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Nonextensive thermodynamics is criticized by the statement that the zeroth law cannot be satisfied with
nonadditive composition rules. In this paper we determine the general functional form of those nonadditive
composition rules that are compatible with the zeroth law of thermodynamics. We find that this general form is
additive for the formal logarithms of the original quantities and the familiar relations of thermodynamics apply
to these. Our result offers a possible solution to the long-standing questions about equilibrium between extensive
and nonextensive systems or systems with different nonextensivity parameters.
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I. INTRODUCTION

Since Gibbs’s famous expression

S =
∑

i

pi ln
1

pi

(1)

was formulated, several other expressions have been proposed
and are in use for the entropy. Many applications stem
from the field of theoretical informatics [1,2]. A common
motivation in the hunt for further formulas is for consideration
of entanglement or correlation between elementary events
or states of the system under study. A fairly well known
suggestion is due to Rényi; in his formula, a parameter,
nowadays denoted by q, occurs [3].

A more recent endeavor was initiated by Tsallis [4,5],
namely, to build thermodynamics and statistical physics on a
mathematical formulation accounting for the interdependence
between alternative states of a complex system, but possibly
remaining almost as simple and powerful as the classical
theory. Based on the nonadditive nature of the entropy formula
promoted by Tsallis [4,6], almost all familiar properties of
classical thermodynamics have been questioned, reiterated
and are partially still open. One of the open questions
relates the maximum entropy principle to the zeroth law of
thermodynamics: How can the transitivity property of thermal
equilibrium and the definition of the empirical temperature
be preserved in this more complex approach? There was,
in particular, a sharply formulated critique against using
anything other than the classical Boltzmann formula, stating
that temperature, heat exchange, and probability factorizability
were not clearly conceptualized, and in particular that the
parameter q could not be interpreted in a way compatible
with the zeroth law [7].

Quite a few attempts have been devoted to the clarification
of this issue [8–14]. The generalization of thermostatistics
by considering nonadditive entropy functions was proposed
long ago [4], but its relation to alternative suggestions [15–18]
is not yet completely understood [5]. One challenge to
thermodynamics using nonadditive entropy functions is its
surmised noncompatibility with the zeroth law. On the other
hand, it was shown recently that one can achieve some
consequences of these theories—most prominently power-
law-tailed equilibrium distributions of the energy in canonical

statistical systems—by assuming that the entropy is additive,
but other fundamental thermodynamic variables, e.g., the
energy, are not [19,20]. Moreover, there are indications that
both entropy and energy may be nonadditive [13,21].

In this paper we approach the problem of nonextensive
equilibrium in a more general setting: given—as a rule
nonadditive—composition rules for the classical extensives,
originally treated as additive quantities, what constraints can
be derived from the zeroth law for their functional form?
Furthermore, what consequences can be formulated for the
usefulness of one or another entropy formula, and in particular
what is the role of any q-like parameter in the thermodynamical
equilibrium state?

II. THE ZEROTH LAW: FACTORIZABILITY

In order to arrive at answers to the questions raised in the
Introduction, we briefly repeat the main steps of the classical
construction of the zeroth law and then we generalize it to
nonadditive composition rules of entropy and energy. We treat
these composition rules as independent, including in this way
the purely entropic and purely energetic nonadditivity as par-
ticular cases. At the end of this process we aim at having clear
constraints on the interplay between different nonextensivity
parameters in a heterogeneous thermal equilibrium.

In carrying out this program, we regard the problem as
a purely thermodynamic question, and elaborate the answer
without relying on statistical arguments. Instead of additivity
we consider general relations for fundamental thermodynamic
quantities of composed systems. We refer to these relations as
composition rules. We accept the maximum entropy principle
and investigate the most general form of the composition rules
that is compatible with the factorizability of the equilibrium
condition.

The basic variables of classical thermodynamics are the
so-called extensive physical quantities (X), like the energy (E),
particle number of chemical components (Ni), and entropy (S).
The adjective “extensive” denotes two different characteristics
of these fundamental physical quantities. It is customary
to assume that these quantities are added if we put two
thermodynamic bodies together:

X12 = X1 + X2. (2)
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This special property of composition is called additivity. On
the other hand, traditionally one assumes that these quantities
characterize the systems down to the smallest meaningful
scale when operating with finite densities of the extensive
quantities [22]:

ρX = lim
N→∞

1

N

N∑
i=1

Xi < ∞. (3)

Here we divided the body into N different parts and Xi belongs
to the ith of them. This property is called extensivity. The
two properties are related, but not equivalent. If a quantity is
additive, then it is extensive, but there are extensive and yet
nonadditive quantities, too [5,20].

Another important fundamental group of thermodynamic
quantities are called intensives, and their definition is related to
thermodynamic equilibrium and to the zeroth and the second
laws of thermodynamics. As a first step we do not analyze
the relation of these concepts in their utmost generality, but
rather start with a simple approach. We rely on the principle
that the entropy is a function of the fundamental quantities
and it is maximal in equilibrium. In this way we implicitly
assume that the entropy is meaningful also (slightly) out of
equilibrium. Let us consider the simplest example, where there
are only two thermodynamic bodies, both characterized solely
by their respective energies E1 and E2. By assuming that
the energy is additive, we prescribe that the total energy of
the composed system of the two bodies E12 is given by the
formula

E12(E1,E2) = E1 + E2. (4)

The bodies are characterized by their respective entropies
and we assume that the entropy is additive:

S12(E1,E2) = S1(E1) + S2(E2) (5)

with Si(Ei) being the respective equations of state. Maximiz-
ing the entropy, while assuming that the total energy of the
two bodies is conserved (dE12 = 0), although an exchange
of energy between the bodies is possible, one easily derives
that

dS12(E1,E2) = ∂S1

∂E1
dE1 + ∂S2

∂E2
dE2 = (S ′

1 − S ′
2) dE1 = 0,

(6)

where the prime denotes the derivative of a single variable
function. From this, one concludes that equilibrium requires
the equality of the derivatives:

S ′
1(E1) = S ′

2(E2). (7)

The zeroth law law of thermodynamics is formulated as the
requirement of transitivity of the thermodynamic equilibrium
state. This transitivity property implies the existence of an
empirical temperature. One can easily see that transitivity
is satisfied the conditions above and the derivatives of the
single body entropies are suitable empirical temperatures,
because they are characteristics of the respective bodies and
do not depend on the properties of the partner body or
the interaction. Furthermore any monotonic function of the
single body entropy derivative is an equally usable empirical
temperature.

In this classical train of thought the maximum entropy
condition written with additive composition rules leads to
equation (7) that is factorizable: the two sides depend on
the quantities of the respective bodies. In the above case this
property is trivial, and one realizes that the additivity properties
of the energy and the entropy are important ingredients. In this
way additivity is a sufficient condition for the zeroth law, but
the question is whether it is also necessary.

We investigate now the problem of factorizability of the ze-
roth law when both the entropy and energy follow nonadditive
composition rules. The maximum entropy principle with fixed
combined energy leads to vanishing total differentials:

dS12 = ∂S12

∂S1
S ′

1dE1 + ∂S12

∂S2
S ′

2dE2 = 0,

(8)

dE12 = ∂E12

∂E1
dE1 + ∂E12

∂E2
dE2 = 0.

Here we assumed that the composition laws for entropy and
energy (and other further extensives) are independent, i.e., the
following natural assumption about the functional form of the
composition rules has been made: S12 = S12(S1,S2) and E12 =
E12(E1,E2) are functions of the corresponding variables of
the subsystems for all possible equations of state S1(E1) and
S2(E2).

A nontrivial solution for the energy changes dE1 and dE2

exists if the determinant vanishes. This occurs if

∂E12

∂E2

∂S12

∂S1
S ′

1 = ∂E12

∂E1

∂S12

∂S2
S ′

2. (9)

The most general form of the partial derivatives now may
include different two-variable functions (indexed with 1
and 2):

∂S12

∂S1
= F1(S1)G2(S2)H1(S1,S2),

∂S12

∂S2
= F2(S2)G1(S1)H2(S1,S2),

(10)
∂E12

∂E1
= A1(E1)B2(E2)C1(E1,E2),

∂E12

∂E2
= A2(E2)B1(E1)C2(E1,E2).

The vanishing determinant condition (9) requires

A2B1C2 × F1G2H1S
′
1 = A1B2C1 × F2G1H2S

′
2. (11)

This equation factorizes to (E1,S1)- and (E2,S2)-dependent
terms only if

C2(E1,E2)

C1(E1,E2)
= H2(S1,S2)

H1(S1,S2)
. (12)

If one considers that the factorizability of the maximum
entropy principle should not depend on any particular form
of the equation of state S(E), then the above ratio can only
be a constant.1 Its value can easily be absorbed into one

1This is analogous to the separable wave function ansatz in the
quantum mechanical description of the H atom.
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of the factorizing component functions, so as an immediate
consequence

C1(E1,E2) = C2(E1,E2),
(13)

H1(S1,S2) = H2(S1,S2).

These equalities are the basis for considering formal loga-
rithms for the entropy and energy separately. The factorized
form of the zeroth law in this case,

B1F1

A1G1
S ′

1 = B2F2

A2G2
S ′

2, (14)

selects out the following choice for the thermodynamic
temperature:

1

T
= B(E)F (S)

A(E)G(S)
S ′(E). (15)

Finally, using the definitions

L̂(S) :=
∫

F (S)

G(S)
dS,

(16)

L(E) :=
∫

A(E)

B(E)
dE,

we arrive at

1

T
= ∂L̂(S)

∂L(E)
. (17)

The zeroth law requires that this common value be introduced
as the reciprocal temperature.

The functions of the original thermodynamical variables
L̂(S) and L(E) defined in Eq. (16) can be used to map the
original composition rules to a simple addition. That is, due to
Eqs. (10) and (13) one has

C1 = 1

A1B2

∂E12

∂E1
= 1

A2B1

∂E12

∂E2
= C2,

(18)

H1 = 1

F1G2

∂S12

∂S1
= 1

F2G1

∂S12

∂S2
= H2,

which can be rearranged into the following form:

B1

A1

∂E12

∂E1
= B2

A2

∂E12

∂E2
,

(19)
G1

F1

∂S12

∂S1
= G2

F2

∂S12

∂S2
.

Utilizing now the definitions (16) for both E1,E2 and S1,S2

separately, the partial derivatives simplify:

∂E12

∂L1
= ∂E12

∂L2
,

(20)
∂S12

∂L̂1
= ∂S12

∂L̂2
.

The general solution of such partial differential equations is
an arbitrary function of the sum of variables:

E12 = �(L1 + L2),
(21)

S12 = �(L̂1 + L̂2).

In the still quite general case when the � and � functions
are strictly monotonic, they are invertible. This inverse can be
indexed by the composite system, so we arrive at

L12(E12) = L1(E1) + L2(E2),
(22)

L̂12(S12) = L̂1(S1) + L̂2(S2).

Since the Li(Xi) functions map nonadditive quantities to the
addition, they can justifiably be called formal logarithms.
Since L̂(S) and L(E) are additive quantities, they are also
extensive. Therefore Eq. (17) defines 1/T as a truly intensive
quantity since it is a derivative of an extensive quantity with
respect to another extensive quantity.

The extensively studied nonextensive entropy with additive
energy composition rule and its reverse, i.e., consideration
of a nonadditive energy with additive entropy, are particular
cases of the above result. When the composition rule is the
addition itself, the corresponding formal logarithms become
the respective identity functions, L(E) = E and L̂(S) = S.
The classical result is recovered when both quantities are
composed additively. For the entropic compositon rule Abe
has derived the most general functional form based on the
factorization of the zeroth law in homogeneous equilibrium
[14]. His result (see Eq. (34) in [14]) conforms to ours (22)
after the following mapping of the pseudoadditivity rule to the
addition:

L̂(S) = 1

λ
ln [1 + λHλ(S)] . (23)

Physically, regarding different pieces of the same material,
all L(E) and L̂(S) functions are the same—this is the case of
composition rules with a formal logarithm, already proved to
emerge in the limit of infinite repetitions of an arbitrary rule
[20]. The statistics in the generalized thermodynamical limit of
repeated compositions therefore ensures the fulfillment of the
zeroth law. In a general setting, however, these functions—or
“only” their parameters—may differ. Moreover, the mapping
function for the interacting composed system also may differ
from both subsystems’ corresponding functions.

On the one hand, this leads to a variety of equilibria
depending on the types of the subsystems and composite
systems (extensive or nonextensive). On the other hand, simple
composition laws for homogeneous cases—when all formal
logarithm functions are the same with the same value of all
parameters—may become more involved when considering
a zeroth-law-compatible heterogeneous equilibrium between
different systems. Our results above, Eqs. (22) and (17), also
answer the long-debated question about equilibrium between
extensive and nonextensive systems.

III. THE ZEROTH LAW: TRANSITIVITY

The classical formulation of the zeroth law in ther-
modynamics emphasizes the transitivity of the equilibrium
condition without introducing the concept of entropy [23]:
when the subsystems 1 and 2 are in thermal equilibrium and
independently the subsystems 2 and 3, then it follows that also
the subsystems 1 and 3 are. This is a universal principle.

Our condition above, derived from factorization of the
constrained maximum entropy principle, automatically sat-
isfies this transitivity. We demonstrate this with the use of
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T. S. BIRÓ AND P. VÁN PHYSICAL REVIEW E 83, 061147 (2011)

the nonadditive energy composition rule; other cases can be
derived analogously. The key observation is that we have
established additivity of composite functions of the energies
of the respective subsystems, Li(Ei). Therefore it is natural to
assume that these functions are characteristic of the subsystems
and only the double-indexed formal logarithms Lij (Eij )
are characteristic of the interaction between subsystems in
equilibrium. In this way all subsystems develop the same
individual formal logarithm irrespective of which other system
they equilibrate with.

Assumption of the opposite, i.e., a partner-dependent
individual formal logarithm, would violate the transitivity. Let
us consider the three possible pairings of three subsystems.
The composite energies satisfy

E12 = �12[L1(E1) + L2(E2)],

E23 = �23[L̃2(E2) + L3(E3)], (24)

E13 = �13 − [L̃1(E1) + L̃3(E3)].

If L̃ �= L, then the equilibrium condition is not automatically
transitive. In the special case of additive entropy but non-
additive energy composition considered here, Eq. (9) reads
pairwise as

S ′
1(E1)

∂E12

∂E2
= S ′

2(E2)
∂E12

∂E1
,

S ′
3(E3)

∂E23

∂E2
= S ′

2(E2)
∂E23

∂E3
, (25)

S ′
1(E1)

∂E13

∂E3
= S ′

3(E3)
∂E13

∂E1
.

From here the ratios of the respective S ′(E) factors can be
expressed:

S ′
1(E1)

S ′
2(E2)

=
∂E12
∂E1

∂E12
∂E2

,

S ′
2(E2)

S ′
3(E3)

=
∂E23
∂E2

∂E23
∂E3

, (26)

S ′
1(E1)

S ′
3(E3)

=
∂E13
∂E1

∂E13
∂E3

,

leading to the condition
∂E12
∂E1

∂E12
∂E2

∂E23
∂E2

∂E23
∂E3

=
∂E13
∂E1

∂E13
∂E3

. (27)

This compared with the form (24) reveals the following
consistency requirement:

�′
12L

′
1

�′
12L

′
2

�′
23L̃

′
2

�′
23L

′
3

= �′
13L̃

′
1

�′
13L̃

′
3

. (28)

This condition can be reduced easily to obtain

L′
1

L̃′
1

= L′
2

L̃′
2

L′
3

L̃′
3

. (29)

Since this equality is required for any permuted arrangement
of the indices 1, 2, and 3, one concludes that the transitivity
of thermal equilibrium can only be satisfied if the L̃′ and
L′ functions are identical. This is a necessary and sufficient

condition. Adding the observation that a physically sensible
composition rule satisfies the triviality condition, i.e., a
composition with zero does not change the value, in general
L(0) = 0 is required. In this case also the L̃ and L functions
themselves are identical. Requiring furthermore that for small
energies—when nonadditive effects are, as a rule, relatively
reduced—the addition reemerges, L′(0) = 1 is also set. In
the following discussion we assume that these properties are
fulfilled.

IV. THE EXAMPLE OF TSALLIS’S ENTROPY
COMPOSITION FORMULA

A nonadditive (and for factorizing probabilities also nonex-
tensive) entropy formula, promoted by Tsallis [4,5], satisfies
the following composition rule:

S12 = S1 + S2 + âS1S2. (30)

Here for brevity we used the notation â = 1 − q. The additive
entropy systems have â = 0; nonextensive systems another
value of this parameter. The question of whether two such
systems with different â parameters can come into thermal
equilibrium compatible with the zeroth law has been raised on
quite a few occasions [7,21].

According to our main result in this paper the answer is
affirmative for a zeroth-law-compatible equilibrium, provided
that the general case is treated via the formal logarithm. The
formal logarithm for the above rule is easy to derive by
observing that

1 + âS12 = 1 + âS1 + âS2 + â2S1S2

= (1 + âS1) (1 + âS2). (31)

The product is mapped to the addition by the logarithm and
scaled to satisfy L̂′(0) = 1:

L̂(S) = 1

â
ln(1 + âS). (32)

This trivial property has been observed several times; see,
e.g., Ref. [24]. For a general thermal equilibrium between
two subsystems with different values of the nonadditivity
parameters â1 and â2, a zeroth-law-compatible equilibrium
emerges—according to Eq. (19)—if

1

â12
ln(1 + â12S12) = 1

â1
ln(1 + â1S1) + 1

â2
ln(1 + â2S2).

(33)

Here one observes that a further nonextensivity parameter,
â12, was also introduced. It is necessary for accounting for
nonadditivity in composite systems between elements (atoms,
particles) of the different subsystems. See Refs. [25,26] for a
parton-cascade-based numerical simulation with a nonadditive
energy composition rule. The above relation (33) leads to the
direct expression

S12 = 1

â12
[(1 + â1S1)â12/â1 (1 + â2S2)â12/â2 − 1]. (34)
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In the case of homogeneously nonadditive subsystems and
composed systems one considers â12 = â1 = â2 = â and
obtains Eq. (30). We note here that the composition formula
(34) does not fulfill the naively expected property when a
finite entropy and a zero entropy subsystem are composed, i.e.,
S12(S1,0) �= S1 and S12(0,S2) �= S2. This property is, however,
trivially satisfied for L̂12(S12) when one of the subsystems’
formal logarithms, L̂1(S1) or L̂2(S2), vanishes.

For a composition of two nonadditive subsystems in general
one obtains

S12 = �12[L̂(â1,S1) + L̂(â2,S2)]. (35)

In the case of â1 = 0, i.e., considering thermal equilibrium
between an additive and a nonadditive system, one achieves

S12 = �12[S1 + L̂(â2,S2)]. (36)

From the viewpoint of zeroth law compatibility it is strongly
advised to use the additive formal logarithm of any nonexten-
sive entropy formula. In the case of the Tsallis entropy,

ST = 1

â

(∑
i

p1−â
i − pi

)
(37)

with â = 1 − q and the normalization
∑

i pi = 1, its formal
logarithm turns out to be the well known Rényi entropy [3]:

SR = L̂(â,ST ) = 1

â
ln(1 + âST ) = 1

1 − q
ln

∑
i

p
q

i . (38)

V. EQUILIBRIUM DISTRIBUTION FUNCTION

Based on the above arguments, the general thermal equi-
librium state satisfying β = 1/T = ∂L̂(S)/∂L(E) motivates
us to maximize L̂(S) − βL(E) when looking for canonical
energy distributions [27]. Since the formal logarithms are
additive—even if the original quantities to be composed were
not—a distribution can be obtained from

L̂(S) [pi] − β
∑

i

piL(Ei) − α
∑

i

pi = max. (39)

For example, for leading order nonadditivity according to a
composition rule of type (34) the Rényi entropy L̂(S) = 1

â

ln
∑

i p
1−â
i is to be maximized. Denoting the formal loga-

rithm parameter for the entropy composition by â = 1 − q

and that for the analogous energy composition by a, one
considers

1

â
ln

∑
i

p1−â
i − β

∑
i

pi

1

a
ln(1 + aEi) − α

∑
i

pi = max.

(40)

The extremal condition results in

pi = A [b(α + βLi)]
−1/â . (41)

Here we have introduced the notation

A = e−L̂(S), Li = 1

a
ln(1 + aEi), b = â

1 − â
. (42)

Then the normalization, the average, and the definition of the
entropy read as follows:

1 = A
∑

i

[b(α + βLi)]
−1/â , (43)

〈L〉 = A
∑

i

Li [b(α + βLi)]
−1/â , (44)

A−â = A1−â
∑

i

[b(α + βLi)]
1−1/â . (45)

From this set of equations one obtains the condition

1 = bα + bβ〈L〉. (46)

Therefore the equilibrium distribution simplifies to

pi = A [1 + bβ(Li − 〈L〉)]−1/â = 1

Z
(1 + âβ̂Li)

−1/â

= 1

Z

(
1 + âβ̂

1

a
ln(1 + aEi)

)−1/â

. (47)

Here we have introduced the shorthand notations

Z = 1

A
(1 − bβ〈L〉)1/â, β̂ = β

1 − â(1 + β〈L〉) . (48)

We should keep in mind that the reciprocal temperature,
distinguished by the zeroth law, is the Lagrange multiplier
β. This is reflected well by the whole formalism, because
the usual thermodynamic relations are valid. A distribution
similar to (47)—but with negative values of the energy
nonadditivity parameter a—has been derived for particle
energy spectra inside jets, observed in electron-electron
collision experiments, by taking into account multiplicity
fluctuations [28].

It is enlightening to consider now cases where one or the
other quantity is composed by additive rules. In the limit
of additive entropy but nonadditive energy composition rules
(â → 0) the canonical distribution approaches

pi = 1

Z0
(1 + aEi)

−β/a where ln Z0 = SBG − β〈E〉, (49)

and SBG is the Boltzmann-Gibbs entropy. For nonadditive
entropy and additive energy, on the other hand, a differently
parametrized power-law-tailed distribution emerges:

pi = 1

Z
(1 + β̂âEi)

−1/â . (50)

How can one distinguish between these two approaches in a
physical situation? In some cases the entropic nonadditivity, in
some other cases the energetic nonadditivity, may be preferred.
To mention an example, the ideal gas of massless particles can
be considered. The average energy of a single particle, 〈E〉,
known to be connected to the temperature, leads to different
formulas in these two cases. For the entropic nonadditivity one
obtains the familiar result,

T = 1

f
〈E〉, (51)

with f = D for massless particles in D spatial dimensions
and with f = D/2 for the nonrelativistic energy relation
E = �p2/2m. This result is independent of the value of the
entropic nonadditivity parameter â. For the general case using
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Z
 p
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)

E

combined 1 1 0.3
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Tsallis 0 1 0.3

Boltzmann 0 0 0.3

FIG. 1. The stationary energy distributions for different pairings
of additive and nonadditive systems with relativistic dispersion
relation and obtained by use of the formal logarithms L(E) =
ln(1 + aE)/a and L̂(S) = ln(1 + âS)/â. In the legend the parameters
are a, â, and T̂ = 1/β̂, in this order.

E = c
√

�p2 + (mc)2, however, the result will depend on the
nonadditivity parameter [29,30].

On the other hand, for the energetic nonadditivity, applied
under the above conditions, one gets

T = 〈E〉
f + (f + 1)a〈E〉 . (52)

In this case for a > 0 a maximal (so-called limiting) tem-
perature arises: T � 1/(f + 1)a. We note in passing that if
〈L(a,E)〉 is fixed instead, the limiting temperature is T �
1/f a [19]. We would like to emphasize again that this T is the
thermodynamical temperature—intensive and satisfying the
zeroth law—as defined in Eq. (17).

In Fig. 1 stationary energy distributions are depicted for the
equilibrium between additive systems, between energetically
or entropically nonadditive systems, and for the case when both
nonadditivities are considered. They are labeled according to
the nonadditivities as “Boltzmann”, “Tsallis”, “Wang”, and
“combined”, respectively. The parameters given in the legend
are a, â, and T̂ = 1/β̂ in this order, in the corresponding energy
units.

VI. SUMMARY AND CONCLUSIONS

In this paper we have reversed the usual approach to the
zeroth law of thermodynamics in nonextensive thermostatis-
tics. Instead of assuming some particular nonadditive entropy
form or composition rule for either the entropy or other basic,
traditionally extensive, quantities, we have regarded the zeroth
law as more fundamental and derived consequent requirements
for the general composition rules. In our analysis we have
considered nonadditive composition rules for both the energy
and the entropy while composing two subsystems. In principle

this method can be extended to all extensive thermodynamical
variables.

We have proved that the zeroth law together with the
maximum entropy principle strictly restricts the possible
functional form of the composition rule, and this restriction
can be resolved in a simple manner by using formal logarithms
for both the energy and the entropy functions. The zeroth law
essentially enforces the additivity of these formal logarithms
of the basic extensive quantities, but not the additivity of the
quantities themselves. In this way it is true that the zeroth
law enforces additivity, but it is also true that not only the
Boltzmann formula is compatible with the basic principles of
thermodynamics.

The temperature, defining thermal equilibrium among
systems by following such generalized composition rules
instead of simple addition, is the inverse of the Lagrange
multiplier associated with formal logarithms of the energy
and entropy in the maximum entropy principle.

Finally, we briefly outlined some important properties of the
canonical equilibrium distributions arising from this treatment.
In the general case, compatible with the zeroth law, these are
not at all restricted to a Gibbs exponential of the individual
energy.

In our approach several (at first sight seemingly paradoxi-
cal) aspects of nonextensive thermostatistics can be explained.
We list the most important of them.

(1) The general form of the entropy composition rule (34),
derived from the Tsallis-like composition (30), reveals several
q parameters. The use of the corresponding formal logarithm
with all the same q parameters and functional forms describes
the special case of homogeneous equilibrium. According to
our analysis of the factorizable form of the zeroth law,
however, formal logarithms with different functional forms
and parameters also can be used to satisfy all requirements.
This describes a heterogeneous equilibrium; among others
that between extensive and nonextensive systems. A practical
example is given by a Monte Carlo simulation of nonexten-
sive systems consisting of “red” and “blue” particles. The
energetic nonadditivity parameters a1 for the red-red, a2 for
the blue-blue, and a12 for the red-blue interaction can all
differ.

(2) Heterogeneous composition formulas can be derived
using any suggested entropy formula by determining the
corresponding formal logarithm.

(3) It is possible to introduce zeroth-law-compatible energy
or entropy nonadditivity either separately or simultaneously.
Contrary to previous expectations [13,21], the two different
nonadditivities do not imply each other.

(4) Either certain energy or entropy nonadditivities
may lead to power-law-tailed equilibrium distributions, but
other properties, like the equipartition law, clearly distin-
guish these two cases. For example, a limiting tempera-
ture is the consequence of a repulsive energetic nonad-
ditivity of type E12 = E1 + E2 + aE1E2, but an entropic
nonadditivity of similar form does not result in such a
property.

(5) As emphasized in the Introduction and in [5], additivity
is a sufficient but not a necessary condition for extensivity
[cf. Eq. (3)]. Some nonadditive rules, when repeated many
times on rescaled systems, may lead to addition asymptotically
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[20]. It is interesting to note that requiring zeroth law compat-
ibility for general composition rules leads to the conclusion
that these rules should also be associative. For example, for
the energy composition associativity requires

E12,3(E12(E1,E2),E3) = E1,23(E1,E23(E2,E3)). (53)

Utilizing the representation of the composition rule with
correspondingly indexed formal logarithms, one easily derives
that

L12,3(E12,3) = L1(E1) + L2(E2) + L3(E3) = L1,23(E1,23),

(54)

i.e., the associativity of the formal logarithms of the energies
of different levels of composed subsystems has to be satisfied.

(6) Our approach to extensivity and additivity is also
different from a recent classification and use of different
nonadditive entropies and related concepts ([5], pp. 91–106).
All our results are not bound to a particular composition

rule, like (30), or to purely entropic nonadditivity. Any
of the traditionally extensive quantities may be composed
by almost arbitrary nonadditive rules; all these versions of
thermodynamics are zeroth law compatible if the maximum
entropy principle is formulated by using all the corresponding
formal logarithms. In particular, our conclusion is that in
thermal equilibrium the Rényi entropy, as the formal logarithm
of the Tsallis entropy, is to be maximized with the traditional
normalization of probabilities.

Finally, we note that our analysis and statements are
restricted to thermal equilibrium. Far from the equilibrium
state there may be other properties, like the convexity, which
could indicate a preference for using nonadditive formulas (see
the comparison between Tsallis and Rényi entropy in Ref. [5]).
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