θ )/kBT ], with N a
normalization constant. This requirement gives an expression
for the diffusion coefficient D = γαkBT /Ms for α � 1. At
room temperature, the operational temperature of the system,
the spin shot noise is negligible compared to the thermal noise
and hence the diffusion coefficient D is unchanged in the
presence of spin torques [24]. In this case, a Boltzmann-like
solution is still possible for this particular two-state system,
but with a modified potential. For our purposes, it is enough
to consider only θ -dependent effective potentials due to the
symmetry of the system. In this case, the FP equation becomes
simply

∂P

∂t
= 1

sin θ

∂

∂θ

{
sin θ

[
γα

Ms

(
∂U

∂θ
P − asMs

α
sin θP

)

+ γαkBT

Ms

∂P

∂θ

]}
. (7)

Now if we define an effective potential Ueff

Ueff(θ ) = −HKMs

[
1

2
cos2 θ − as

ac

cos θ

]
, (8)

with ac = αHK , then it is easy to see that the distribution

Ps = Ne−Ueff (θ)/kBT (9)

is a stationary solution of the FP equation, Eq. (7). In the
absence of spin currents, as = 0, the original Boltzmann
distribution is recovered.

B. Escape rate in the presence of a periodic spin torque

So far we have assumed that the spin torque is time-
independent. In the rest of the paper, the spin torque will have
a small periodic component:

as(t) = a0
s + bs sin 
t. (10)

The magnitude of the time-dependent part and the frequency

 will be taken small in this section so that an adiabatic
approximation is valid. In this case, the foregoing discussion is
still valid but now with time-dependent potential instead [22].
The form of the spin torque in the presence of ac currents
still has the same form as in the Slonczewski equation. Zhu
et al. [25] calculated the ac spin torque in magnetic tunnel
junctions and found it to be similar in form to the static
case. Among other things, they found that, at low frequencies,
the total spin torque can become less than the spin torque
of the static component of the current. Hence an ac current
can introduce a partial self-cancellation of the spin torque and
reduces any undesired consequences from its presence.

To calculate the escape rate from one well to the next, we
apply Kramers theory [20]. The magnetization is constant in
magnitude; therefore, the equation of motion is best written
in angular form M(θ,φ). However, since the energy is only

θ dependent, we will need its evolution only as a function of
this angle. From the equation of motion of the z component
Mz = Ms cos θ of the magnetization, Eq. (1), we can write the
corresponding equation for θ :

θ̇ = −αγ

2
HK sin 2θ + γ as(t) sin θ. (11)

In the following, we ignore rotational effects on the transition
rates since the energy does not depend on the angle φ and
the damping is small in such typical systems: α ≈ 0.01.
This effectively reduces the problem to one dimension. This
approximation is valid in current systems of practical interest
[26]. To calculate the transition rates between the stable states,
we will need to calculate the current at the top of the potential.

The magnetization current of interest to us is the θ

component [27],

Jθ =
(
−αγ

2
HK sin 2θ + γ as sin θ

)
P − kBT

γα

Ms

∂P

∂θ
, (12)

which when averaged over the azimuthal angle gives the total
probability current, I , that flows between the states θ± = 0,π .
Since the convective part of the current is given by a derivative
of the potential with respect to θ , we see from this expression
that, in the presence of small damping and small spin currents,
an effective potential for the nonconservative system can be
written in the form

Ueff(t) = HKMs

[
1

2
sin2 θ + as(t)

ac

cos θ

]
. (13)

The unstable state at the top of the barrier is then approximately
unchanged from the case with no spin current, i.e., sin θm � 1
or θm � π/2, but the value of the potential and its curvature
are slightly different:

Ueff(θm) = HKMs

2

[
1 +

(
as

ac

)2
]

, (14)

U
′′
eff(θm) = HKMs

[(
as

ac

)2

− 1

]
. (15)

The sign of curvature is negative, as it should be for the
unstable state θm close to θ = π/2. If the probability density
P is normalized to the total number, n, of particles in the
system and since the barrier is high, we have n = n− + n+ and
I = dn−

dt
= − dn+

dt
. The population distribution in each well,

n±, is then given by

P±(θ ) = P (θ±) exp {− [Ueff(θ ) − Ueff(θ±)] /kBT } , (16)

where, from Eq. (8), we have

Ueff(θ±) = ±HKMs

as

ac

, (17)

U ′′
eff(θ±) = HKMs

(
1 ∓ as

ac

)
. (18)

The normalizations ∫ θ1

0
P d
 = n−, (19)

∫ π

θ2

P d
 = n+, (20)
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and the expansions of the potential Ueff around the respective
minimums θ±, keeping only leading terms, give the respective
populations in both wells:

n± = 2πkBT P (θ±)

U ′′
eff(θ±)

. (21)

Integration of the current equation, Eq. (12), around the top of
the potential between orientations θ1 and θ2 (see Fig. 1) gives

P (θ2)eUeff (θ2)/kBT − P (θ1)eUeff (θ1)/kBT

= −MsIeUeff/kBT

2πkBT αγ

√
−2πkBT

U ′′
eff(θm)

eUeff (θm)/kBT

sin θm

, (22)

where I = 2π sin θJθ is the total current at the top. To get this
result, we made a Taylor expansion of the effective potential
around the unstable state and integrated only up to quadratic
terms in θ . As a consequence of the continuity of the current
and since P (θ−)eUeff (θ−) = P (θ1)eUeff (θ1) and P (θ+)eUeff (θ+) =
P (θ2)eUeff (θ2) , the rate of change of the population in each well
is then

ṅ± = W±n∓ − W∓n±, (23)

with the transition rates given by

W± = αγ

Ms

√
−U ′′

eff(θm)

2πkBT
U ′′

eff(θ∓) sin θme−[Ueff (θm)−Ueff (θ∓)]/kBT .

(24)

This result is valid for high barriers and small spin currents.
As the temperature is lowered toward zero, the transition rates
vanish, which is the expected classical result.

C. Signal-to-noise ratio in the high barrier approximation

Now that we have calculated the transition rates between
the stable states, we can use the two-state approximation to
calculate the noise. The high barrier approximation also allows
us to write the probability distribution in the form

P (θ,t) = n−(t)δ(θ − θ−) + n+(t)δ(θ − θ+), (25)

where n± is the population in each well. The probability
density is almost zero at the top of the well and hence it
is neglected. This is the two-state approximation. Therefore,
solving the rate equations, Eq. (23), is equivalent to finding
the distribution P. From the solution of the distribution P,
the spectral density is then calculated as shown below. If we
normalize the total n = 1, the general solution of the rate
equations is [15]

n+(t) = g−1(t)

(
n+(t0)g(t0) +

∫ t

t0

W+(t ′)g(t ′)dt ′
)

, (26)

where g(t) = exp[
∫ t

W+(t ′) + W−(t ′)dt ′]. For our system, we
find that for an arbitrary initial state θ0 at t0

n+(t ; t0,θ0) = exp[−a0(t − t0)]

(
δθ0,θ+ − a01

a0

+ a11(

2 + a2

0

)1/2 cos(
t0 + ϕ)

)

+ a01

a0
− a11 cos(
t + ϕ)(


2 + a2
0

)1/2 , (27)

with

a0 = 2αHK

√
1

2π

MsHK

kBT
e−MsHK/2kBT , (28)

a01 = a0

2

(
1 − a0

s

ac

)
, (29)

a02 = a0

2

(
1 + a0

s

ac

)
, (30)

a11 = −a12 = −a0

2

(
bs

ac

)
, (31)

and ϕ = tan−1( a0



). The function n+(t ; t0,θ0) is an expression
for the conditional probability that the magnetization is in the
direction θ+ given that it was in the direction θ0 at time t0. The
spectral density is now found by first calculating the correlation
functions of the angle θ of the magnetization 〈θ (t + τ )θ (t)〉
[2,15],

〈θ (t + τ )θ (t)〉 = lim
t0→−∞〈θ (t + τ )θ (t); θ0,t0〉 (32)

= lim
t0→−∞ θ+(t + τ )θ+(t)n+(t + τ ; θ+,t)n+(θ0,t0), (33)

where the cross terms vanish, since θ− = 0. To recover a
translational invariant expression for the correlation function,
i.e., an expression independent of t , this is averaged over a
period Tp = 2π/
. Therefore, the power spectrum is given
by

S(ω) =
∫ ∞

−∞
dτ

(
1

Tp

∫ Tp

0
dt〈θ (t + τ )θ (t)〉

)
eiωτ

=
√

2π
a2

01

a2
0 + 
2

(
1 + 
2

a2
0

)
δ(ω)

+
√

2π

4

a2
11

a2
0 + 
2

[δ(ω − 
) + δ(ω + 
)]

+ 1√
2πa0

2a01a02

2 − a2

0a
2
11 + 2a2

0a01a02(
a2

0 + ω2
)(

a2
0 + 
2

) . (34)

The spectral density has a broadband component, which
represents the noise and the signal part that is proportional
to the delta functions. The SNR is the ratio of these latter
two components. The component of S (ω) that is proportional
to δ (ω) is due to the interwell transitions. Assuming positive
frequency 
, the SNR is measured at ω = 
:

SNR = π

2

a0a
2
11

(
a2

0 + 
2
)

2a01a02
2 − a2
0a

2
11 + 2a2

0a01a02
. (35)

This function is shown in Fig. 2. It has the familiar form
for a system that exhibits stochastic resonance. The maximum
of the SNR is achieved at nonzero thermal fluctuations. It
is also curious to see that as the magnitude of the periodic
spin torque approaches that of the constant term, the SNR
increases. However, the dependence of SNR on frequency is
almost flat for large 
. Our calculation is, however, strictly
not applicable in these limits. The system we explore next is
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FIG. 2. (Color online) Signal-to-noise ratio in granular perpen-
dicular media with a polarized current along the anisotropy axis
(arbitrary units). D = γαkBT /Ms is the strength of noise. The SNR
is maximum at nonzero noise.

more complex and most of the approximations used above are
not valid anymore. In spite of the simplicity of this model, it
is, however, of great interest to work on perpendicular media
that tend to be granular with high anisotropy. Therefore, the
results presented here are relevant to the suppression of noise
in those systems that were observed lately [10].

III. SUPPRESSION OF TELEGRAPH NOISE IN A SPIN
VALVE WITH NONUNIFORM MAGNETIZATION

A. Noise in a nonuniform magnetic state

We now study numerically a spin valve with current per-
pendicular to the plane (CPP) but with in-plane magnetization.
The spin valve is made of two magnetic layers (Fig. 3):
one with magnetization Sp (Mp = γ Sp/V ) pinned along
the x axis [reference layer (RL)] and the other (FL) with
free magnetization Sf separated by a thin normal conductor
layer. The static magnetic states of the geometry discussed

z

y

x

p

Sf

S

I

FIG. 3. Trilayer geometry of the spin valve used in this section.
The bottom magnetic layer is supposed to be very thick and is pinned
along the x axis. The top layer is also magnetic but free. Both layers
are separated by a thin 0.8 nm normal conductor and traversed by an
ac and a dc current as shown.

in this section have been studied in Ref. [28] and are highly
nonuniform due to a biasing field. In the simulations, we take
account of both layers with a small interlayer exchange. The
pinned layer is fixed with a large local magnetic field. This
system has bistable nonuniform magnetic states separated by
an energy barrier Eb comparable to the thermal energy in the
system: Eb ≈ 2kBT at T = 373 K. It has natural frequencies in
the GHz regime, but with the power spectrum having a strong
component at much lower frequencies. This low-frequency
component is due to switching between two nearby states.
An application of Kramers theory, which requires two well-
separated states, is therefore not applicable to this system.
We are also interested in time-dependent spin torques with a
magnitude comparable to the dc part. To solve for the noise, we
have to numerically integrate the stochastic LL equation. This
spin-valve structure is widely used in magnetic recording and,
very often, nonuniformities in the magnetization lessen their
appeal for applications. However, we have shown in earlier
work that nonuniform magnetic states may be advantageous
when it comes to using them in sensors, since they appear to
be easier to control by weaker spin torques than layers with
uniform magnetization [29].

The Landau-Lifshitz equation [23] in the presence of a
time-dependent spin torque and thermal fluctuations is

dM
dt

= −γ M × (Heff + HSMT + ξ )

− γ
α

Ms

M × [M × (Heff + HSMT)]. (36)

The effective magnetic field Heff has four components made of
the exchange field, the demagnetization field, the anisotropy
field, and an in-plane external field [27]

Heff(r) = −2A

M2
s

∇2M +
∫

d3r ′ M(r′) · (r − r′)
|r − r′|3 + Han + Hext.

(37)

FIG. 4. Spectral densities (in arbitrary units) at zero current of
the different components of the magnetization. The FMR peak of the
system is around 7.0 GHz in the absence of a spin torque.
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FIG. 5. Two metastable states exhibited by the spin-valve system
at room temperature: a C state and an S state. The horizontal arrows
are those of the magnetization of the bottom layer, which points along
the x axis.

The effective field for the spin torque is

HSMT = −η
1

d

J
|e|

h̄
2

4πM2
s

M × up, (38)

where η is the degree of polarization of the current taken to
be equal to 0.5, J is the current density, d is the thickness
of the free layer, and e is the charge of the electron. up is
directed along the pinned magnetization, which is now directed
along the x axis. The physical parameters we use are those
for permalloy NiFe. The magnetization has magnitude Ms =
1400 emu/cc, with anisotropy HK = 50 Oe, and an external
bias field of 600 Oe applied along the y direction. The current
traversing the spin valve has a dc part and ac part: Is = J/V =
I + i sin 
t . The last term in the LL equation is the dissipation
term, where α = 0.02. By the fluctuation dissipation theorem
[13], the random field ξ satisfies the correlation functions

〈ξi(t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = 2
αkBT

γMsV
δij δ(t − t ′) (39)

in the white-noise approximation.
The magnetic system we study in this section cannot be

reduced to a one-dimensional problem, has strong multiplica-
tive noise, and does not clearly exhibit stochastic resonance as
in the simple model presented above with weak spin torques.
Instead, we will show that strong periodic spin torques can
selectively suppress frequencies from the noise spectrum and
enhance the ferromagnetic resonance (FMR) peak.

B. Results

Now we present and discuss the results of the solution of the
nonlinear Landau-Lifshitz equation in the spin-valve model at
T = 373 K and in the presence of ac currents. This system
shows effects similar to those present in the system studied
in Sec. II, but only in the lower part of the spectrum that
is associated with telegraph noise or switching between two
states.

Figure 4 shows the power spectral densities (PSD) of
the three components of the magnetization in the absence
of current. The PSD’s have been normalized the same way
in all the figures. The noise in the z component is smallest
due to the action of the demagnetization field, which keeps
the magnetization in-plane. The major source of noise in the
system is due to thermal fluctuations that activate switching
between two states and hence it is intrinsic to the system.
To get a complex energy surface with more than one local
minimum, the spin valve is being biased with an external field
that is close to being perpendicular to the fixed magnetization
of the RL and takes into account spin momentum transfer
effects [11] between the two layers of the spin valve. The y
component of the external field is kept at 600 Oe, while an
additional one along Sp is kept around −100 Oe. The layers
have dimensions 100 × 100 × 3 nm3, with the easy axis along
the x axis and anisotropy Hk = 50 Oe. The magnetization
in the pinned layer is fixed by a large bias field and is
considered static. The magnetization in this structure shows
two configurations (Fig. 5) that are nonhomogeneous and
a result of the simultaneous action of the demagnetization
field, the current field, the interaction between the layers,
and the geometry of the structure [28]. Spin-valve structures
are useful components of giant magnetoresistance (GMR)
sensor devices, which often operate in the MHz regime usually
below the FMR peak. Hence the manifestations of stochastic
resonance in these systems may be of practical importance
even if they are exhibited in only part of the spectrum. To
increase the sensitivity of a GMR sensor, the bias field on the
free layer is almost made perpendicular to the magnetization
of the pinned layer. Unfortunately, it is this kind of biasing that
gives rise to the “1/f ”-type noise studied here, since it permits
the system to hop between two states. The results reported here
are valid even if the pinning of the bottom layer is not perfect.
In fact, large bias fields tend to “distort” the magnetization

FIG. 6. Noise spectrum in the components of the magnetization of the FL in the absence of ac current: (1) x component; (2) y component;
(3) z component. The x component of the magnetization shows significant low-frequency noise compared to the other components. The major
two peaks in the y and z components are due to the inhomogeneous two states in the system.

061148-6



SUPPRESSION OF NOISE IN MAGNETIC LAYERS BY A . . . PHYSICAL REVIEW E 83, 061148 (2011)

FIG. 7. x component of the magnetization as a function of
time. The behavior of the average x component indicates that the
magnetization is switching between two states—one stable and the
other unstable due to thermal fluctuations.

in the pinned layer, but only slightly and do not contribute to
the “1/f”-type noise observed here. Hence a solution where we
can keep the bias field and get rid of the interwell transitions
is needed.

One possible solution to this problem is to use ac spin
torques, as in the previous section. Therefore, we expect the
ac spin torque to affect the noise spectrum in a nontrivial way.
In the presence of a spin torque with constant current I =
5 mA, the FMR frequency for this system is shifted to around
4.5 GHz. In magnetic recording, e.g., such devices operate at
frequencies below the FMR frequency and hence this system is
considered too noisy to be used as a sensor. One possible way
to address this problem is to seek a way to suppress the noise
for frequencies less than 1.0 GHz and maybe shift the noise
to higher frequencies that are outside the operational range of
the device. In this sense, we are selectively suppressing the
noise below the FMR frequency only. Previous applications of
stochastic resonance were interested in suppressing the noise

FIG. 8. x component of the magnetization as a function of time
for opposite sign of the dc current in Fig. 7. The spin torque appears
in this case to change the topology of the energy surface to one where
both states are equally visited by the magnetization.

around the frequency of the driving force, which is usually the
signal to be measured, as we did in the previous section.

From the results in Fig. 6, we observe that it is the x
component of the magnetization of the FL that is the noisiest
and hence would interfere with a possible GMR signal. The
out-of-plane z component of the magnetization is very quiet
due to the demagnetization field. The large peak close to f = 0
is due to the switching between the two C and S states of
this system, Fig. 5, and is the major source for the noise in
this structure. It also falls within the operating bandwidth
of any possible sensor based on this structure. Our aim is
therefore to suppress this component of the noise. Figure 7
confirms that the source of the noise is from the switching
of the magnetization between two configurations and it is of
telegraphic nature—one with an average x component of about
430 emu/cc and the other less stable one with an average x
component around 580 emu/cc. The spectral noise in the y and
z components shows more than the usual FMR peak, since the
system is not in a ground state. The higher-order harmonics are
due to nonhomogeneity of the magnetization, i.e., spin-wave
excitations.

In Fig. 8, we change the sign of the current to show the effect
of the spin torque on the magnetization and noise. In this case,
the magnetization spends almost equal time in both states.
This suggests the use of the time-dependent spin torque as a
regulator of the transition rate between the two bistable states,
as was done in our simpler system in Sec. II. Unfortunately,
in this case, a low-frequency spin torque does not alter the
shape of the power spectrum in a significant way. Instead, we
want to explore the idea of adding a strongly periodic current in
addition to the dc bias current in order to suppress the telegraph
noise associated with the f = 0 peak.

Figure 9 shows the result of applying an ac current with
amplitude equal to the bias current, i = I , and a frequency
f = 8 GHz for the same system of Fig. 6. The noise spectrum
for frequencies below 1 GHz is greatly suppressed by this
additional current source in comparison to the FMR peak of

FIG. 9. Noise spectrum in the x component of the magnetization
of the FL in the presence of an ac component to the current with same
the amplitude as the dc part. The low-frequency part of the spectrum
has been completely suppressed by the addition of the ac current. The
peak at f = 8 GHz is that of the ac current and T0 = 1/2πf . I and i
are the magnitudes of the dc and ac part of the current, respectively.
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FIG. 10. Noise spectrum in the x component as a function of
time in the presence of the ac current. The energy surface in this
case appears to have only one stable minimum and no switching
is observed. The noise in the x component has been pushed to
high frequencies by the ac current with T0 = 1/
. I and i are the
magnitudes of the dc part and ac part of the current, respectively.

the system. The peak around the FMR frequency is now much
more pronounced and so is its width. Hence, effectively, the
dissipation in the system has been increased by the periodic
spin torque. The second narrow peak is that of the ac current or
signal. It is also interesting to observe that the FMR frequency
of the system is now closer to the original FMR at zero currents.
A closer look at the real-time behavior of the x component
of the magnetization, Fig. 10, shows that the strong periodic
current is making the system less susceptible to random
switching induced by thermal fluctuations, which is the source
of the telegraph noise. To be an effective suppressant, the
frequency of the torque has to be outside the bandwidth of the
sensor device, which is what we observed in the simulations.
Since it is not feasible in our case to have enough simulations
to plot a figure as in Fig. 2 to identify any SR behavior in
the system, we can instead use the residence time behavior of
a system to detect SR-type behavior [2]. It is therefore very
clear from our results that the suppression of the 1/f behavior
implies less random transitions between the initial C and S
states.

The last figure, Fig. 11, shows that an increase in the
frequency of the ac current degrades the effectiveness of the
ac current component to suppress the low-frequency noise.
This appears to be the case also in systems that show SR
behavior [2]. At high frequencies, the SNR curve ceases to
have a peak at nonzero temperature. In our system, too, we
found that, for current amplitudes at 5 mA, the maximum
frequency the current should have is about twice the FMR
frequency of the system. This latter criterion seems to depend
strongly on the energy surface and the strength of the driving
torque, but more study is needed to determine the frequency
dependence.

Finally, we make a few comments regarding the strength of
the current. From our calculation in Eq. (35), it is clear that
the stronger the ac component of the spin torque, the bigger

FIG. 11. Noise spectrum in the x component of the magnetization
of the FL. The frequency of the ac current has been doubled compared
to Fig. 9.

the SNR and hence the more effective the ac component to
suppress the noise in relation to the signal. For example, for
i = 1 mA, we did not find a substantial influence on the relative
size of the 1/f -type noise component to that of the natural
response of the system. This is partly confirmed by the work
of Pankratov [6], who also studied the effect of using strong
periodic forces in a simpler system. He showed that, in the
highly nonlinear regime, SR will not disappear and may in
fact be enhanced, but becomes frequency dependent.

IV. CONCLUSION

In summary, we have shown that the ideas of SR are also
useful in magnetic systems using nonconservative torques.
We have studied two systems of current practical interest
due to their potential applications in information storage.
In Sec. II, we have shown analytically that a system of a
uniaxial magnetic nanoparticle driven by a periodic spin torque
exhibits stochastic resonance. To derive this result, we have
used the Fokker-Planck equation in the adiabatic limit. Our
result points to a possible solution to suppress the telegraph
noise observed lately in similar systems [10]. In Sec. III, we
studied a more complex energy surface with telegraph noise
and also demonstrated numerically that strong periodic torques
are able to suppress the noise associated with the telegraph
noise. Here we had to resort to a numerical solution of the
stochastic Landau-Lifshitz equation. This study also suggests
that telegraph noise due to pinning and unpinning of domain
walls can be addressed by periodic spin torques.
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