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Within an exact microcanonical (MC) ensemble, we study the nonanalyticities of thermodynamic functions
research in finite noninteracting Bose gases in traps. The results show that there exists a rich oscillatory
behavior of MC thermodynamical quantities as a function of a system’s total energy E (e.g., nonmonotonous
temperature, nonanalytic and negative specific heats, and microscopic phase transitions). The origin of these
nonanalyticities comes directly from the inverted curvature entropy S(E) with respect to E and the behaviors
are different in different trap geometries, boundary conditions, and energy spectrum configurations. Contrary to
the usual grandcanonical and canonical results, there exists Bose condensation and the nonanalyticities in the
two-dimensional finite noninteracting Bose systems with different traps. We also discuss the critical temperature
dependence on the particle number N with different ensembles, traps, and boundary conditions. In large enough
N , almost all the results of the thermodynamical quantities become smooth, which are similar to the usual
canonical behaviors. We emphasize the finite-size effects on the MC entropy change, which should, in principle,
be observable in suitably designed experiments of the small systems.
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I. INTRODUCTION

Phase transition as a natural phenomena has been studied
thoroughly during the past century. Its characteristics are usu-
ally associated with the nonanalyticity of the thermodynamic
functions in grandcanonical and canonical ensembles, but
occurs in the thermodynamic limit only corresponding to the
infinite value of particle number N , system volume V , and total
energy E with the particle number density N/V and energy
per particle E/N remain constant. During the past decades
the rapid experimental progress led to an increasing interest
in the studying of thermodynamic properties of small systems
[e.g., sodium clusters [1,2], two-dimensional (2D) Coulomb
clusters in dusty plasmas [3,4], cluster fission [5], Bose-
Einstein condensation (BEC) in magnetooptical traps [6], and
so on]. But the canonical and grandcanonical frameworks are
inadequate as the basis to understanding the phenomena in
these small systems. Thus we turn to the microcanonical (MC)
ensemble which is usually used to investigate the energetically
isolated system and the entropy S is the characteristic function.
Based on the Boltzmann entropy S = kB ln �N (E) where
�N (E) [7–9] is the number of microstates in a small energy
interval [E,E + �E], the temperature is obtained from the
thermodynamic relation T dS = dE. Although the analytical
and numerical calculations of MC quantities have been used
frequently for many years to study the properties of the finite
systems [10–12], they rely on the arbitrary energy band �E.
Therefore we adopt the Hertz entropy [13] within an energy
sphere.

In recent years many works have shown that the MC
thermodynamic functions exhibit nonanalytic behavior both
in experiments [1,14,15] and in theory at the finite N classical
[16–18] and quantum [19,20] systems. These nonanalyticities
come from the inverted curvature entropy S(E) with respect
to E [20–22]; the origin is attributed to both the interaction
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[12,14,16,21,23] and the topology [24–26]. Apart from the
nonanalyticities, some microscopic phase transitions have
been predicted in classical small systems [14,21]. They
originate from stationary points in energy functions [17,26,27].
However, the finite-size effects on the nonanalyticities of
thermodynamic functions have not been given so far for finite
noninteracting quantum gases. Note that such nonanalyticities
occur for a perfectly smooth Hamiltonian, so they are not
introduced artificially. Except for the interaction, stationary
points of the energy function, and topology we expect
that the trap geometries, boundary conditions, and energy
spectrum configurations also dominate the nonanalyticities of
thermodynamic functions for a thermally isolated system with
a regulated energy injection. There still exist some open ques-
tions, such as how the nonanalytic thermodynamic functions
can occur in small systems and how can these phenomena be
interpreted even for the simplest ideal gas. In the MC ensemble,
little is known about the analyticity properties of the MC
entropy function even for the finite noninteracting gases. In
this article, based on the exact recurrence relation for the MC
partition function for finite and isolated noninteracting Bose
gases in traps with different boundary conditions, we focus
on the properties of the thermodynamic functions without the
continuous spectrum approximation and thermodynamic limit.
We find the presence of a series of inverted curvatures of the
MC entropy function and the occurrence of the temperature
and specific heat oscillations, including microscopic phase
transitions and negative specific heats, when the energy
spectrum has various configurations in d-dimensional confined
spaces. These novel phenomena show quite different behaviors
with various three-dimensional (3D) single-particle energy
spectrum configurations when the systems are confined both
in a rectangular box with the Dirichlet and periodic boundary
conditions and in an anisotropic harmonic trap. We suggest
that the entropy change (surface entropy) could be detected in
the small system.

The paper is organized as follows. In Sec. II we briefly
introduce the recurrence relation for the MC partition function
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and single-particle energy spectrum in different traps with
various configurations, and derive the discrete thermodynamic
quantities in the MC ensemble. In Sec. III we take the
numerical analysis on the MC entropy, temperature, and
specific heat of the finite noninteracting Bose gases; study their
nonanalyticities due to the different trap geometries, boundary
conditions, and energy spectrum configurations; and discuss
the particle-number-dependent entropy change and critical
temperature. Conclusions are made in Sec. IV.

II. EXACT PARTITION FUNCTIONS AND
THERMODYNAMIC QUANTITIES

To study the thermodynamic properties of the finite system,
we have to know the partition function first. Let ZN and
�N (E) be the canonical and MC partition functions with
the independent system variables (N,T ,V ) and (N,E,V ),
respectively, one has

ZN =
∑
E

e−βE�N (E), (1)

with inverse temperature β = 1/(kBT ). There is a powerful
recurrence relation for the canonical partition function [28–31]

ZN = 1

N

N∑
j=1

(±)j+1zjZN−j , (2)

for the ideal bosonic (+) and fermionic (−) systems with
Z0 = 1, and zj = ∑

s exp(−jβεs) being the single-particle
partition function with the energy spectrum εs . Equation (2)
appeared much earlier in the literature [32–34]. The recurrence
formula of the exact MC partition function is [29]

�N (E) = 1

N

N∑
j=1

(±)j+1
∑

s

�N−j (E − jεs), (3)

with �0(x) = δ0,x , where s stands for quantum numbers which
labels a given single-particle state. There are many kinds
of methods to derive this exact MC partition function, such
as combinatorial techniques developed earlier in statistical
nuclear fragmentation models [35] and a counting statistics
method [28]. For the fixed N and E, all �N−j (E − jεs)(j =
1,2, . . . ,N ) can be calculated within the conditions �0(0) = 1
and �0(x �= 0) = 0. When we consider a boson system with
a discrete spectrum εs(s = 0,1,2, . . .), it is important to point
out that the total energy E must be some discrete value in
keeping conservations of N and E. For example, N = 1,
according to Eq. (3), one has �1(E) = ∑

s �0(E − εs) =
δE,εs

. This means that the microstate number could equal
1 when the energy E is equal to a single-particle one.
For N = 2, one has �2(E) = 1

2

∑
s[�1(E − εs) + �0(E −

2εs)] = 1
2

∑
s,s

′ �0(E − εs − εs
′ ) + 1

2

∑
s �0(E − 2εs). This

implies that the two-particle system could be made up only
by two particles in the same state and in different states. So we
can calculate the microstate numbers with N particles through
the recurrence relation Eq. (3) and the microstate number will
be added when the energy E = nNεs , with nN being some
integers.

The N -body system’s energy is given by the Hamiltonian
H = ∑∞

s=0 εsns with the occupation numbers being assumed

values of ns = 0,1,2, . . . . The primary characteristic function
of the MC ensemble is the Boltzmann shell entropy S =
kB ln �N (E) [20,36–39], but there exists the arbitrary energy
band �E within the energy sphere shell E � H � E + �E.
Even if, in the classical MC ensemble, this entropy function
is inappropriate for systems in one-dimensional (1D) and
two-dimensional (2D) spaces [18,36]. In the quantum MC
ensemble with the box trapped potential, our calculated results
show that this entropy is a high, frequently discontinuous
function of the total energy E and the MC temperature will
be negative at the small energy region. So the shell entropy
is inapposite and a Hertz bulk entropy is reasonable (see the
review in Ref. [13] for the employment of the bulk entropy).
We need to adopt the partition function �N (E) and the bulk
entropy SN (E,V ) within the sphere 0 � H � E as

�N (E) =
E∑

Es=0

�N (Es),SN = kB ln �N (E), (4)

where Es is all possible energy of the system. If SN is a
continue function of E, the temperature T , and specific heat
CN in the MC ensemble are obtained by [20,36–39]

1

T
= ∂SN

∂E
, CN =

(
∂T

∂E

)−1

= − (∂SN/∂E)2

∂2SN/∂E2
. (5)

For the given physical system under consideration, all
thermodynamical quantities are very sensitive to the energy
spectrum εs .

We consider a noninteracting N -particle Bose gas system
confined in a d-dimensional rectangular box with sides Lj and
volume V = Ld . Here d = 2,3 will be considered below and
L = (

∏d
j=1 Lj )1/d is the geometry average of the sizes. We

have Lj = L
lj

(
∏d

i=1 li)1/d with any values of lj for various
geometry sizes of the trapping box, keeping the constant
volume V = Ld . With Dirichlet boundary conditions (i.e.,
with impenetrable walls), the wave functions have to vanish at
the walls of the container, and the single-particle spectrum is
given by

ε(Dc)
s ({lj }) = ε

(Dc)
0

(
d∏

i=1

li

)−2/d d∑
j=1

l2
j s

2
j , (sj = 1,2,3, . . .),

(6)

where ε
(Dc)
0 = π2h̄2

2mL2 and the ground-sate energy is 3ε
(Dc)
0 . With

periodic boundary conditions, the single-particle energy level
is

ε(pc)
s ({lj }) = ε

(pc)
0

(
d∏

i=1

li

)−2/d d∑
j=1

l2
j s

2
j ,

(sj = 0, ± 1, ± 2, ± 3, . . .), (7)

with ε
(pc)
0 = 2π2h̄2

mL2 = 4ε
(Dc)
0 being the first excitation energy

since the ground-state energy vanished. Although the single-
particle spectra Eqs. (6) and (7) look very similar, the
constant ε

(Dc,pc)
0 and the allowed values of sj are different.

In the Dirichlet boundary condition, sj cannot be zero, this
will result in a great effect on the microstate numbers.
In a d-dimensional anisotropic harmonic trapping potential,
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U ({xj }) = 1
2m

∑d
j=1 ω2

j x
2
j with ωj the trap frequency in the

xj direction. Let ω = (
∏d

j=1 ωj )1/d be the geometry average of
the trapping frequencies. From ωlLj = constant we have V ∝
ω−d and ωj = ωlj (

∏d
i=1 li)−1/d . The single-particle energy

spectrum reads

ε(ho)
s ({lj }) = ε

(ho)
0

(
d∏

i=1

li

)−1/d

×
d∑

j=1

lj

(
1

2
+sj

)
, (sj = 0,1,2, . . .), (8)

with ε
(ho)
0 = h̄ω.

As mentioned above, the MC total energy is discrete
without both the continuous spectrum approximation and the
thermodynamic limit in small systems. Due to the strong
constraints of N = ∑∞

s=0 ns and E = ∑∞
s=0 nsεs in the MC

ensemble, the system’s total energy must be some discrete
values like En = nε

(Dc,pc,ho)
0 with n being the given integer,

which have been included in the recursion formula (3). It is
worth pointing out that the energy level numbers are infinite,
but we only use finite energy levels to calculate entropy.
Obviously the entropy is also a discontinuous function of the
total energy, and we only get some discrete data of SN (En).
Thus we have to calculate the thermodynamic functions using
the difference instead of the differential

1

T (En+1)
= SN (En+1) − SN (En)

En+1 − En

,

(9)

CN = En+1 − En

T (En+1) − T (En)
.

Within the single-particle spectra Eqs. (6), (7), and (8) in
the different traps, the single-particle energy can only be the
multiple of ε

(Dc,pc,ho)
0 . Since the system’s total energy is also

the multiple of ε
(Dc,pc,ho)
0 , we can calculate the thermodynamic

functions using the difference instead of the differential,
and the least common multiple (difference interval) is just
ε

(Dc,pc,ho)
0 . Of course, every discrete point En is always the

stationary point of the system energy.

III. NUMERICAL ANALYSIS OF THERMODYNAMICS

According to the exact recurrence formula Eqs. (3) and
(4) of the MC partition functions, we now calculate the MC
thermodynamic functions Eqs. (4) and (9). Because the total
energy is discrete, the entropy functions are also discrete
data in the MC ensemble. The calculated data are shown in
Fig. 1 for N = 30 with all lj = 1 for a simple cubic box
and isotropic harmonic traps. Figures 1(a), 1(b), and 1(c)
are for the simple cubic box trap with Dirichlet boundary
conditions. In Fig. 1(a), the entropy function exhibits a series
of convex and concave intruders [as magnified in Fig. 1(d) and
explained below]. These intruders result in strong temperature
fluctuations across the low-energy region [as shown in Fig. 1(b)
and its magnification in Fig. 1(e)] and the specific heat
oscillations [as shown in Fig. 1(c)], especially the negative
values. The traditional smooth phase transition at ec is shown
in Fig. 1(f). Figures 2(a), 2(b), and 2(c) are for the simple

FIG. 1. (Color online) Three thermodynamic quantities vs. total
energy per particle in units of ε

(Dc)
0 for N = 30 bosons confined

in a simple cubic box trap with Dirichlet boundary conditions.
(a) MC entropy SN per particle in units of kB . (b) MC temperature T in
units of the noninteracting-gas thermodynamic transition temperature
T (Dc)

c . (c) MC specific heat CN per particle in units of kB . (d) The
magnification of (a) showing the normal curvature (blue circle, dashed
line) and the inverted curvature (red square, solid line). (e) The
magnification of (b) showing the fluctuation of the caloric curve.
(f) The magnification of (c) showing a smooth peak of the curve of
CN in the vicinity of ec = Ec/(Nε

(Dc)
0 ).

cubic box trap with periodic boundary conditions (dashed blue
lines) and for the isotropic harmonic trap (solid red lines). The
nonanalyticities do not occur in this case due to the isotropic
traps. They only have the smooth caloric temperature curves in
Fig. 2(b) and smooth phase transitions at e

(pc,ho)
c in Fig. 2(c).

Here the 3D noninteracting-gas thermodynamic transition
temperatures are T

(Dc,pc)
c = 2πh̄2[N/V ζ (3/2)]2/3/mkB and

T (ho)
c = h̄ω[N/ζ (3)]1/3/kB with ζ (ν) the Riemann zeta

function.
From Figs. 1 and 2 we can see, in the MC ensemble, the

results for the simple cubic box trap with Dirichlet boundary
conditions are totally different from the ones both for the
simple cubic box trap with periodic boundary conditions
and for the isotropic harmonic trap, the temperature is no
longer increasing monotonously along with the energy [see
Fig. 1(b)], and there exist nonanalytic behaviors, microscopic
phase transitions, and negative specific heats [see Fig. 1(c)],
some of which have been found both in the experiments and
in other MC systems [14,15,18]. What is the most interesting
are the fluctuations of T and CN , in which the oscillations of
temperature are generic and shared by all physical systems
that are exhibited in the MC ensemble, and resulting in the
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FIG. 2. (Color online) Three thermodynamic quantities vs. total
energy per particle in units of ε

(pc,ho)
0 for N = 30 bosons confined in

a simple cubic box trap with periodic boundary conditions (dashed
blue lines) and a harmonic trap (solid red lines). (a) MC entropy S

per particle in units of kB . (b) MC temperature T in units of the
noninteracting-gas thermodynamic transition temperatures T (pc,ho)

c .
(c) MC specific heat CN per particle in units of kB .

named microscopic phase transitions at e1, e2, and e3. Math-
ematically, the microscopic phase transitions arise whenever
the entropy grows nonsmoothly in the vicinity of some energy
values.

Both in the simple cubic box trap with periodic boundary
conditions and in the isotropic harmonic trap, the single-
particle levels are ε

(pc,ho)
ν = νε

(pc,ho)
0 with ν being integers. So

the total energy of the system with N particles is En = nε
(pc,ho)
0

with n also being integers. Because of the uniformity of
the single-particle levels, the amount of the states increases
exponentially with the increase of the total energy. Therefore
the curve of the entropy SN is smooth in a concave curvature.
But in the simple cubic box trap with the Dirichlet boundary
conditions, the single-particle levels are ε(Dc)

ν = νε(Dc)
gs with

ε(Dc)
gs = 3ε

(Dc)
0 being the ground-state energy. We know that

ν are either integers like 1,2,3,4,6,. . ., or some fractions like
11
3 , 14

3 , 17
3 , . . . . So the system’s total energy is En = nf ε(Dc)

gs

with nf either being integers or being a third of the integers.
In the latter case, the single-particle levels are not uniform.
Consequently, the number of levels with fraction ν is smaller
than those with integer ν, and the amounts of the microstates
with total energy of fraction nf are smaller than those with the
integer nf . The entropies of the corresponding microstates are
smaller accordingly, which we can see in Fig. 1(d) (the blue
circles a, b, and c with integers nf representing the normal SN

values while the red squares d, f, h, and q with fractions nf have
smaller SN values than the normal values at the corresponding
En). In Fig. 1(d), the (blue) dotted line (i.e., line segment abc) is
a concave curve, like the curves in Fig. 2(a) generally, thus the
specific heats are always positive if we use difference intervals
between ab and bc. But the (red) solid line consists of two real
convex curves (i.e., the line segments adfb and bhqc) and they

are convex curves, while the line segment fbh is also a concave
curve. The tiny entropy difference results in the curve being
convex and concave in the different regions. So the specific
heats are positive and negative alternately, which is shown in
Fig. 1(c). When increasing SN a little at the red square for
decreasing SN a little at the blue circle b, the caloric curve will
become flat in this energy region [as shown in Fig. 1(b)]. This
leads to infinite negative and positive specific heats in different
regimes, which means the microscopic phase transitions occur
in positions of energies e1, e2, and e3, as shown in Fig. 1(c).
Every nonanalyticity point at En is always the stationary point
of the system energy.

The nonanalytic behaviors are important and basic char-
acteristics of the finite noninteracting Bose gases. To study
the properties of the nonanalyticities, we consider the 3D box
traps in different geometry sizes with different energy level
configurations under the Dirichlet boundary conditions. For
simplification, we take l1 = 1, l2

2 = l, and l2
3 = 1

l
with a single

geometry parameter l. Figure 3 shows the specific heat curves
for N = 30 with l = 2,3, . . . ,7. In Figs. 3(a), 3(b), and 3(e)
for l = 2, 3, and 6, the numbers of peaks are two, three, and
four, respectively, but Figs. 3(c), 3(d), and 3(f) for l = 4, 5,
and 7 show the complicated behaviors (i.e., there exist many
oscillations and microscopic phase transitions). Besides the
number of peaks, the heights and positions of the peaks are
also different with different configurations. Some peaks have
infinite positive and finite negative values while other peaks
have finite positive and infinite negative values. Generally
speaking, the heights of the peaks increase with increasing
system energy.

For the noninteracting Bose gases, the microscopic os-
cillations of MC thermodynamic quantities occur in special
kinds of energy level configurations that are determined only
by the geometry property of the system. The different traps
with different boundary conditions result in different energy
level configurations. So the boundary types and conditions
are a key point. Generally, it is natural to expect that if
there is no boundary, there is no boundary effect at all. But
even in the periodic boundary conditions, the structures of
a discrete spectrum with various energy level configurations
still have an effect on the properties of the finite system.
Figure 4 shows the specific heat curves of different geometry
parameters for the 3D box traps with periodic boundary
conditions. For (l2

1,l
2
2 ,l

2
3) = (1,1,2), Fig. 4(a) still does not

show any oscillations except for at very low energy. Of course,
it only shows a smooth phase transition like in Fig. 2(c).
For other geometry parameters, Figs. 4(b), 4(c), and 4(d)
show the complicated oscillation behaviors in small energy
regions. Figures 4(b) and 4(d) with similar behaviors show the
nonanalyticities and microscopic phase transitions, especially
the infinite negative specific heats, and Fig. 4(c) is similar to
Figs. 3(c), 3(d), and 3(f).

We all know that there do not exist any phase transitions for
the 2D Bose system in the thermodynamic limit. But in small
2D Bose systems with finite particles and different boundary
conditions, the results are indeed not the same with those in
the thermodynamic limit. Figure 5 are our calculated results
on the specific heats for N = 30 bosons trapped in a 2D box of
different sizes with different boundary conditions. Figure 5(a)
is the CN curve in the square box trap under the Dirichlet
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FIG. 3. (Color online) MC specific heat CN per particle in the
units of kB vs. total energy per particle in units of ε

(Dc)
0 for N = 30

bosons confined in a rectangular box trap under Dirichlet boundary
conditions with different geometry parameters (1,l,1/l): (a) l = 2,
(b) l = 3, (c) l = 4, (d) l = 5, (e) l = 6, and (f) l = 7.

boundary conditions. It shows that there also exist many small
oscillations, three microscopic phase transitions, and a small
smooth peak of CN at ec (see the inset). This is similar to the
3D Bose systems. The small peak indicates that there exists a
smooth phase transition in 2D small systems. Figure 5(b) is the
CN curve in the square box trap under the periodic boundary
conditions. Although there exists a small smooth peak in the
low-energy region, it is not like the peak in Fig. 5(a). This
is because the small smooth peak will vanish when particle
numbers go to infinity. Of course, there exist CN fluctuations
in the low-energy region, but not negative specific heats. The
high-energy behaviors are also different with the different
boundary conditions [see the insets of Figs. 5(a) and 5(b)].
Figures 5(c) and 5(d) show clearly the oscillations of the
specific heats (including the microscopic phase transitions and
negative specific heats) with the 2D rectangular box of sides
(21/4,2−1/4)L and [(5/4)1/4,(4/5)1/4]L under the Dirichlet and
periodic boundary conditions, respectively. Obviously, from
Figs. 3(c), 3(d), 3(f), 4(b), 4(c), 4(d), and 5(d) we can see
that the complicated oscillation behaviors occur at the relative
small-energy regions.

We also know that all the curves tend to be the thermo-
dynamic limit when N goes to infinity. Figure 6(a) shows the
entropy SN as a function of N in the MC ensemble in the simple
cubic box trap with the Dirichlet (solid red line) and periodic
(dashed blue line) boundary conditions. Here we take the total
energy per particle E

N
= f π2h̄2

2m
(N

V
)2/3 as a constant at a normal

FIG. 4. (Color online) MC specific heat CN per particle in units
of kB vs. total energy per particle in units of ε

(pc)
0 for N = 30 bosons

confined in a rectangular box trap with periodic boundary conditions.
Geometry parameters (l2

1 ,l
2
2 ,l

2
3 ) are chosen as (a) (1,1,2), (b) (2,5,7),

(c) (3,5,6), and (d) (3,5,7).

state when the particle density N/V keeps constant with
f = 1(4) under the Dirichlet (periodic) boundary conditions.
When N � 1 the entropy approaches the thermodynamic
limit of s∞ = 5Li5/2(z)/2Li3/2(z) − ln z = 3.665NkB [see the
dotted gray line in Fig. 6(a)]. Here the fugacity z = 0.2726 is
the solution of the equation 3Li5/2(z) = 2πLi5/3

3/2(z) at fixed

E/N and T/T
(Dc,pc)
c = [Li3/2(1)/Li3/2(z)]2/3 = 4.199 with

Liν(z) being the polylogarithm function. In the thermodynamic
limit, the entropy per particle s∞ = SN/NkB is a macroscopic
extensive control parameter for N and V going to infinity,
but keeping N/V to a constant. However, in the finite

FIG. 5. (Color online) MC specific heat CN per particle in the
units of kB vs. total energy per particle in the units of ε

(Dc,pc)
0 for

N = 30 bosons confined in a two dimensional box trap with the
Dirichlet [(a) and (c)] and periodic [(b) and (d)] boundary conditions.
Geometry parameters (l2

1 ,l
2
2 ) are chosen as (a) (1,1), (b) (1,1),

(c) (1,2), and (d) (4,5).
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FIG. 6. (Color online) (a). Entropy SN per particle in units
of kB vs. particle number N in the MC ensemble in the simple
cubic box trap with the Dirichlet (solid red line) and periodic
(dashed blue line) boundary conditions. (b). The transition temper-
ature Tc(N ) in units of the 3D noninteracting-gas thermodynamic
transition temperatures T (Dc,pc)

c = 2πh̄2[N/V ζ (3/2)]2/3/mkB and
T (ho)

c = h̄ω[N/ζ (3)]1/3/kB vs. particle number N in the MC and
canonical ensembles in the simple cubic boxes with the Dirichlet and
periodic boundary conditions and in the isotropic harmonic trap.
Solid red lines of MCDc, MCpc, and MCho present in the MC
ensemble and dashed blue lines of CDc, Cpc, and Cho present in
the canonical ensemble with the Dirichlet and periodic boundary
conditions and in the harmonic trap, respectively.

system, the entropy SN is a naturally nonextensive quantity
and entropy per particle sN includes the interesting finite-
size information. The entropy change sN − s∞ presents the
surface entropy due to the boundary effects. We can see in
Fig. 6(a) that the surface entropy increases with the decrease
of N . This entropy change should be observable in suitably
designed experiments for fixed E/N and N/V of the finite
systems.

Finally, having obtained the canonical partition function
Eq. (2) with the corresponding spectra for the systems under
consideration, we can determine the canonical specific heat
according to CN = kBT ∂2

∂T 2 (T ln ZN ). We define the maxi-
mum specific heat corresponding temperature as the canonical
transition temperature. We have compared the transition
temperatures in the different ensembles with different traps and
boundary conditions. The results have been shown in Fig. 6(b).
We can see that the transition temperatures in the canonical
ensemble are a little higher than the ones in the MC ensemble,
and the difference is larger with the Dirichlet boundary
conditions. With increasing N , the transition temperatures with
the Dirichlet boundary conditions in the canonical ensemble
decrease faster than those in the MC ensemble. These indicate
the nonequivalence between the two ensembles, especially
in the finite systems with different physical boundaries.
When particle number N increases to infinity the transition
temperatures approach the ones of the thermodynamic limits

T
(Dc,pc)
c and T (ho)

c = h̄ω[N/ζ (3)]1/3/kB [see the dotted gray
line in Fig. 6(b)].

IV. CONCLUSION

We have investigated the nonanalyticities of the MC
thermodynamic functions in the small noninteracting Bose
systems confined both in the d-dimensional rectangular boxes
with the Dirichlet and periodic boundary conditions and in
the d-dimensional anisotropic harmonic traps. We have shown
that there exist the nonmonotonous temperature dependence
on E, nonanalytic and negative specific heats, and microscopic
phase transitions. These novel behaviors are due to the finite
trap-size effects and come from a series of inverted curvature
concave intruders in the bulk entropy function SN (E) for
fixed N and V . Their microscopic origin is the various
single-particle energy spectrum configurations with different
trap types and sizes, which is related to the configuration space
topology and the stationary point in the energy function. It
is not a surprise that there exist BEC in the 2D small ideal
Bose system which could not occur in the thermodynami-
cal limit. The behaviors of the Tc(N ) curve have obvious
differences between the MC and canonical ensembles for
small systems. Almost all the results of the thermodynamical
quantities approach the thermodynamical limit for large
enough N .

For the finite noninteracting Bose gases trapped in different
potentials with different boundary conditions, we do not
take the continuous spectrum approximation and this is not
the thermodynamic limit. The discrete entropy per particle
sN = SN (E,V ; {lj })/NkB as a function of MC variables
(N,E,V ) and various energy spectrum configurations {lj }
in the d-dimensional spaces has included all information of
the thermodynamical properties. We emphasize the finite-size
effects on the MC entropy change, which should, in principle,
be observable in suitably designed experiments of the finite
systems for fixed E/N and N/V . In the experiments with
small particle numbers, very low densities, and finite volume,
we should be able to detect the oscillating behaviors both in
temperature and in specific heats like in the interacting system.
To generalize this approach to interacting gas is of further
interest. For the small systems with finite energy levels, novel
and rich phenomena will occur. This is a work in progress and
will be published elsewhere.
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