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Fractional Brownian motion is a Gaussian process x(t) with zero mean and two-time correlations 〈x(t1)x(t2)〉 =
D

(
t2H
1 + t2H

2 − |t1 − t2|2H
)
, where H , with 0 < H < 1, is called the Hurst exponent. For H = 1/2, x(t) is a

Brownian motion, while for H �= 1/2, x(t) is a non-Markovian process. Here we study x(t) in presence of an
absorbing boundary at the origin and focus on the probability density P+(x,t) for the process to arrive at x

at time t , starting near the origin at time 0, given that it has never crossed the origin. It has a scaling form
P+(x,t) ∼ t−H R+(x/tH ). Our objective is to compute the scaling function R+(y), which up to now was only
known for the Markov case H = 1/2. We develop a systematic perturbation theory around this limit, setting
H = 1/2 + ε, to calculate the scaling function R+(y) to first order in ε. We find that R+(y) behaves as R+(y) ∼ yφ

as y → 0 (near the absorbing boundary), while R+(y) ∼ yγ exp(−y2/2) as y → ∞, with φ = 1 − 4ε + O(ε2)
and γ = 1 − 2ε + O(ε2). Our ε-expansion result confirms the scaling relation φ = (1 − H )/H proposed in Zoia,
Rosso, and Majumdar [Phys. Rev. Lett. 102, 120602 (2009)]. We verify our findings via numerical simulations
for H = 2/3. The tools developed here are versatile, powerful, and adaptable to different situations.
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I. INTRODUCTION

Survival of a species of bacteria, translocation of DNA
through a nanopore, and diffusion in presence of an absorbing
boundary are only a few of many situations where the central
question is the survival, or persistence, of the underlying
stochastic process. More precisely, persistence, or survival
probability S(t), of a process is the probability that the process,
starting from an initial positive position, stays positive over a
time interval [0,t]. For many stochastic processes arising in
nonequilibrium systems, persistence decays as a power law
S(t) ∼ t−θ , where θ is called the persistence exponent [1]. For
a simple Markov process such as one-dimensional Brownian
motion, θ = 1/2 [2]. On the other hand, the exponent θ is
nontrivial whenever the process is non-Markovian, that is,
has a memory. In addition to theoretical studies (for a brief
review, see [3]), the exponent θ has been measured in a number
of experiments [4–10]. Even for Gaussian non-Markovian
processes, θ is nontrivial [11]. For the latter processes that
are close to a Markov process (i.e., whose correlators are close
to that of a Gaussian Markov process) the exponent θ was
computed perturbatively [12,13]. This perturbation theory has
been used for various out-of-equilibrium systems, as the global
persistence at the critical point of the Ising model in d = 4 − ε

dimensions [14], in simple diffusion close to dimension 0 [15],
and in fluctuating fields such as interfaces [16–18].

A quantity that contains more spatial information than
persistence S(t) is the probability density P+(x,t) of the
particle at position x and at time t , given that it has survived
(stayed positive) up to time t . To investigate P+(x,t), one can
equivalently think of a process on the positive semi-infinite
line [0,∞] with absorbing boundary condition at the origin
x = 0 (see Fig. 1). The question is as follows: How does
P+(x,t) depend on x? In other words, how does presence
of an absorbing boundary at the origin change the spatial
dependence of the probability density of the particle at time
t? In particular, it is clear that P+(x,t) must vanish as x → 0
and x → ∞. However, how do they vanish there? One of the

main messages of our paper is that for generic non-Markovian
processes, P+(x,t) vanishes near its boundaries at x = 0
and x → ∞ in a nontrivial way, characterized by nontrivial
exponents.

As the persistence S(t), the probability P+(x,t) can be
computed exactly for a Gaussian Markov process, as, for
example, a one-dimensional Brownian motion. For non-
Markovian processes, even if they are Gaussian, P+(x,t) was
not known. In this work, we consider P+(x,t) for a class
of one-dimensional Gaussian processes known as fractional
Brownian motion (fBm), which are parametrized by their
Hurst exponent H , with 0 < H < 1. The case H = 1/2
corresponds to ordinary Brownian motion, which is a Markov
process, while for H �= 1/2 the process is non-Markovian. The
purpose of this paper is to develop a systematic perturbation
theory to compute P+(x,t) for non-Markovian fBm’s with
H = 1/2 + ε, where ε is the expansion parameter for the
perturbation theory. Here we present the result for P+(x,t) to
O(ε). It can be written as a combination of special functions,
that is, error and hypergeometric functions [see Eq. (10)].

Before detailing our results, let us position them into a
broader context: Fractional Brownian motion with H �= 1/2
is relevant for polymer translocation through a nanopore.
Consider a polymer chain composed of N monomers passing
through a pore (translocation) from left to right, as drawn
in Fig. 2. The dynamics of this translocation process has been
investigated intensively due to its central role in understanding,
for example, viral injection of DNA into a host, or RNA
transport through nanopores, and mastering such applications
as fast DNA or RNA sequencing through engineered channels
[19–22]. The translocation coordinate s(t), namely, the label of
the monomer crossing the pore at time t , is key to quantitatively
describing the translocation process [23–26], which begins
when s = 1 and ends when s = N , that is, when the first and
the last monomer of the chain enter the pore, respectively
[see Fig. 2]. For large N , when the translocation is not yet
complete, one can view s(t) as a stochastic process on the
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FIG. 1. (Color online) The fractional Brownian motion discussed
in the main text.

semi-infinite line with absorbing boundary conditions at s = 0.
The absorbing boundary at s = 0 models that if the chain falls
back to the left, that is, on the starting side, it will diffuse away
and not try again. The quantity P+[s(t) = x,t] then represents
the probability that x monomers have translocated to the right
at time t . To model the process s(t), one observes the following
facts: (i) Scaling arguments and numerical simulations show
that s(t) is subdiffusive [27]; (ii) in absence of boundaries,
numerical simulations indicate that s(t) is a Gaussian process
[28]. Based on these observations it was proposed in Ref. [29]
that a good candidate for s(t) is a fBm with H = 1/(1 + 2ν),
where the exponent ν describes the growth of the radius
of gyration with the number of monomers (Rg ∼ Nν) [30].
Thus, for ν �= 1/2, H < 1/2 and, hence, s(t) is generically a
non-Markovian process, with absorbing boundary conditions
at s = 0 and at s = N . Here we consider the limit of N → ∞.
Thus, our results for P+(x,t) of a fBm with H �= 1/2 are
directly relevant for polymer translocation.

Directions for further applications are numerous: Recently,
a relation was established between the statistics of avalanches
associated with the motion of a driven particle in a dis-
ordered potential and persistence properties of the latter
[31]. Higher-dimensional generalizations are avalanches of
extended elastic objects, for which systematic field-theoretic
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FIG. 2. (Left) Translocation of a polymer chain through a pore.
(Right) The translocation coordinate s(t) denotes the number of the
monomer that is crossing the pore at time t .
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FIG. 3. (Color online) The function W (y) defined in Eq. (10).
The solid blue line is the result of the series expansion (11), while
the dashed red line is the result of the asymptotic expansion (12). We
note that W (1.016 94) = 0.

treatments exist [32–35]. In few cases, no-hitting probabilities
can be calculated for extended (nondirected) objects as self-
avoiding random walks avoiding extended objects [36]. Other
approaches use real-space renormalization [37,38].

This article is organized as follows: Since some of the
computations are rather technical, we first provide in
Sec. II a brief summary of the main definitions and our
principal results. In Sec. III, we introduce basic notations and
reproduce the known results for H = 1

2 . Section IV explains
the basic ideas of our perturbative approach, sketches the
calculation, and discusses some of the subtle points. Our
predictions are compared to numerical simulations in Sec. V.
Conclusions are presented in Sec. VI. More technical points
are relegated to two appendixes: In Appendix A the correction
to the action is derived; Appendix B contains the explicit
calculation of the perturbation theory. Finally, Appendix C
reviews the arguments for the scaling law φ = (1 − H )/H .

II. SUMMARY OF DEFINITIONS AND MAIN FINDINGS

Consider a particle, located at time t = 0 at the origin x = 0
and free to propagate on the real axis. For Gaussian processes,
the probability to find the particle inside the interval (x,x + dx)
at time t is given by

P (x,t) dx = 1√
2π〈x2(t)〉

e
− x2

2〈x2(t)〉 dx, (1)

where 〈x2(t)〉 is the particle’s mean square displacement. A
natural scaling variable is

y = x√
〈x2(t)〉

, (2)

and most of the properties of the process are a function of
this single variable. For example, the distribution probability
in Eq. (1) becomes

P (x,t) dx = R(y) dy, (3)

R(y) = 1√
2π

e− y2

2 . (4)
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In many problems the motion is confined to an interval,
finite or semi-infinite. In presence of absorbing boundaries,
the probability distribution of the particle position, subject to
the condition that the particle has survived, has no longer a
simple Gaussian form since it has to vanish at the boundaries.
However, one can still express it as a function of the sole scaling
variable y defined in Eq. (2), where 〈x2(t)〉 is the particle’s
mean square displacement in the unconstrained (without
boundaries) process over the full real line. In particular, here
we discuss the case where the particle can move on the positive
semiaxis and is absorbed whenever x(t) < 0. We call P+(x,t)
and R+(y) with y given in Eq. (2) the normalized probability
distribution and the scaling function of the problem in presence
of an absorbing boundary at the origin,

P+(x,t) dx = R+(y) dy. (5)

In contrast to the free case, the functional form of R+(y) is
not the same for all Gaussian processes but depends on the
precise nature of the latter. Here we study a particular class of
processes, the fBm, for which the autocorrelation function in
absence of boundaries is

〈x(t1)x(t2)〉 = D
(
t2H
1 + t2H

2 − |t1 − t2|2H
)
, (6)

where H with 0 < H < 1 is the Hurst exponent. For H = 1/2,
the fBm identifies with Brownian motion

〈x(t1)x(t2)〉 = 2D min(t1,t2), (7)

where D is the diffusion constant. Note that only for H = 1/2
is the Gaussian process x(t) Markovian. For other values of
H , the process is non-Markovian.

For Brownian motion (H = 1/2), the form of R+(y) can
be obtained using the method of images (see Sec. III),

R
(0)
+ (y) = ye− y2

2 . (8)

The superscript (0) identifies the case H = 1/2. For other
values of H , due to the non-Markovian nature of the process,
the method of images no longer works and the computation
of R+(y) becomes a challenging problem. In this paper we
compute this function, using a perturbative approach for H =
1/2 + ε, to first order in ε. The final result is

R+(y) = R
(0)
+ (y)[1 + εW (y) + O(ε2)], (9)

W (y) = 1

6
y4

2F2

(
1,1;

5

2
,3;

y2

2

)

+π (1 − y2) erfi
( y√

2

)
+

√
2πe

y2

2 y

+(y2 − 2)[ln(2y2) + γE] − 3y2, (10)

where γE is Euler’s constant, 2F2 a hypergeometric function,
and erfi the imaginary error-function. We can write a conver-
gent series expansion,

W (y) = 4y4
∞∑

n=0

2nn! y2n

(2n + 4)!

−
∞∑

n=0

√
π2

3
2 −ny2n+1

(2n − 1)(2n + 1)n!

+(y2 − 2)[ln(2y2) + γE] − 3y2, (11)

where each line is equivalent to the corresponding line in Eq.
(10) (see Fig. 3). Both sums converge for all y, but problems
of numerical precision appear for y > 7. In that region, one
can use the asymptotic expansion

W (y) = 1 − γE − ln(2y2) + 1

2y2
− 1

2y4
+ 5

4y6
+ O(y−8).

(12)

At y = 7, the difference between (11) and (12) is smaller
than 10−6.

We obtain, at first order in ε, the asymptotic expansions of
R+(y),

R+(y)
y→0−→ y [1 − 4ε ln y − 2ε(γE + ln 2) + · · ·] ,

R+(y)
y→∞−→ ye−y2/2 [1 − 2ε ln y + ε(1 − ln 2 − γE)]

+ · · · . (13)

These asymptotics can be recast into

R+(y) ∼ yφ for y → 0,

R+(y) ∼ yγ e− y2

2 for y → ∞, (14)

where the two exponents φ and γ are at first order in ε given
by

φ = 1 − 4ε + O(ε2), γ = 1 − 2ε + O(ε2). (15)

In a recent publication [29] (reviewed in Appendix C), a
general scaling relation, valid for arbitrary self-affine pro-
cesses with stationary increments, was proposed between
the exponent φ, the persistence exponent θ , and the Hurst
exponent H ,

φ = θ

H
. (16)

For fBm, it is known that θ = 1 − H [16]. This result predicts
that for fBm,

φ = 1 − H

H
. (17)

One of the objectives of this paper was to verify this scaling
relation up to O(ε) in a perturbation theory around H =
1/2. Using H = 1/2 + ε, one expects φ = (1 − H )/H =
1 − 4ε + O(ε2) for fBm. This is in agreement with our result
(15), putting the scaling arguments on a firmer footing.

It is interesting to note that the scaling function R+(y)
given in Eq. (4) has, at least to O(ε), the same leading large-
y behavior ∼ e−y2/2 as in the unconstrained case (4). This
behavior can be understood by a simple heuristic argument:
Far from the boundary the process is not “aware” of the latter.
Our calculation reveals that the process nevertheless knows
about the boundary, and R+(y) has a subleading power-law
prefactor yγ where γ is a new (independent) exponent, whose
result to order ε is given in Eq. (15).

Our analytical results are then verified via numerical
simulations for H = 2/3.
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III. PRELIMINARIES: BROWNIAN CASE (H = 1/2)

To simplify notations, we set D = 1 in the following. The
final result (9), expressed in the variable y, is, of course,
independent of this choice.

The spreading of a Brownian particle is given by the Fokker-
Planck equation

∂tZ
(0)
+ (x0,x,t) = ∂2

xZ
(0)
+ (x0,x,t), (18)

Z
(0)
+ (x0,x,t = 0) = δ(x − x0). (19)

The propagator Z
(0)
+ (x0,x,t) times dx gives the probability to

find the Brownian particle inside the interval (x,x + dx) at
time t , knowing that the particle was at x0 at time t = 0. With
absorbing boundary conditions at the origin we have, using the
method of images,

Z
(0)
+ (x0,x,t) = 1√

4πt
[e−(x−x0)2/4t − e−(x+x0)2/4t ]. (20)

This propagator is not a probability distribution because it
is not normalized. Its normalization, the so-called survival
probability,

S(x0,t) =
∫ ∞

0
dx Z

(0)
+ (x0,x,t) = erf

(
x0

2
√

t

)
, (21)

gives the probability that the particle is not yet absorbed by
the boundary at x = 0. The survival probability vanishes when
x0 → 0; however, in that limit, the probability distribution for
the nonabsorbed particles remains well-defined:

P
(0)
+ (x,t) = lim

x0→0

Z
(0)
+ (x0,x,t)∫ ∞

0 dx Z
(0)
+ (x0,x,t)

. (22)

Another quantity with a finite limit for x0 = 0 is

Z
(0)
+ (x,t) = lim

x0→0

1

x0
Z

(0)
+ (x0,x,t) = xe− x2

4t

2
√

πt3/2
. (23)

This makes it possible to write the probability P
(0)
+ (x,t) as

P
(0)
+ (x,t) = Z

(0)
+ (x,t)∫ ∞

0 dx Z
(0)
+ (x,t)

= x

2t
e− x2

4t . (24)

Using in Eq. (24) the scaling variable defined in (2), y =
x/

√
2t , we recover (8). Equation (24) is simpler than Eq. (22)

because the x0 dependence is discarded from the beginning.
We use this definition to compute Z+(x,t) for H = 1/2 + ε.

IV. PERTURBATION THEORY (H �= 1/2)

The process x(t) is Gaussian for all values of H , but it is
Markovian only for H = 1/2. For all other values of H , the
process is non-Markovian and this makes the problem difficult
to solve. Our idea is to expand around H = 1/2. In a first step,
we construct an action, which calculates expectation values of
the Gaussian process x(t), with bulk expectation values (6). In a
second step, we obtain the propagator with absorbing boundary
conditions at x = 0. In a third step we calculate the probability
P+(x,t) perturbatively, using the action constructed in step 1.
In the fourth step, we put together all pieces and interpret our
result.

A. Step 1: The action

For all H , x(t) is a Gaussian process; therefore, the
statistical weight of a path x(t ′) without any boundary is
proportional to exp(−S[x]), where the actionS[x] is quadratic
in x and given by

S[x] =
∫ t

0
dt1

∫ t

0
dt2

1

2
x(t1)G(t1,t2)x(t2). (25)

Note that we use standard field-theoretic notation, noting f (x)
a function of the variable x, and S[x] a functional, depending
on the function x(t ′), with 0 < t ′ < t .

The kernel G(t1,t2) of the action is related to the autocor-
relation function of the process via

G−1(t1,t2) = 〈x(t1)x(t2)〉. (26)

For H = 1/2, the action is simple. In this case, setting D = 1,

[G(0)]−1(t1,t2) = 〈x(t1)x(t2)〉 = 2 min(t1,t2). (27)

Using the result (A7) in Eq. (25), we recover the standard
Brownian action

S (0)[x] = 1

4

∫ t

0
dt ′ (∂t ′x)2 . (28)

For a generic value of H the kernel G(t1,t2) becomes nonlocal.
For H = 1/2 + ε one can write

S[x] = S (0)[x] + ε S (1)[x] + · · · , (29)

where S (0)[x] is the action (28) and S (1)[x] has been computed
in Appendix A:

S (1)[x] = −1

2

∫ t

0
dt1

∫ t

t1

dt2
∂t1x(t1)∂t2x(t2)

|t1 − t2|
− 2S (0)[x](1 + ln τ ). (30)

Note that we have introduced a regularization for coinciding
times t1 = t2 → ln |t1 − t2| = ln τ where τ > 0 is the UV
cutoff. A first-principles definition would necessitate a dis-
cretization in time. It is, however, sufficient to check that the
law (6) is correctly reproduced and that the final result is cutoff
independent.

B. Step 2: The propagator with an absorbing boundary

For a generic value of H , the propagator Z+(x0,x,t),
denoting the probability that the particle reaches x at time t ,
starting from x0 at time 0, and staying positive over the interval
[0,t], can be written using standard path integral notation as

Z+(x0,x,t) =
∫ x(t)=x

x(0)=x0

D[x] e−S[x] �[x]. (31)

Here �[x] is an indicator function that is 1 if the path x(t ′)
stays positive over the interval [0,t] and 0 otherwise. The
action S[x] is given in (25). In the limit x0 → 0, we expect, as
in the Brownian case (H = 1/2), the propagator to vanish as
x

φ0
0 , where the yet unknown exponent φ0 depends on H . Note

that for H = 1/2, φ0 = 1 [see Eq. (23)]. For H = 1/2 + ε, we
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expect that φ0 = 1 + a1ε + O(ε2), where a1 is yet unknown.
Analogous to Eq. (23) for H = 1/2, we define Z+(x,t) as

Z+(x,t) = lim
x0→0

1

x
φ0
0

∫ x(t)=x

x(0)=x0

D[x] e−S[x] �[x]. (32)

Using the expansion of the action given in Eq. (29) and φ0 =
1 + a1ε, we write to leading order in ε

Z+(x,t)

= lim
x0→0

1

x
1+a1ε
0

∫ x(t)=x

x(0)=x0

D[x]
(
1 − εS (1)[x]

)
e−S (0)[x] �[x]

= lim
x0→0

{
Z

(0)
+ (x,t) [1 − a1ε ln(x0)]

− ε

x0

∫ x(t)=x

x(0)=x0

D[x]S (1)[x] e−S (0)[x] �[x]
}

= Z
(0)
+ (x,t) + εZ

(1)
+ (x,t), (33)

where Z
(0)
+ (x,t) is defined in Eq. (23) and Z

(1)
+ (x,t) is

Z
(1)
+ (x,t) = lim

x0→0

{
−1

x0

∫ x(t)=x

x(0)=x0

D[x]S (1)[x] e−S (0)[x] �[x]

− a1 ln(x0)Z(0)
+ (x,t)

}
. (34)

We see that for φ0 = 1 − 4ε, that is, a1 = −4, Z
(1)
+ (x,t) is

independent of x0.

C. Step 3: Calculation of Z(1)
+ (x,t)

The main achievement of this paper is the calcula-
tion of Z

(1)
+ (x,t) defined in Eq. (34). This calculation is

rather involved, both conceptually and technically. Therefore,
we relegate several technical calculations to Appendix B.
Equation (34) can be divided into three pieces:

Z
(1)
+ (x,t) = ZA

+(x,t)

+ lim
x0→0

[ZB
+(x0,x,t) − a1 ln(x0)Z(0)

+ (x,t)], (35)

ZA
+(x,t) = 2(1 + ln τ )

× lim
x0→0

1

x0

∫ x(t)=x

x(0)=x0

D[x]S (0)[x] e−S (0)[x] �[x],

(36)

ZB
+(x0,x,t) = 1

4

∫ t

0

∫ t

0
dt1dt2

× 1

x0

∫ x(t)=x

x(0)=x0

D[x]
˙x(t1) ˙x(t2)

|t1 − t2| e−S (0)[x] �[x].

(37)

The first term, ZA
+(x,t), is simple and is evaluated in

Appendix B1. We now come to the evaluation of the contribu-
tion ZB

+(x0,x,t), defined in Eq. (37). In Fig. 4 we show a path
which contributes to ZB

+(x0,x,t). The sum of all these paths
is a product of transition probabilities. Explicitly, it reads,

x0

0

x̃1

t̃1

x1

t1

x2

t2

x̃2

t̃2 t

x

time

space

FIG. 4. Graphical representation of the path integral for
ZB

+(x0,x,t) given in Eq. (34).

ordering t1 < t2, which gives an extra factor of 2 compared
to (37)

ZB
+(x0,x,t)

= 1

2x0

∫ t

0
dt2

∫ t2

0
dt1

∫
x1>0

∫
x̃1>0

∫
x2>0

∫
x̃2>0[

Z
(0)
+ (x0,x̃1,t1)D(x̃1,x1)

Z
(0)
+ (x1,x2,t2 − t1)

|t2 − t1|
×D(x2,x̃2)Z(0)

+ (x̃2,x,t − t2)
]
. (38)

Z
(0)
+ (x̃1,x0,t1), Z(0)

+ (x1,x2,t2 − t1), and Z
(0)
+ (x̃2,x,t − t2) are

defined in (20). The factors D(x1,x̃1) and D(x2,x̃2) take into
account the terms ∂t1x(t1) and ∂t2x(t2) in the action S1[x].

D(x̃1,x1) = lim
dt→0

(x1 − x̃1)

dt
Z

(0)
+ (x1,x̃1,dt)

= lim
dt→0

(x1 − x̃1)

dt

e− (x̃1−x1)2

4dt√
2πdt

= −2δ′(x1 − x̃1). (39)

Finally, we have set t̃1 = t1 and t̃2 = t2, since we have taken
the limit of their differences to 0. In order to perform the six
integrations in Eq. (38) it turns out to be convenient to evaluate
its Laplace transform, Z̃B

+(x0,x,s). From now on, we always
denote with f̃ (s) the Laplace transform of a function f (t),
defined as

f̃ (s) :=
∫ ∞

0
dt e−st f (t). (40)

This Laplace transform leads to two important simplifications.
The first simplification is that now the nested time integrals
over t1 and t2 become a product. To see this, we remember
that if f1 and f2 are two functions which depend on t , then the
Laplace transform of their convolution is simply the product
of their Laplace transforms,∫ ∞

0
dt e−ts

[∫ t

0
dt1f1(t1)f2(t − t1)

]

=
∫ ∞

0
dt

∫ ∞

0
dt1

∫ ∞

0
dt2 δ(t − t1 − t2)

× f1(t1)e−t1sf2(t2)e−t2s

=
[∫ ∞

0
dt1f1(t1)e−t1s

] [∫ ∞

0
dt2f2(t2)e−t2s

]
= f̃1(s)f̃2(s). (41)
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This consideration generalizes to three and more times.
We obtain for the Laplace transform of (38)

Z̃B
+(x0,x,s) = − 2

x0

∫
x1>0

∫
x2>0

Z̃
(0)
+ (x0,x1,s)Z̃(0)

+ (x2,x,s)

× ∂x1∂x2

[∫ ∞

0
dt e−st Z

(0)
+ (x1,x2,t)

t

]
. (42)

The second simplification is even more important and is most
easily understood on the example of the bulk propagator:

Z(0)(x,y,t) := e−(x−y)2/4t

√
4πt

. (43)

Its Laplace-transform is

Z̃(0)(x,y,s) = 1

2
√

s
e−√

s|x−y|. (44)

While integrals over x > 0 involving (B19) give error func-
tions, which are hard to integrate further, the same integrals
over (44) remain similar exponential functions; the only
complication is that one has to distinguish between x smaller
or larger than y.

To evaluate (42), we now have to calculate the Laplace-
transforms of its factors:

Z̃
(0)
+ (x,y,s) = e−√

s|x−y| − e−√
s(x+y)

2
√

s
. (45)

Finally, the term in brackets in Eq. (42) can be rewritten, using
a Fourier decomposition for Z

(0)
+ (x2,x1,t), as∫ ∞

0
dt e−st Z

(0)
+ (x1,x2,t)

t

=
∫ ∞

−∞

dk

2π

∫ ∞

0
dt

e−(s+k2)t

t
[eik(x1−x2) − eik(x1+x2)]

= −
∞∫

−∞

dk

2π
[eik(x1−x2) − eik(x1+x2)][ln([s+k2]τ ) + γE].

(46)

Note that the time integral in the second line of Eq. (46) is
diverging at small times. Since the path integral is defined as
discretized in time, a natural approach consists of discretizing
this integral, with a step size τ . This would indeed be the
only possible approach for stronger divergences, such as 1/t2.
However, since our integral is only logarithmically diverging,
we can take an easier path by using a small-time cutoff τ :∫ ∞

0

e−(s+k2)t

t
dt

→
∫ ∞

τ

e−(s+k2)t

t
dt = − ln([s + k2]τ ) − γE + O(τ ).

(47)

We note that the regularization by discretization gives the same
result apart from the term −γE. We check later that it only
contributes to the normalization, which will drop from the
final result.

Collecting the results of Eqs. (45) and (46) in Eq. (42), and
doing the remaining space-derivatives, we find

Z̃B
+(x0,x,s) = 2

x0

∞∫
−∞

dk

2π
k2[ln(τ (s + k2)) + γE]

×
∫

x1>0

∫
x2>0

[eik(x1−x2) + eik(x1+x2)]

× e−√
s|x−x2| − e−√

s(x2+x)

2
√

s

× e−√
s|x0−x1| − e−√

s(x1+x0)

2
√

s
. (48)

Performing the space integrations, we find

Z̃B
+(x0,x,s)

= 4

x0

√
s

∞∫
−∞

dk

2π
[cos(kx0) − e−√

sx0 ][cos(kx) − e−√
sx]

× k2[ln
(
τ (s + k2)

) + γE]

(s + k2)2
. (49)

Note that this is (rescaling k → √
sk)

Z̃B
+(x0,x,s) = 4

x0

∞∫
−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

× [cos(kx0
√

s) − e−x0
√

s]

× k2[ln(τs(1 + k2)) + γE]√
s(1 + k2)2

. (50)

The next step is to invert this Laplace transform which is
performed in Appendix Bc.

D. Step 4: The probability P+(x,t)

The final result for Z
(1)
+ (x,t) is given in Eqs. (B60) and (B65)

of Appendix Bd, expressed in terms of the scaling variable
z = x/

√
2t . Note that setting φ0 = 1 − 4ε, that is, a1 = −4,

the term Z
(1)
+ (x,t) does not depend on x0:

Z
(1)
+ (z,t)

Z
(0)
+ (z,t)

= (z2 − 2)[ln(2z2t) + γE] − 2 + I(z) + c(t),

c(t) = ln(t) − 2γE + 2, (51)

where I(z) is defined in Eq. (B53). The first line is arranged
as to not contribute to the normalization, whereas c(t) is
independent of z and will not appear in the final conditional
probability. γE is Euler’s constant. The probability distribution,
P+(x,t), to find a non-yet-absorbed particle in the interval
(x,x + dx) can be computed following the lines of Eq. (24) to
order ε as

P+(x,t) = Z
(0)
+ (x,t) + εZ

(1)
+ (x,t)∫ ∞

0 dx (Z(0)
+ (x,t) + εZ

(1)
+ (x,t))

= Z
(0)
+ (x,t)∫ ∞

0 dx Z
(0)
+ (x,t)

×
[

1 + ε

(
Z

(1)
+ (x,t)

Z
(0)
+ (x,t)

−
∫ ∞

0 dx Z
(1)
+ (x,t)∫ ∞

0 dx Z
(0)
+ (x,t)

)]
.

(52)
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Note that the term proportional to c(t) cancels in normalized
objects such as P+(x,t). Therefore, we obtain

P+(x,t) dx = R
(0)
+ (z)dz{1 + ε[(z2 − 2)

× (γE + ln(2z2t)) − 2 + I(z)]}, (53)

where R
(0)
+ (z) = z exp(−z2/2), and I(z) is given in Eq. (B53).

The result in Eq. (53) still involves both z and t . The
reason is that for H �= 1/2 the natural scaling variable is
y = x/(

√
2t1/2+ε) instead of z = x/

√
2t , as can be seen from

Eq. (2). To rewrite Eq. (53) in terms of y = ztε , we note that

R
(0)
+ (z)dz = R

(0)
+ (ytε)t εdy

= R
(0)
+ (y)

{
1 + ε

[
y∂yR

(0)
+ (y)

R
(0)
+ (y)

+ 1

]
ln t

}

= R
(0)
+ (y){1 − ε[y2 − 2] ln t}. (54)

This gives for Eq. (53) up to terms of order ε2

P+(x,t) dx = R
(0)
+ (y)dy (55)

×{1 + ε[(y2 − 2)(γE + ln(2y2)) − 2 + I(y)]}.
This is the final result announced in Eq. (9), with I(y)
calculated in (B53) and below.

V. COMPARISON TO NUMERICS

In this section, we compare our analytical results with
numerical simulations. More specifically, we consider the
superdiffusive process with H = 2

3 .

A. Methodology of simulations

We aim to sample a fBm processes x(t) at discrete
times t1 = 1,t2 = 2, . . . ,tL = L. The covariance matrix of
{x1, . . . ,xi, . . . ,xL} coincides with the autocorrelation func-
tion of the original fBm process in Eq. (6), setting D = 1,

Ci,j = 〈xixj 〉 = i2H + j 2H − |i − j |2H . (56)

The L × L covariance matrix C is symmetric and has positive
eigenvalues; it is thus possible to find a matrix A, positive and
symmetric, such that C = A2. Matrix A is called the square
root of C.

One can simulate paths of a fBm using the standard
procedure for Gaussian correlated processes: (i) Determine A,
the square root of C. (ii) Each path 
x = {x1, . . . ,xi, . . . ,xL}
is given by the matrix multiplication 
x = A
η. The vector 
η =
{η1,η2, . . . ,ηL} is a set of L independent Gaussian numbers
with unitary variance and zero mean. It is easy to check
that these paths are characterized by the correct covariance
matrix (56).

Unfortunately, this procedure is time consuming, as for step
(i) it requires the full diagonalization of C. Better results are
obtained by making use of the stationarity of the increments
ξi = xi − xi−1 (we set x1 = ξ1). Using Eq. (56) we can
compute C̃, the covariance matrix of the increments,

C̃i,i+k := 〈ξiξi+k〉 = |k − 1|2H + (k + 1)2H − 2 k2H , (57)

where k = 0, . . . ,L − i and C̃i+k,i = C̃i,i+k . The matrix C̃ is
symmetric and positive definite like the matrix C, but it also

L 20000

H
2

3

H
1

2

1 2 3 4
y

0.1
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0.4
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0.6

R y

FIG. 5. (Color online) R+(y). Analytical result for Brownian
motion R

(0)
+ (y) = ye−y2/2 (solid blue line) and simulation data for

L = 20 000 and H = 1
2 (red dots), as well as for the fBm with

H = 2
3 (black diamonds). Histograms are performed over 4 × 105

paths.

is a Toeplitz matrix. For Toeplitz matrices efficient numerical
methods make it possible to avoid the full diagonalization
of C̃. In particular, the Levinson algorithm (for a practical
implementation of Levinson’s algorithm, see [39] and [40]) is
suitable for first passage problems, as it recursively generates
the increment ξi+1 given ξ1, . . . ,ξi . The points of the fBm path
are given by xi = ∑i

j=1 ξj . In our simulation we are interested
only in positive paths (xi > 0 for all i). The Levinson method
makes it possible to discard negative paths whenever a xi < 0
is generated, without building the full path.

B. Simulation results

For each positive path we record the final position xL.
The histogram of the rescaled variable y := xL/(2LH ) is the
scaling function R+(y). The results for H = 2/3 and the
Markovian case H = 1/2 are presented in Figs. 5 and 6.
For small y the scaling function, R+(y) behaves as a power
law, with an exponent φ. For H = 1/2 we expect φ = 1, for
H = 2/3 we expect φ = 1/2. Inspired by our perturbative
calculation we predict that for y → ∞, R+(y) behaves like
∼yγ e−y2/2. In order to facilitate the comparison, we define the
scaling function

r+(y) := e
y2

2 R+(y). (58)

The numerical data for the scaling function r+(y) defined in
Eq. (58) are shown in Fig. 7 for H = 2/3. They clearly show
two distinctive power-law behaviors: For small y this power
law is ∼yφ with φ = 1

2 , predicted by the scaling relation
φ = 1−H

H
. For large y a larger exponent γ = 0.7 ± 0.03 is

measured. This is consistent with the perturbative calculation,
which suggests γ > φ for H > 1/2 and γ < φ for H < 1/2.

A more accurate comparison between the numerical data
and the perturbation theory is possible. Our perturbative result
given in Eq. (9) is equivalent to r+(y) = y[1 + εW (y) +
O(ε2)]. In order to compare to numerics, we use

rε
+(y) = y eεW (y) + O(ε2). (59)
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FIG. 6. (Color online) R+(y). Analytical result for Brownian
motion R

(0)
+ (y) = ye−y2/2 (solid blue line) and simulation data for

L = 20 000 and H = 1
2 (red dots), as well as for the fBm with H = 2

3
(black diamonds). Histograms are performed over 4 × 105 paths.

While the two expressions are equivalent to order ε, the latter
(59) has the merit to resume the logarithms for small and large
y into the power-law behavior

rε
+(y) ∼

{
yφε for y → 0,

yγε for y → ∞,
(60)

where the exponents are the order-ε results

φε = 1 − 4ε, γε = 1 − 2ε. (61)

For H = 2/3, that is, ε = 1/6, we predict a scaling ∼yγε ,
γε = 2

3 , using (61). Note that the curve drawn is ex-
actly the asymptotic behavior of our analytical result (59),
using (10), thus also the amplitude and not only the exponent
are estimated. This can more clearly be seen on Fig. 8,
where the solid (blue) line represents the theoretical order-ε
prediction, and the dashed line the asymptotic behaviors given
in Eq. (60).

H
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y

0.10

1.00

0.50

5.00

0.20

2.00

0.30

3.00

0.15

1.50
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r y

FIG. 7. (Color online) The numerically determined function
r+(y), defined in Eq. (58) for the fBm with H = 2

3 (black diamonds),
using L = 20 000 and 4 × 105 paths. The asymptotic small-y be-
havior is consistent with φ = 1−H

H
= 1

2 . The large-y asymptotics
(including the amplitude) was taken from (59), with slope γ ≈
1 − 2ε = 2

3 .
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FIG. 8. (Color online) Blue solid line, the function rε
+(y), defined

in Eq. (59) for H = 2
3 , that is, ε = 1

6 . The dashed lines are the
predicted asymptotic behaviors, ∼yφ (for small y) and ∼yγ (for
large y). Superimposed are the simulation data shown in Fig. 7. Note
that there is no fitting parameter. The deviation at small y is due to
the fact that ε is rather large, so the order-ε slope φ ≈ 1 − 4ε = 1

3 is
smaller than the exact result φ = 1−H

H
≡ 1/2−ε

1/2+ε
, which evaluates to 1

2 .
For large y, but smaller than 3, the effective cutoff of the simulation,
both amplitude and slope are correctly predicted.

Conversely, relation (59) can be used to extract W (y) from
r+(y),

W (y) ≈ 1

ε
ln

(
r+(y)

y

)
. (62)

This relation should work the better, the smaller is ε. Using our
numerical results for H = 2

3 , we obtain the curve presented in
Fig. 9. The agreement is quite good for 1 � y � 2.5. It breaks
down for larger y due to numerical problems. For y < 1, the
deviations can be attributed to the large value of ε.

VI. CONCLUSIONS

In this article, we develop a systematic scheme to calculate
the corrections to the universal scaling function R+(y) for
fBm in an ε = H − 1

2 expansion. We compute the full scaling
function R+(y) to first order in ε. In particular we find that
R+(y) behaves as R+(y) ∼ yφ as y → 0 (near the absorbing
boundary), while R+(y) ∼ yγ exp(−y2/2) as y → ∞ (far
from the boundary), with, at the first order in ε, φ = 1 −
4ε + O(ε2) and γ = 1 − 2ε + O(ε2). For small ε our results
confirm the scaling relation found in Ref. [29]: R+(y) ∼ yφ

with φ = θ/H . For fBm it is known that θ = 1 − H , so that
φ = (1 − H )/H ≈ 1 − 4ε + · · ·. Far from the boundary, that
is, for large y, the leading behavior R+(y) ∼ exp(−y2/2)
recovers the Gaussian propagator (4) in absence of boundaries;
our approach shows that R+(y) has a subleading power law
prefactor yγ , where γ is a new (independent) exponent.

Our numerical simulations show that the predictions of the
asymptotic behavior of R+(y) hold at H = 2/3. In particular,
the two exponents γ and φ have been measured and shown in
Fig. 7.

Let us stress that few results are known about non-
Markovian processes in presence of boundaries. Perturbation
theory developed in this paper can provide substantial insight
here. The method is versatile and can, in principle, be extended
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FIG. 9. (Color online) Blue solid line, the function W (y),
defined in Eq. (10). Black diamonds, estimation of W (y)
from the numerical data for H = 2

3 , using relation (62). The
agreement is quite good for 1 � y � 3. It breaks down for
y > 3 due to numerical problems. For y < 1, the deviations
can be attributed to the large value of ε.

to the calculation of other quantities such as the propagator
for a process confined to a finite interval with absorbing
boundaries, or alternatively with other, for example, reflecting
boundary conditions. Particularly interesting for applications
would be the hitting probability Q(x,L), the probability that a
generic stochastic process starting at x and evolving in a box
[0,L] hits the upper boundary at L before hitting the lower
boundary at 0 [41]. In the context of polymer translocation,
the hitting probability is the probability that a finite polymer
chain will ultimately succeed in translocating through a pore.

In the more general framework of anomalous diffusion,
presence of boundaries has been especially studied for non-
Gaussian processes. For instance, Lévy flights are Markovian
superdiffusive processes whose increments obey a Lévy stable
(symmetric) law of index 0 � μ � 2. The Hurst exponent is
H = 1/μ [42]. By virtue of the Sparre Andersen theorem
[43], the persistence exponent is θ = 1/2, independent of
μ. The Laplace transform of the scaling function R+(y) has
been computed in [44] for a generic value of μ. A scaling
analysis of this Laplace transform shows that R+(y) behaves
as R+(y) ∼ y1/(2μ) as y → 0 (this in in agreement with the
scaling relation φ = θ/H ), while far from the boundary the
Lévy-stable behavior is recovered.

Increasing interest is devoted to Gaussian processes with
self-affine anomalous displacements 〈x2(t)〉 ∼ t2H with 0 <

H < 1 [16,45–49]. Our current results apply only to fBm,
that is, self-affine Gaussian processes defined by the auto-
correlation function (6). In particular, for fBm it is known
that (i) the process has stationary increments, (ii) θ = 1 − H ,
and (iii) φ = θ/H . For all other Gaussian processes with
Hurst exponent H , (i) the increments are nonstationary,
(ii) θ �= 1 − H , and we particularly emphasize that (iii) no
scaling relation is known between φ and θ (unlike in fBm
where φ = θ/H ). Among such processes it is possible to show
that the one, defined by the autocorrelation function

〈x(t1)x(t2)〉 ∼ (t1 + t2)2H − |t1 − t2|2H , (63)

describes the subdiffusive behavoir of a tagged monomer in an
elastic interface which initially was flat [16]. For this process
the persistence exponent is known only to first order in ε [16],
whereas neither the exponents φ nor γ are known analytically.
It would be interesting to determine the full scaling function
R+(y) for this process within our perturbative framework.
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APPENDIX A: THE ACTION

The aim of this appendix is to determine the action S (1)[x],
the first correction to the Brownian action, S (0)[x], in the
expansion of S[x] in Eq. (29). As a first step we expand the
autocorrelation function (6) around H = 1/2, setting D = 1,

〈x(t1)x(t2)〉 = G−1(t1,t2)

= [G(0)]−1(t1,t2) + ε K(t1,t2) + O(ε2).

(A1)

The first term is the autocorrelation function for H = 1/2,

[G(0)]−1(t1,t2) = 2 min(t1,t2), (A2)

the second term gives the correction at first order in ε,

K(t1,t2) = 2
[
t1 ln(t1) + t2 ln(t2) − |t1 − t2| ln |t1 − t2|

]
.

(A3)

Inverting Eq. (A1) and expanding up to order ε one gets

G = G(0) + εG(1) + O(ε2) (A4)

G(1) = −G(0)KG(0), (A5)

where G(0)(t1,t2) is defined as∫ ∞

0
dt ′G(0)(t1,t

′)[G(0)]−1(t ′,t2) = δ(t1 − t2). (A6)

One can check that the kernel of the Brownian action, S (0)[x],
that is,

G(0)(t1,t2) = −1

2
δ′′(t1 − t2), (A7)

satisfies Eq. (A6), namely,

−1

2

∫ ∞

0
dt ′δ′′(t1−t ′)[G(0)]−1(t ′,t2)=−

∫ ∞

0
dt ′δ′′(t1−t ′)min(t ′,t2)

= −∂2
t1

min(t1,t2) = δ(t1 − t2). (A8)
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It remains to compute the term G(1). Integrating by parts one
has

G(1)(t1,t2) = −1

4

∫ t

0

∫ t

0
dt ′ dt ′′ δ′(t1 − t ′)

× δ′(t2 − t ′′)∂t ′∂t ′′K(t ′,t ′′)

= 1

2

∫ t

0

∫ t

0
dt ′ dt ′′ δ′(t1 − t ′)δ′(t2 − t ′′)

× ∂t ′∂t ′′(|t ′ − t ′′| ln |t ′ − t ′′|), (A9)

using that the first two terms in (A3) do not contribute since
they only depend on one of the times. The derivative is

∂t ′∂t ′′ (|t ′ − t ′′| ln |t ′ − t ′′|) = − 1

|t ′ − t ′′| − 2δ(t ′ − t ′′)

×(1 + ln |t ′ − t ′′|). (A10)

The second term is not well defined. We decide to introduce a
regularization for coinciding times t = t ′ → ln |t − t ′| = ln τ

where τ > 0 should be thought of as the time-discretization
of the path integral. Let us first give the final result before
commenting on this approximation:

G(1)(t1,t2) = −1

2

∫ t

0

∫ t

0
dt ′ dt ′′ δ′(t1 − t ′)

1

|t ′ − t ′′|δ
′(t2 − t ′′)

− 2(1 + ln τ )[G(0)]. (A11)

This yields for the action

S (1)[x] =
∫ t

0
dt1

∫ t

0
dt2

1

2
x(t1)G(1)(t1,t2)x(t2)

= −1

4

∫ t

0
dt1

∫ t

0
dt2

∂t1x(t1)∂t2x(t2)

|t1 − t2|
− 2S (0)[x](1 + ln τ ). (A12)

We see that the only possibly ambiguous term, the term of
order ln τ , is proportional to the zeroth-order action S (0)[x],
thus equivalent to a change in the diffusion constant D. Thus,
its effect is easy to check in the final result, when looking at
observables in a domain unaffected by the boundary.

APPENDIX B: EVALUATION OF Z(1)
+ (x,t)

A. Evaluation of Z A
+(x,t)

This term is easily evaluated. Indeed, Eq. (36) can be recast
in the following form:

ZA
+(x,t)

= −2(1 + ln τ )

× lim
x0→0

1

x0

∂

∂a

∣∣∣∣
a=1

∫ x(t)=x

x(0)=x0

D[x]e−aS (0)[x] �[x]

= −2(1 + ln τ )

× lim
x0→0

1

x0

∂

∂a

∣∣∣∣
a=1

√
a

4πt
[e− a

4t
(x−x0)2 − e− a

4t
(x+x0)2

]

= (1 + ln τ )
x√

4πt3
e− x2

4t

(
x2

2t
− 3

)
. (B1)

In going from the first to the second line we have used the
expression of the propagator in the Brownian case in Eq. (20),

introducing the factor of a from the observation that the latter
appears together with x2 and readjusting the normalization.

In terms of the variable z = x/
√

2t , this gives

ZA
+(z,t) = Z

(0)
+ (z,t)A(z), (B2)

where Z
(0)
+ (z,t) = ze−z2/2/(

√
2πt) is defined in (23) and

A(z) = (1 + ln τ )(z2 − 3). (B3)

B. Z̃B
+ (x0,x,s): The integration over k

We split Z̃B
+(x0,x,s) into two parts:

Z̃B
+(x0,x,s) = Ĩ1(x0,x,s) + Ĩ2(x0,x,s), (B4)

Ĩ1(x0,x,s) = 4

x0

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

× [cos(kx0
√

s) − e−x0
√

s]

× k2 ln(1 + k2)√
s(1 + k2)2

, (B5)

Ĩ2(x0,x,s) = 4

x0

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

× [cos(kx0
√

s) − e−x0
√

s]

× k2[ln(τs) + γE]√
s(1 + k2)2

. (B6)

1. Ĩ1(x0,x,s)

The expansion of this term for small x0 must be done with
care; when x0 acts as a regulator, one cannot simply expand in
it. We claim and show below that

Ĩ1(x0,x,s) = Ĩ A
1 (x0,x,s) + Ĩ B

1 (x,s) + O(x0), (B7)

with

Ĩ A
1 (x0,x,s) = −4e−x

√
s

x0
√

s

∫ ∞

−∞

dk

2π
[cos(kx0

√
s) − 1]

× k2 ln(1 + k2)

(1 + k2)2
, (B8)

Ĩ B
1 (x,s) = 4

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

× k2 ln(1 + k2)

(1 + k2)2
. (B9)

In order to prove this, we group the four terms in (B5) into
two-times-two terms; the first combination is

−4e−x0
√

s

x0

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

k2 ln(1 + k2)

(1 + k2)2

=
[
− 4

x0
+ 4

√
s + O(x0)

]

×
∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

k2 ln(1 + k2)

(1 + k2)2

= Ĩ div
1 (x0,x,s) + Ĩ B

1 (x,s) + O(x0), (B10)
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where the divergent contribution is

Ĩ div
1 (x0,x,s) = − 4

x0

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s]

× k2 ln(1 + k2)

(1 + k2)2
. (B11)

This expansion in x0 is justified since e−x0
√

s

x0
stands outside the

integrand, thus does not act as a regulator.
The second contribution to (B5) is

4

x0

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s] cos(kx0

√
s)

k2 ln(1 + k2)

(1 + k2)2

= 2

x0

∫ ∞

−∞

dk

2π
[cos(k(x + x0)

√
s) + cos(k(x − x0)

√
s)

− 2e−x
√

s cos(kx0
√

s)]
k2 ln(1 + k2)

(1 + k2)2
. (B12)

Since x 
 x0, we can Taylor-expand cos
(
k(x + x0)

√
s
)

and
cos

(
k(x − x0)

√
s
)
, leading to

4

x0

∫ ∞

−∞

dk

2π
[cos(kx

√
s) − e−x

√
s cos(kx0

√
s)]

× k2 ln(1 + k2)

(1 + k2)2
+ O(x0)

= −Ĩ div
1 (x0,x,s) + Ĩ A

1 (x0,x,s) + O(x0). (B13)

The contributions proportional to Ĩ div
1 cancel between (B10)

and (B13), and we arrive at the decomposition (B7).
We now treat the two contributions to (B7). The first

contribution Ĩ A
1 (x0,x,s) can be evaluated analytically. After

integration over k we find a Bessel function, which can be
expanded in x0 as

Ĩ A
1 (x0,x,s) = −4e−√

sx[ln(x0) + 1
2 ln(s)

+ γE − 1] + O(x0). (B14)

The second contribution Ĩ B
1 (x,s) can be evaluated using the

relation

k2

(1 + k2)2
ln(1 + k2) =

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

]
1

(1 + k2)u+1
.

(B15)

We rewrite Ĩ A
1 (x,s) as

Ĩ B
1 (x,s) = 4

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] ∞∫
−∞

dk

2π

eikx
√

s − e−x
√

s

(1 + k2)u+1
.

(B16)

It can be split into two parts,

Ĩ B
1 (x,s) = Ĩ1a(x,s) + Ĩ1b(x,s), (B17)

Ĩ1a(x,s) = −4 e−x
√

s

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] ∫ ∞

−∞

dk

2π

1

(1 + k2)u+1

= − [1 + ln(4)] e−x
√

s , (B18)

Ĩ1b(x,s)

=
[

d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

]
4
∫ ∞

−∞

dk

2π
eikx

√
s(1 + k2)−(u+1).

(B19)

To do the k integral in Ĩ1b(x,s), it is useful to introduce the
integral representation

(1 + k2)−(u+1) = 1

�(1 + u)

∫ ∞

0
dz zue−(1+k2)z. (B20)

This gives

Ĩ1b(x,s) = 4

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] [
1

�(1 + u)

×
∫ ∞

−∞

dk

2π
eikx

√
s

∫ ∞

0
dz zue−(1+k2)z

]
, (B21)

and performing the Gaussian integral over k yields

Ĩ1b(x,s) = 4

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] [
1

�(1 + u)

×
∫ ∞

0

dz

2
√

π
zu−1/2e− sx2

4z
−z

]
. (B22)

2. Ĩ2(x0,x,s)

Ĩ2(x0,x,s) can be calculated using residue calculus. We
use x0 < x to expand the expression, choosing every pole in
the half plane in which the corresponding exponential factor
converges. The result is

Ĩ2(x0,x,s) = γE + ln(τs)

2
√

sx0

[√
s(x0 + x) − 1

e
√

s(x+x0)

−
√

s(x − x0) − 1

e
√

s(x−x0)

]
. (B23)

Expanding for small x0 yields

Ĩ2(x0,x,s) = e−√
sx(2 − √

sx)[ln(τs) + γE] + O(x0).

(B24)

3. Summary of all terms contributing to Z̃B
+ (x0,x,s)

It is useful to reorganize

Z̃B
+(x0,x,s) = Ĩ A

1 (x0,x,s) + Ĩ1a(x,s) + Ĩ1b(x,s)

+ Ĩ2(x,s) + O(x0) (B25)

as the sum of three contributions:

Z̃B
+(x0,x,s) = J̃0(x0,x,s) + J̃1(x,s) + J̃2(x,s) + O(x0).

(B26)

The first term depends on x0,

J̃0(x0,x,s) = e−x
√

s [3 − 2γE + 2 ln(τ/2) − 4 ln(x0)] ,

(B27)

while the other two terms are

J̃1(x,s) = 4

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] [
1

�(1 + u)
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×
∫ ∞

0

dz

2
√

π
zu−1/2e− sx2

4z
−z

]
, (B28)

J̃2(x,s) = −x
√

se−x
√

s [γE + ln(τs)] . (B29)

C. ZB
+ (x,t): The inverse Laplace transform of Z̃B

+ (x,s)

The inversion of J̃0(x0,x,s) is done by observing that

Z̃
(0)
+ (x,s) = lim

x0→0

1

x0
Z+(x0,x,s) = e−√

sx . (B30)

This yields

J0(x0,x,t) = Z
(0)
+ (x,t)B0(x0), (B31)

where Z
(0)
+ (x,t) = x

2
√

πt3/2 e
− x2

4t , and

B0(x0) = 3 − 2γE + 2 ln(τ/2) − 4 ln x0. (B32)

The inverse Laplace transform of the second term can be
done directly,

J1(x,t) := L−1
s [J̃1(x,s)]

= 2

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] [
1

�(1 + u)

×
∫ ∞

0

dz√
π

zu−1/2e−zδ

(
x2

4z
− t

)]
. (B33)

We observe that δ( x2

4z
− t) = δ( x2

4t
− z)z/t and obtain

J1(x,t) = 2√
πt

e− x2

4t

[
d

du

∣∣∣∣
u=1

− d

du

∣∣∣∣
u=0

] (
x2

4t

)u+1/2

�(1 + u)
.

(B34)

Finally,

J1(x,t) = 1√
2πt

x√
2t

e− x2

4t

×
{

x2

2t

[
γE − 1 − ln 2 + ln

(
x2

2t

)]

− 2

[
γE + ln

(
x2

2t

)
− ln 2

] }
. (B35)

Introducing the variable z = x/
√

2t we have

J1(z,t) = z√
2πt

e−z2/2B1(z) = Z
(0)
+ (z,t)B1(z), (B36)

where Z
(0)
+ (z,t) = z exp(−z2/2)/

√
2πt [see Eq. (23)] and

B1(z) = (z2 − 2)(γE − 1 + 2 ln z − ln 2) − 2. (B37)

This completes the Laplace inversion of J̃1(x,s).

1. J̃2(x,s)

The Laplace inversion of the second term J̃2(x,s) is more
complicated, and we split it as

J̃2(x,s) = −[ln(τs) + γE]x
√

se−x
√

s

= x(ln τ + γE)
d

dx
e−x

√
s + x

d

dx
(ln s e−x

√
s)

= J̃2a(x,s) + J̃2b(x,s). (B38)

It is easy to perform the Laplace inversion of the first term:

J2a(x,t) = (ln τ + γE)
x√

4πt3

d

dx
xe− x2

4t

= (ln τ + γE)
x√

4πt3
e− x2

4t

(
1 − x2

2t

)
. (B39)

The inverse Laplace transform of the second term can be
written as

J2b(x,t) = x
d

dx
f (x,t), (B40)

where∫ ∞

0
e−stf (x,t)dt = e−x

√
s ln s = g̃1(s)g̃2(s), (B41)

g̃1(s) = √
se−x

√
s , (B42)

g̃2(s) = ln s√
s
. (B43)

The idea is to inverse-Laplace transform g̃1(s) and g̃2(s), and
then to calculate f (x,t) as convolution of g1(t) and g2(t), using
(41). These inverses are

g1(t) = 1

2
√

πt3

(
x2

2t
− 1

)
e− x2

4t , (B44)

g2(x,t) = − ln(4t) + γE√
πt

. (B45)

The convolution is

f (x,t) =
∫ t

0
g1(t ′)g2(t − t ′)dt ′ (B46)

= −
∫ t

0

dt ′

2πt ′3/2

(
x2

2t ′
− 1

)
e− x2

4t ′
ln(4[t − t ′]) + γE√

t − t ′
.

Using (B40) we have

J2b(x,t) = x2

4π

∫ t

0

dt ′

t ′5/2

[
x2

2t ′
− 3

]
e− x2

4t ′
ln(4[t − t ′]) + γE√

t − t ′
.

(B47)

Making a change of variables t ′ = ut , and using z = x/
√

2t ,
this gives

J2b(z,t) = z2

2πt

∫ 1

0

du

u5/2
√

1 − u

[
z2

u
− 3

]

× e− z2

2u [ln(4t) + γE + ln(1 − u)] . (B48)

The integral contains two pieces, which we note

J2b(z,t) = [ln(4t) + γE]F2(z) + F3(z)

t
. (B49)

The first piece is

F2(z) := z2

2π

∫ 1

0

du

u5/2
√

1 − u

(
z2

u
− 3

)
e− z2

2u

= e− z2

2
z√
2π

(z2 − 1). (B50)
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The second integral,

F3(z) := z2

2π

∫ 1

0

du

u5/2
√

1 − u
ln(1 − u)

(
z2

u
− 3

)
e− z2

2u ,

(B51)

is more difficult, but can be performed using MATHEMATICA.
A convenient substitution α = z2(1/u − 1) makes it possible
to write

F3(z) = e− z2

2
z√
2π

I(z), (B52)

where

I(z) = 1√
2πz2

∫ ∞

0

dα√
α

ln
( α

z2+α

)
(z2+α)(z2+α−3)e− α

2

= z4

6
2F2

(
1,1;

5

2
,3;

z2

2

)
+ π (1 − z2)erfi(z/

√
2)

− 3z2 +
√

2πe
z2

2 z + 2. (B53)

erfi is the imaginary error function,

erfi(x) := 2√
π

∫ x

0
dz ez2

. (B54)

The hypergeometric function 2F2(1,1; 5
2 ,3; z2/2) can be de-

fined by its series expansion

2F2

(
1,1;

5

2
,3;

z2

2

)
= 24

∞∑
n=0

n!(2z2)n

(2n + 4)!
. (B55)

The error function and the exponential function can be
combined in another converging series,

e
z2

2 z −
√

π

2

(
z2 − 1

)
erfi

( z√
2

)

= −
∞∑

n=0

21−nz2n+1

(2n − 1)(2n + 1)n!
. (B56)

While problems of numerical precision appear for y > 7, we
can use the asymptotic expansion

I(z) = 1 − γE − ln(2z2) + 1

2z2
− 1

2z4
+ 5

4z6
+ O(z−8).

(B57)

At z = 7, the relative numerical agreement of (B57) and (B53)
is about 10−6.

Note that
∫ ∞

0 dz ze−z2/2I(z) = 0; thus, I(z) does not
contribute to the normalization.

2. J2(x,t) = J2a(x,t) + J2b(x,t)

The sum J2(x,t) = J2a(x,t) + J2b(x,t) can be expressed
using the variable z = x/

√
2t as

J2(z,t) = Z
(0)
+ (z,t)B2(z,t), (B58)

where Z
(0)
+ (z,t) = ze−z2/2/(

√
2π t) and

B2(z) = (z2 − 1) ln(4t/τ ) + I(z). (B59)

D. Summary of all terms

In summary,

Z
(1)
+ (z,t) = Z

(0)
+ (z,t)[A(z) + B0(x0) + B1(z)

+B2(z) − a1 ln x0], (B60)

where Z
(0)
+ (z,t) = ze−z2/2/(

√
2πt) is defined in Eq. (23). The

terms in question are given in Eqs. (B3), (B32), (B37), and
(B59), and repeated here:

A(z) = (1 + ln τ )
(
z2 − 3

)
, (B61)

B0(x0) = 3 − 2γE + 2 ln(τ/2) − 4 ln x0, (B62)

B1(z) = (z2 − 2)(γE − 1 + 2 ln z − ln 2) − 2, (B63)

B2(z) = (
z2 − 1

)
ln(4t/τ ) + I(z). (B64)

Their sum is

A(z) + B0 + B1(z) + B2(z) − a1 ln x0

= {(z2 − 2)[ln(2z2t) + γE] − 2} + I(z)

− (4 + a1) ln x0 + c(t),

c(t) = ln(t) + 2 − 2γE. (B65)

The result is arranged such that the term in the curly brackets,
when multiplied by Z

(0)
+ (z,t), integrates to zero, as does

Z
(0)
+ (z,t) I(z). The propagator Z

(1)
+ (z,t) becomes independent

of x0 if a1 = −4, equivalent to φ0 = 1 − 4ε + O(ε2). As
expected, φ0 = φ [see Eq. (15)].

Since c(t) only contributes to the (time-dependent) normal-
ization, it does not enter the scaling function R+(y).

On the other hand, the only contribution to the normal-
ization of the propagator Z+(x,t) comes from c(t). Since
Z

(0)
+ (x,t) integrated over x equals 1, we conclude that the

survival-probability is

S(x0,t) = t−
1
2 [1 + ε(2 − 2γE + ln t)] ∼ t−θ ,

(B66)
θ = 1

2
− ε + O(ε2),

in agreement with θ = 1 − H . This is a nontrivial check of
our calculations.

APPENDIX C: SCALING ARGUMENTS

Consider a process x(t ′), starting at x(0) = x0, and arriving
at x at time t , without having crossed zero, that is, x(t ′) > 0
for all t ′ < t . Denote Z+(x0,x,t) its arrival probability density
at x. Further denote

S(x0,t) :=
∫ ∞

0
dx Z+(x0,x,t) (C1)

the survival probability or the persistence up to time t . At late
times and fixed x0, for many processes, this survival probability
decays algebraically,

S(x0,t) ∼ t−θ , (C2)
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where θ is the persistence exponent [3]. Let us now assume
that the process x(t) is self-affine. This simply means that
the process is characterized by a single growing length scale
x ∼ tH , where H is the Hurst exponent of the process. For
example, ordinary Brownian motion is a self-affine process
with H = 1/2. Since the only length scale is x ∼ tH , the
survival probability S(x0,t) is a function of only the scaled
variable y0 = x0/tH , that is, S(x0,t) = G

(
x0
tH

)
. In order that

S(x0,t) ∼ t−θ for large t and fixed x0, the scaling function
G(y), for small y, must behave as

G(y0) ∼ y
φ

0 , where φ = θ

H
. (C3)

We next define px0 (x,t) as the conditional probability
density of finding the walker, given that it has not been
absorbed at any previous time:

px0 (x,t) = Z+(x0,x,t)∫ ∞
0 dx Z+(x0,x,t)

= Z+(x0,x,t)

S(x0,t)
. (C4)

Note that following Eq. (22), the probability distribution of a
nonadsorbed particle is for x0 → 0:

P+(x,t) = p0(x,t) = lim
x0→0

Z+(x0,x,t)∫ ∞
0 dx Z+(x0,x,t)

. (C5)

We anticipate the following scaling form for Z+(x0,x,t):

Z+(x0,x,t) = 1

tH
F

( x0

tH
,

x

tH

)
. (C6)

In terms of the scaling variables y = x/tH and y0 = x0/tH

we get from (C4) and (C6)

F (y,y0) = G(y0)py0 (y),

(C7)

where py0 (y) is the conditional probability density (C4)
expressed in terms of the rescaled variables. In the long-time
limit, y0 → 0 and F (y,y0) can be factorized as

F (y,y0) ∼ y
θ/H

0 p0(y) = y
θ/H

0 R+(y).

(C8)

Let us now consider the limit y → 0 and suppose that p0(y) =
R+(y) ∼ yφ . The process is time-reversible invariant, since its
increments are stationary; that is, a path from x0 to x forward
in time plays the same role as a path from x to x0 backward
in time. As a consequence, F (y,y0) is a symmetric function,
F (y,y0) = F (y0,y). Factorization of probabilities for x and x0

to zero and symmetry thus implies F (y,y0) ∼ (y0y)θ/H and it
follows the proposed scaling relation φ = θ/H .
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