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Generalized Langevin equation with multiplicative noise: Temporal behavior
of the autocorrelation functions
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The temporal behavior of the mean-square displacement and the velocity autocorrelation function of a particle
subjected to a periodic force in a harmonic potential well is investigated for viscoelastic media using the
generalized Langevin equation. The interaction with fluctuations of environmental parameters is modeled by a
multiplicative white noise, by an internal Mittag-Leffler noise with a finite memory time, and by an additive
external noise. It is shown that the presence of a multiplicative noise has a profound effect on the behavior of
the autocorrelation functions. Particularly, for correlation functions the model predicts a crossover between two
different asymptotic power-law regimes. Moreover, a dependence of the correlation function on the frequency
of the external periodic forcing occurs that gives a simple criterion to discern the multiplicative noise in future
experiments. It is established that additive external and internal noises cause qualitatively different dependences
of the autocorrelation functions on the external forcing and also on the time lag. The influence of the memory
time of the internal noise on the dynamics of the system is also discussed.
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I. INTRODUCTION

In complex systems an ensemble of conditions far from
thermal equilibrium and the influence of environmental fluctu-
ations may give rise to unexpected phenomena, which are ruled
out by the second law of thermodynamics under equilibrium
conditions [1–3]. Among them we can mention the ratchet
effect [1,4], stochastic resonance [3,5], noise-induced phase
transitions in spatially extended systems [2,6], noise-enhanced
stability [7], and hypersensitive response [8], to name a few.
Particularly, the study of anomalous diffusion in complex or
disordered media has achieved substantial progress during
recent years [9–16]. It is well known that the conventional
Brownian motion theory cannot account for anomalous dif-
fusion processes in which the mean-square displacement is
not proportional to time. Examples of such systems are
supercooled liquids, glasses, colloidal suspensions, polymer
solutions [12,13], viscoelastic media [14], and amorphous
semiconductors [15]. Even anomalous diffusive dynamics of
atoms in biological macromolecules and intrinsic conforma-
tional dynamics of proteins can be subdiffusive [9,16].

There are several approaches to describe anomalous diffu-
sion processes, where the dynamical origin of the phenomenon
is considered as a nonlocality, either in space or in time [10].
One of the possibilities for modeling such processes can be
formulated in the framework of the generalized Langevin
equation (GLE) [9–11,17]. The dynamical equation for such
systems is in most cases obtained by replacing the usual
friction term by a generalized friction term with a power-
law-type memory [9–11,17]. Physically such a friction term
has, due to the fluctuation-dissipation theorem, its origin in
a non-ohmic thermal bath whose influence on the dynamical
system is described with a power-law correlated additive noise
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in the GLE [9,10]. In spite of the fact that a GLE with a
power-law-type friction kernel is very useful for modeling
anomalous diffusion processes, the corresponding power-law
correlated noise has some nonphysical properties, e.g., absence
of a characteristic memory time and infinite variance. Thus,
recently Viñales and Despósito have introduced a more
general noise with a Mittag-Leffler correlation function (called
Mittag-Leffler noise) in the GLE [18]. Notably, for certain
values of the parameters that characterize this noise one
can produce a power-law correlation function, a standard
Ornstein-Uhlenbeck noise with an exponential correlation
function, and a white noise. Although the behavior of the
GLE with an additive noise for a particle in viscoelastic
media under the influence of a trapping harmonic potential
has been investigated in some detail [17–19], it seems that
analysis of the potential consequences of interplay between
a multiplicative noise and memory effects is still rather rare
in literature [20,21]. This is quite unjustified in view of the
fact that the importance of multiplicative fluctuations and
viscoelasticity for biological systems, e.g., living cells, has
been well recognized [14,22].

Thus motivated, the authors of [20] have recently consid-
ered a fractional oscillator with a power-law memory kernel
subjected to a harmonic potential as well as to an external
periodic force. The influence of the fluctuating environment
was modeled by a multiplicative white noise and by an
additive noise. This model demonstrates that an interplay
of multiplicative noise and memory can generate a variety
of cooperative effects, such as memory-enhanced energetic
stability and a resonance-like behavior of the variance and
signal-to-noise ratio (SNR) as functions of the memory
exponent. However, in this work the authors have confined
themselves to investigating the dependence of the variance
and SNR on the memory exponent, and thus the possible
influence of a multiplicative noise on the temporal behavior
of the autocorrelation functions of the output signal is not
considered.

It is of interest, both from theoretical and experimental
viewpoints, e.g., in active and passive microrheology
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experiments to study the mechanical properties of the
intracellular environment [23–25], to know the behavior of the
autocorrelation functions of the output in the case of similar
model systems. We emphasize that in experiments information
about the observed dynamical behavior of particles is usually
extracted from the mean-square displacement and/or from the
velocity autocorrelation function [19,23–25].

Motivated by the results of [20] and [19,23], the present
paper considers a model similar to the one presented in [20],
except that the power-law-type friction kernel in the GLE
is replaced with a Mittag-Leffler memory kernel. So in the
present paper we considerably generalize the model used
in [20], increasing the dimension of the system parameter space
by one. Namely, in our calculations we allow the characteristic
memory time of the memory kernel to take any values. This
extra degree of freedom can prove useful in modeling the
viscoelastic properties of real media.

The main purpose of this paper is to provide exact formulas
for the analytic treatment of the dependence of the mean-
square displacement and the one-time velocity autocorrelation
function on the lag-time. We show that the dependence of the
normalized autocorrelation functions on the lag-time depends
crucially on the physical nature of the additive driving noise,
i.e., the results are qualitatively different for internal and
external noises. We also demonstrate that the presence of a
multiplicative noise in the GLE has a profound effect on the
behavior of autocorrelation functions: first, their dependence
on the frequency of the external periodic forcing occurs that
enables easy verification of the presence of a multiplicative
noise in experiments; second, at sufficiently large values of
the lag-time the model predicts, for correlation functions,
a crossover between two different asymptotic power-law
regimes, which may be important for correct interpretation
of experimental data in microrheology.

The structure of the paper is as follows. In Sec. II we
present the model investigated. Exact formulas are found for
the analysis of the behavior of autocorrelation functions. In
Sec. III we analyze the dependence of the output characteristics
on the system parameters and on the time lag. Section IV
contains some brief concluding remarks. Some formulas are
delegated to the Appendix.

II. MODEL AND THE EXACT MOMENTS

A. Model

We start from the traditional GLE model for a particle of
the unit mass (m = 1) in the fluctuating harmonic potential
subjected to a linear friction with a memory kernel η(t), a
multiplicative white noise Z(t), an external periodic force,
and an additive random force ξ (t) of zero mean:

Ẍ +
∫ t

0
η(t − t ′)Ẋ(t ′)dt ′ + [ω2 + Z(t)]X

= A0 sin(�t) + ξ (t), (1)

where Ẋ ≡ dX/dt , X(t) is the particle displacement, while
A0 and � are the amplitude and the frequency of the
harmonic driving force, respectively. The fluctuations of the
eigenfrequency ω of the binding harmonic field are expressed

as a Gaussian white noise Z(t) with a zero mean and a
δ-correlated correlation function:

〈Z(t)〉 = 0, 〈Z(t)Z(t ′)〉 = 2Dδ(t − t ′), (2)

where D is the noise intensity. The zero-centered random force
ξ (t) with a stationary correlation function

C(|t − t ′|) := 〈ξ (t)ξ (t ′)〉, 〈ξ (t)〉 = 0 (3)

is assumed as statistically independent from the noise Z(t).
Depending on the physical situation, the driving noise ξ (t)
can be regarded either as an internal noise, in which case
its stationary correlation function satisfies Kubo’s second
fluctuation-dissipation theorem [26] expressed as

C(|t |) = kBT η(|t |) (4)

(here T is the absolute temperature of the heat bath, and kB is
the Boltzmann constant), or as an external noise, in which case
the driving noise ξ (t) and the dissipation may have different
origins and no fluctuation-dissipation relation holds, i.e., ξ (t)
is not related to the memory kernel η(t). Henceforth, in this
work the random force ξ (t) is assumed to be the sum of two
uncorrelated contributions

ξ (t) = ξ1(t) + ξ2(t), (5)

where ξ1(t) is the internal noise due to thermal activity, and
ξ2(t) is an external white noise with an intensity D1 and the
correlation function

〈ξ2(t)ξ2(t ′)〉 = 2D1δ(t − t ′), 〈ξ2(t)〉 = 0. (6)

In models for oscillatory systems with memory, strongly
coupled with a noisy viscoelastic environment, usually a
power-law correlation function for the internal noise is em-
ployed to model the memory effects [9,10,17]. As in Ref. [18],
in this paper we assume a more general correlation function
modeled as

〈ξ1(t)ξ1(t ′)〉 = kBT η(|t − t ′|)
= γ kBT

τα
c

Eα

[
−

( |t − t ′|
τc

)α]
, (7)

where τc acts as the characteristic memory time, γ is a
constant (called a friction constant), and the memory exponent
α can be taken as 0 < α < 1, which is determined by the
dynamical mechanism of the physical processes considered.
The Eα(y) function denotes the Mittag-Leffler function [27],
which behaves as a stretched exponential for short times and
as an inverse power law in the long time regime. Note that if
α = 1, the correlation function (7) reduces to an exponential
form which describes a standard Ornstein-Ulenbeck process
[28]. In the limit τc → 0 the proposed correlation function
reproduces a power-law correlation function

〈ξ1(t)ξ1(t ′)〉 = γ kBT


(1 − α)|t − t ′|α , (8)

where 
(y) is the gamma function, which has been previously
used to model the viscoelastic properties of a medium [9,10,
17]. Moreover, by taking the limit α → 1 in Eq. (8) we see that
the noise ξ1(t) corresponds to white noise and consequently,
to nonretarded friction.
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It is worth emphasizing that counterparts of the model
(1) without multiplicative noise are widely used in fitting
experimental data from intracellular microrheology and from
single-molecule experiments probing conformational fluctua-
tions in proteins (see, e.g., [9,23]). For example, in Ref. [9]
Xie and co-workers succeeded in modeling the motion of the
donor-acceptor distance within a protein as the coordinate of a
fictitious particle diffusing in a harmonic potential according to
a GLE (i.e., with the help of a model similar to Eq. (1) without
multiplicative noise), while the memory exponent α ≈ 0.51
was deduced from experimental observations.

As most of the results of the present paper reflect the
influence of a multiplicative noise, included in a GLE, on the
dynamics of a particle, let us now briefly discuss the possible
physical origin of such a noise in the cytoplasm of cells.
Recent studies using microrheology techniques have shown
that adenosin-triphosphate-consuming molecular motors can
drive the system out of thermal equilibrium. The corresponding
violations of the fluctuation-dissipation theorem have been
observed inside cells [23,25]. As collective action of molecular
motors is a stochastic process, its influence on the dynamics of
a particle embedded in the cytoplasm can be represented in a
GLE as external noise [23]. In Ref. [29] it is pointed out that a
GLE cannot always be expressed by means of a deterministic
drift term, supplemented by internal and external additive
noises. It is argued that in complex systems (e.g., the cytoplasm
of cells) the external noise emerges in a phenomenological
GLE rather as a multiplicative noise or as a combination of
multiplicative and additive noises due to the elimination of
fast degrees of freedom [29]. Multiplicative noise also arises
in case one of the externally controlled system parameters in a
phenomenological GLE is subjected to fluctuations [e.g., trap
stiffness in experiments with optical tweezers [24,30], i.e., the
quantity ω2 in Eq. (1)].

B. First moments

By means of the calculation scheme represented in [20]
one can easily obtain, from Eq. (1), a formal expression for
the particle displacement X(t) in the following form:

X(t) = 〈X(t)〉 +
∫ t

0
H (t − t ′)[ξ (t ′) − X(t ′)Z(t ′)]dt ′, (9)

where the average 〈X(t)〉 is given by

〈X(t)〉 = y0H (t) + x0

[
1 − ω2

∫ t

0
H (t ′)dt ′

]

+A0

∫ t

0
H (t − t ′) sin(�t ′)dt ′, (10)

with the deterministic initial conditions X(0) = x0 and Ẋ(0) =
y0. The kernel H (t) with the initial condition H (0) = 0 is the
Laplace inversion of

Ĥ (s) = 1

s2 + sη̂(s) + ω2
, (11)

where

Ĥ (s) =
∫ ∞

0
e−stH (t)dt, (12)

and

η̂(s) = γ sα−1

1 + (τcs)α
. (13)

An integral representation of the relaxation function H (t) is
given by Eqs. (A1)–(A5) in the Appendix. In the long-time
limit, t → ∞, the memory about the initial conditions will
vanish and the asymptotic formula for the average particle
displacement, 〈X(t)〉as := 〈X(t)〉|t→∞, reads as

〈X(t)〉as = A sin(�t + ϕ), (14)

where the amplitude A and the phase shift ϕ can be represented
as

A = |Ĥ (−i�)|,ϕ = arctan

{
− Im

[
Ĥ (−i�)

]
Re

[
Ĥ (−i�)

]
}

. (15)

The explicit dependence of A and ϕ on the system parameters
is given by Eqs. (A8)–(A10) (see Appendix).

C. Second moments

From an experimental point of view, the information about
the observed diffusive behavior of particles is extracted from
the mean-square displacement ρ(t,τ ), which in long-time
measurements is determined by [19,23]

ρas(t,τ ) = lim
t→∞〈[X(t + τ ) − X(t)]2〉, (16)

where τ is the so-called time lag. Alternative information about
the dynamics can be extracted from the asymptotic velocity
autocorrelation function [19]

Kas(t,τ ) = lim
t→∞〈[Ẋ(t + τ ) − 〈Ẋ(t + τ )〉][Ẋ(t) − 〈Ẋ(t)〉]〉.

(17)

In the limit t → ∞ the mean-square displacement ρas(t,τ )
and the autocorrelation function Kas(t,τ ) depend on both of
the times t and τ and become periodic functions of t with the
period of the external driving, T = 2π/�. Thus as in [20,31],
we define the one-time counterparts of ρas(t,τ ) and Kas(t,τ )
as an average of the corresponding two-time quantity over a
period of the external driving, i.e.,

ρ(τ ) = 1

T

∫ T

0
ρas(t,τ )dt,

K(τ ) = 1

T

∫ T

0
Kas(t,τ )dt.

(18)

Starting from Eq. (9) we obtain

ρ(τ ) = 2σ 2

[
1 −

(
1 − kBT

ω2σ 2

)
ψ(τ )

ψ(0)
− kBT

ω2σ 2
F (τ )

]
, (19)

K(τ ) = σ 2
v

[(
1 − kBT

σ 2
v

)
ψ̈(τ )

ψ̈(0)
+ kBT

σ 2
v

Ḣ (τ )

]
, (20)

where σ 2 and σ 2
v are the time-homogenous parts of the variance

of the particle displacement X and the velocity Ẋ, respectively,
i.e.,

σ 2 := 1

T

∫ T

0
〈[X(t) − 〈

X(t)
〉
]2〉asdt, (21)
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σ 2
v := 1

T

∫ T

0
〈[Ẋ(t) − 〈Ẋ(t)〉]2〉asdt. (22)

It should be emphasized that the functions ψ(τ ) and F (τ ),
defined as

ψ(τ ) :=
∫ ∞

0
H (t + τ )H (t)dt, (23)

and

F (τ ) := 1 − ω2
∫ τ

0
H (t)dt, (24)

respectively, are independent of the driving force parameters
A0 and � as well as of the noise intensities D, D1, and T .
The exact formulas useful for a numerical treatment of the
functions ψ(τ ) and F (τ ) are given by Eqs. (A11) and (A12)
in the Appendix. Using the formula (9) and the results of [20],
one gets

σ 2 = 1

Dcr − D

[
A2D

2
+ D1 + kBT Dcr

ω2

]
, (25)

σ 2
v = kBT − 2Dcrψ̈(0)

[
σ 2 − kBT

ω2

]
, (26)

where the critical noise intensity Dcr reads

Dcr = 1

2ψ(0)
. (27)

From Eq. (25) we can see that the stationary regime is possible
only if

D < Dcr . (28)

As the intensity of the multiplicative noise D tends to the
critical value Dcr , the variance σ 2 increases to infinity. This is
an indication that for D > Dcr energetic instability appears,
which manifests itself as an unlimited increase of second-order
moments of the output of the system with time, while the mean
value of the particle displacement remains finite [32].

The analytical expressions (19), (20), (25), and (26) with
Eqs. (A11) and (A12) belong to the main results of this
work. Finally, we emphasize that these results are physically
meaningful only if the inequality Eq. (28) holds, i.e., if the
system is energetically stable.

III. RESULTS

A. Variance of the output signal

In Figs. 1(a) and 1(b) we depict the behavior of the
critical noise intensity Dcr and the variance σ 2 by variations
of the memory exponent α. Figure 1(a) shows a typical
phenomenon of the memory-enhanced energetic stability
considered previously in [20]. As a rule the maximal value of
Dcr (α)/γ increases as the value of the characteristic memory
time τc decreases, while the positions of the maxima are
monotonically shifted to a greater α as τc rises. In the case
considered in Fig. 1(b) the intensity of the multiplicative
noise is in the interval ω2γ < D < Dcrmax , where Dcrmax is
the maximal value of Dcr (α) by variations of α. In this
case the variance σ 2 decreases rapidly from infinity at α1,
Dcr (α1) = D, to a minimum and next increases to infinity
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D
cr

γ
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0.0

0.5
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1.5
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α

σ 
   

  
2

b

FIG. 1. Dependence of the critical noise intensity Dcr and the
variance σ 2 computed from Eqs. (27), (A11), (25), and (A9) on the
memory exponent α. Parameter values: A0 = ω = 1, γ = 4. Panel
(a): Dcr/γ vs α at different values of the memory time τc. Solid line:
τc = 0; dashed line: τc = 0.025; dotted line: τc = 0.05. Panel (b): σ 2

vs α at different values of the driving frequency �. System parameter
values: τc = 0.01, D = 4.8, D1 = 0.01, and kBT = 0.01. Solid line:
� = 10; dashed line: � = 1; dotted line: � = 0.1. The thin dashed
lines depict the positions of the critical memory exponents α1 ≈ 0.467
and α2 ≈ 0.862 between which the system is energetically stable.

at α2, Dcr (α2) = D. Thus the system is energetically stable
only in the interval α1 < α < α2. From Fig. 1(b) one can see
that the values of the variance σ 2 depend on the frequency �

of the harmonic driving force. Note that in the case without
multiplicative noise, such a dependence is absent [see Eqs. (25)
and (A9)]. Finally, it should be mentioned that the behavior of
the variance of particle velocities σ 2

v is similar to the behavior
of σ 2 described above [cf. also Eq. (26)].

B. Temporal behavior of the autocorrelation function

Now we consider the behavior of the normalized autocor-
relation functions Kxn(τ ) and Kvn(τ ), where

Kxn(τ ) = 1 − ρ(τ )

2σ 2
,

Kvn(τ ) = K(τ )

σ 2
v

.

(29)

In contrast to the results for the variances σ 2 and σ 2
v , here the

role of the additive driving noise ξ (t) is crucial. If the driving
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FIG. 2. Normalized autocorrelation functions Kxn(τ ) and Kvn(τ )
vs the time lag τ in the case of external noise (i.e., T = 0). System
parameter values: ω = 1, γ = 1.6, α = 0.5, D = 0.3, and D1 = 0.1.
Solid line, τc = 0.01; dashed line, τc = 0.1; dotted line, τc = 1. The
insets depict the behavior of Kxn and Kvn at large values of τ ;
τc = 0.01.

noise is external (i.e., T = 0), the typical forms of the graphs
Kxn(τ ) and Kvn(τ ) are represented in Fig. 2. Note that the exact
solution exhibits exponentially damped oscillations around a
curve which for large τ decays absolutely monotonically like
a power law. Consequently, the normalized autocorrelation
functions Kxn and Kvn have only a finite number of zeros
and they decay, in the long-time-lag regime, as τ−(1+α) and
as τ−(3+α), respectively. Note that in this case both of the
normalized autocorrelation functions are independent of the
driving force parameters A0 and �.

In the case of an internal noise ξ (t) (i.e., T 	= 0), the
picture of the dependence of Kxn and Kvn on τ is different
(see Fig. 3). First, the autocorrelation functions Kxn(τ ) and
Kvn(τ ) relax asymptotically like τ−α and τ−(2+α), respectively.
This is in sharp contrast with the results for the external noise
that exhibits a much faster decay. Second, the most important
difference is the dependence of Kxn and Kvn on the amplitude
A of the output signal [cf. Eqs. (19), (20), (25), (26), and
(29)]. So, in the case of an internal noise the exact form of the
function Kxn(τ ) is sensitive to the values of the frequency �

of the external harmonic driving force (see also Fig. 3). Thus
the formulas (19), (20), (25), and (26) provide some simple
criteria that enable us to verify the presence of multiplicative
and internal noises by manipulating an external field in active
microrheology experiments. First, if the experimental data
show at moderate lag-times a dependence of the mean-square
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τ
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τ
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τ

K
xn

τ

b

FIG. 3. Dependence of the normalized autocorrelation function
Kxn(τ ) on the time lag τ at several values of the driving frequency �

in the case of internal noise (i.e., D1 = 0). Parameter values: A0 =
ω = 1, γ = 1.6, α = 0.5, τc = 0.1, kBT = 0.01, and D = 0.3. Solid
line, � = 1.5; dashed line, � = 2.5; dotted line � = 4. Panel (b) the
behavior of Kxn at large values of τ .

displacement ρ(τ ) or the velocity autocorrelation function
K(τ ) on the frequency � (or amplitude A0) of the external
force, then an influence of a multiplicative noise in the
system dynamics can be assumed. Second, if additionally the
normalized autocorrelation functions show a dependence on
the parameters of the external field, then the contribution of an
internal noise is significant.

In Fig. 2 we have plotted the normalized autocorrelation
functions at several values of the characteristic memory
time τc. It can be seen that in the displayed range of the time lag
τ the function Kvn(τ ) shows larger oscillations if the memory
time τc increases. Moreover, it exhibits more zero crossings,
which represent transitions between a positive velocity corre-
lation and velocity anticorrelations. This behavior is related to
the so-called whip-back effect [19,33].

C. Characteristic time scales

In experimental realizations, the time lag is τmin � τ �
τmax, where τmin is the acquisition time interval and τmax is
the measurement time. Therefore it is important to analyze the
behavior of the normalized correlation functions for several
time scales involved in the model (1).
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τ

FIG. 4. Normalized autocorrelation function Kxn(τ ) vs the time
lag τ in the time regime τ < τ1 [cf. Eqs. (19), (20), and (A11)].
Parameter values: A0 = ω = γ = τc = 1, α = 0.3, � = 2, D1 =
kBT = 0.1, and D = 0.1. The characteristic time τ1 = 1/β ≈ 20.02.

There are two important characteristic times for Kxn(τ ):

τ1 = 1

β
, (30)

τ2 = 2αDDcr

ω4(Dcr − D)

[
1 + ω2

2kBT

(
A2 + 2D1

D

)]
. (31)

Below we consider mainly the case

τmin < τ1 
 τ2 
 τmax (32)

to allow the following separation of time scales: (i) τ � τ1;
(ii) τ1 
 τ 
 τ2; (iii) τ � τ2.

From Eq. (A2) it follows that τ1 depends only on the
parameters of the memory kernel η, and ω. Particularly,
as a rule τ1 increases as τc increases or as γ and α

decrease. Note that in the time region τ � τ1 the oscillatory
behavior of the correlation functions is significant [see Fig. 4,
cf. also Eqs. (A11) and (A12)] and thus it should be used
by interpretation of experimental results. Notably, the usually
employed overdamped approximation is not applicable in this
situation.

The other characteristic time τ2 is related to the asymptotic
regimes of the normalized autocorrelation function Kxn(τ ) and
is defined as the time at which a crossover from a power-law
regime with the exponent −(1 + α), to a power-law regime
with the exponent −α occurs (see Fig. 5).

The time τ2 can fulfill the inequalities (32) only in the
presence of a multiplicative noise or, if the multiplicative noise
is absent, in the presence of an additive external noise with an
intensity D1 	= 0. In that case

τ2 = 2D1α

ω2kBT
, (33)

and consequently it characterizes the relative contributions of
the external and internal noises to the system dynamics. It is
obvious that τ2 tends to a very large value if internal noise is
negligible, i.e.,

2kBT

ω2

 DA2 + 2D1, (34)
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ln
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τ
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K
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τ 3.6

FIG. 5. A logarithmic plot of the asymptotic dependence of
the normalized autocorrelation functions Kxn(τ ) and Kvn(τ ) on the
time lag τ . System parameter values: A0 = ω = 1, γ = 4, α = 0.6,
D1 = 0, kBT = 0.01, � = 0.1, τc = 0.01, and D = 5.6. Solid line,
ln |Kxn(τ )| vs ln τ ; dotted line ln |Kvn(τ )| vs ln τ . Note a crossover
between two asymptotic power-law regimes, τ−1.6 and τ−0.6, at the
characteristic lag-time value ln τ2 = 9.86.

or in the vicinity of energetic instability, D → Dcr . If τ2 >

τmax, then the asymptotic monotonic decay of the correlation
functions should be used with care in the interpretation of
experimental data, even if both the external additive noise and
external driving force are absent.

For example, although in the presence of an internal noise
with a memory exponent α Kxn(τ ) asymptotically decays
as τ−α , in the case of τ2 > τmax a naive interpretation of
experimental data shows a power-law decay like τ−(1+α) which
corresponds to the memory exponent 1 + α for an internal
noise. Thus, the genuine memory exponent α for the internal
noise appears only in the time scale τ � τ2.

Finally, we emphasize that at D ≈ Dcr , i.e., in a vicinity
of energetic instability, the characteristic time τ2 is very large
and consequently, the long-time behavior of the correlation
functions is similar to the case of an external additive noise,
even if both the external additive noise and the external
periodic driving force are absent.

D. Memory-induced trapping

Next we consider the behavior of output characteristics
[Kxn(τ ), Kvn(τ ), and σ 2] without the harmonic trapping field,
i.e., that of Eq. (1) with a zero eigenfrequency, ω = 0. It can
be shown that if the additive driving noise includes an internal
component, T 	= 0, the asymptotic behavior of the model (1)
with ω = 0 is subdiffusive, σ 2 ∼ tα , and a stationary regime is
impossible (see also [20,34]), which renders the formulas (19),
(20), (25), and (26) physically meaningless. If the driving noise
ξ (t) is external, (T = 0, D1 	= 0), and if the memory exponent
is sufficiently small, α < 1/2, a stationary regime is possible
and the formulas (19), (20), (25), and (26) are applicable (see
Fig. 6, cf. also [20]). This behavior of the model (1) is in
agreement with the previous results given in Ref. [34], where
the long-time behavior of a particle governed by the GLE (1)
with A0 = ω = Z(t) = 0 has been considered. Particularly,
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in [34] it was shown that if the intensity of an external noise
ξ (t) defined by

D1 :=
∫ ∞

0
C(t)dt

is finite and nonvanishing, and if the friction kernel η(t) decays
as

η(t) ∼ 1

tα
, t → ∞,

where 0 < α < 1
2 , then the process X(t) becomes asymptoti-

cally stationary with a finite variance. In the case of 1
2 < α < 1

the long-time behavior of the particle is subdiffusive.
Note that in the case of a power-law memory kernel (i.e., in

the limit τc → 0) the phenomenon of energetic stability for an
unbounded system [Eq. (1) with ω = 0] has been previously
considered in [20], where it was shown that this phenomenon
agrees well with the description of the friction force for small
α as an elastic force due to the cage effect. For small α the
friction force induced by the medium is not just slowing down
the particle but also causing the particle to undergo a rattling
motion, which can be explained by the harmonic motion of
the particle in a cage formed by the surrounding particles [17].
In this sense, at small α the medium is binding the particle
preventing diffusion but forcing oscillations. The resonantlike
behavior of the critical intensity of the multiplicative noise
Dcr (α) versus α, which is seen in Fig. 6, is the manifestation
of the cage effect, which is contained in Eq. (1) due to the
friction memory kernel.

In Fig. 7 three graphs depict, in the case of memory-induced
trapping (ω = 0, T = 0, i.e., internal noise is absent), the
behavior of the mean-square displacement ρ(τ ) for different
values of the driving frequency � [see Eq. (19)]. As can be
expected from the discussion in subsection B, these graphs
show a dependence of the mean-square displacement on the
frequency � of the external force. Here we remind to reader
that as the internal noise is absent, such a multiplicative-noise-
induced dependence on � is excluded for the normalized
autocorrelation functions Kxn(τ ) and Kvn(τ ) [see Eqs. (19),
(20), and (29)].

It is remarkable that in the case of ω = 0 the characteristic
time τ1 = 1/β can, at low and large values of the memory
time τc, be represented with the following simple formulas:

τ1 ≈ 1

γ
1

2−α cos
(

π(1−α)
2−α

) , τc → 0, (35)

τ1 ≈ 2τα
c

sin
(

απ
2

) (
τα
c

γ

) 1−α
2

, τc → ∞. (36)

Thus in the cases of a low memory exponent α or large values
of the memory time τc the characteristic time τ1 is very large
and the oscillatory parts of Kxn(τ ) and Kvn(τ ) decay very
slowly.

Finally, due to the cage effect the dependence of the spectral
amplification A2/A2

0 on the frequency � exposes a bona fide
resonance even when the binding harmonic field is absent,
ω = 0 (see Fig. 8). It is important that for any α < 0.441 and
for any values of γ and τc the dependence of A2 on � is always
nonmonotonic with a resonance peak, which apparently gets
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FIG. 6. The critical noise intensity Dcr and the variance σ 2 as
functions of the memory exponent α by absence of the harmonic
potential, ω = 0 [Eqs. (27), (A11), (25), and (A9)]. Parameter values:
A0 = � = 1, T = 0, D1 = 0.05, γ = 3.5, and D = 0.5. Solid line,
τc = 0; dashed line, τc = 0.1; dotted line, τc = 0.5. Note that the
critical memory exponent αcr = 1/2, at which the critical noise
intensity Dcr tends to zero.
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FIG. 7. Mean-square displacement ρ vs time lag τ in the case of
external noise (i.e., kBT /ω2 = 0). System parameter values: ω = 0,
A0 = 1, D1 = 0.01, D = 0.5, γ = 3.5, α = 0.22, and τc = 0.1. Solid
line, � = 1.5; dashed line, � = 1.3; dotted line, � = 2.0.
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FIG. 8. The spectral amplification A2/A2
0 vs the driving fre-

quency � computed from Eqs. (A8) and (A9) for ω = 0, γ = 1.6,
and α = 0.2. Solid line, τc = 1; dashed line, τc = 0.5; dotted line,
τc = 0.1.

more and more pronounced as the memory time τc increases
(for τc = 0, cf. [17,21]).

IV. CONCLUSIONS

In the present work we have analyzed, in the long-
time regime t → ∞, the dependence of the mean-square
displacement and the velocity autocorrelation function for a
harmonically trapped particle in a viscoelastic medium on the
time lag τ . Starting from a generalized Langevin equation
with memory driven by an external sinusoidal forcing and
by additive and multiplicative noises [Eq. (1)], we have been
able to derive exact analytic expressions for the one-time
autocorrelation functions in the case of a Mittag-Leffler type
memory kernel.

As one of our main results we have established that in the
presence of a multiplicative noise the autocorrelation functions
depend on the parameters of external sinusoidal forcing. Since
without a multiplicative noise such a dependence is absent, this
effect gives, in active microrheology experiments, a simple
criterion to determine whether there is a multiplicative noise
influencing the dynamics of the system or not. Moreover, it is
remarkable that in the case of an additive external noise and
a sufficiently strong memory, a related phenomenon involving
memory-induced trapping occurs for an unbound system [i.e.,
in Eq. (1), the harmonic binding potential is absent]. Note that
for an internal noise the behavior of such an unbound system
is always subdiffusive [20,34], i.e., the trapping is absent.

As another main result we have shown that in the case of
an additive external noise the dependence of the normalized
autocorrelation functions on the time lag is independent
of external periodic forcing. This contrasts with the case
of internal noise, where the dependence of the normalized
autocorrelation functions on a periodic forcing is significant.

Thus we have found two experimentally convenient criteria
that enable us to verify the presence of a multiplicative
noise and make a clear distinction between contributions of
an external noise and an internal noise on the dynamics of
the systems described by Eq. (1). The advantage of these
criteria is that the control parameter is the frequency of the

external periodic force, which can be easily varied in possible
experiments.

Our main generic result is that the dynamics with a
multiplicative noise and without multiplicative noise are
profoundly different, in spite of some superficial similarities.
Particularly, perhaps the most important result in view of
experiments is that the model with multiplicative and internal
noises predicts a crossover between two different asymptotic
power-law regimes for the correlation function: τ−(α+1) and
τ−α (between τ−(3+α) and τ−(2+α) for the velocity correlation
function). In some cases, e.g., if the measurement time τmax

is comparable to or smaller than the crossover time τ2 [see
Eqs. (31) and (33)], this circumstance might be of importance
for correct interpretation of experimental data.

Finally, we have presented a theoretical analysis to explain
the effects of multiplicative noise and the trapping potential
in the anomalous behavior of the mean-square displace-
ment and the normalized velocity autocorrelation function
of a particle embedded in a viscoelastic environment. How
such effects might have affected the previously reported
measurements of the viscoelastic properties of cytoplasm
(or conformational fluctuations in proteins) remains to be
specified. Undoubtedly, ultimate verification of the importance
of multiplicative noise in microrheology experiments lies
with experimentalists. Active microrheology techniques using
optical or magnetic tweezers [24] will be valuable tools for
exploring multiplicative-noise-induced effects.
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APPENDIX: FORMULAS FOR THE RELAXATION
FUNCTION

1. Time dependence of the relaxation function H(t)

The relaxation function H (t) in Eq. (9) can be obtained by
means of the Laplace transformation technique. To evaluate
the inverse Laplace transform of Ĥ (s) [see Eq. (11)], we use
the residue theorem method described in [35]. The inverse
Laplace transform gives

H (t) = 2√
u2 + v2

e−βt sin(ω∗t + �)

+ γ sin(απ )

π

∫ ∞

0

rαe−rt dr

B(r)
, (A1)

where s1,2 = −β ± iω∗, (β > 0, ω∗ > 0), are the pair of
conjugate complex zeros of the equation

G(s) ≡ s2 + γ sα

1 + (τcs)α
+ ω2 = 0; (A2)

here, G(s) is defined by the principal branch of sα . The
quantities u, v, �, and B(r) are determined by
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u = −2β + γα{cos[(1 − α)ϕ∗] + τ 2α
c (β2 + ω∗2)α cos[(1 + α)ϕ∗] + 2τα

c (β2 + ω∗2)
α
2 cos ϕ∗}

(β2 + ω∗2)
1−α

2 [1 + τ 2α
c (β2 + ω∗2)α + 2τα

c (β2 + ω∗2)
α
2 cos(αϕ∗)]2

,

v = 2ω∗ − γα{sin[(1 − α)ϕ∗] + τ 2α
c (β2 + ω∗2)α sin[(1 + α)ϕ∗] + 2τα

c (β2 + ω∗2)
α
2 sin ϕ∗}

(β2 + ω∗2)
1−α

2 [1 + τ 2α
c (β2 + ω∗2)α + 2τα

c (β2 + ω∗2)
α
2 cos(αϕ∗)]2

(A3)

with
ϕ∗ = π + arctan

(
−ω∗

β

)
,

� = arctan
(

u
v

)
,

(A4)

and

B(r) = {(r2 + ω2)[cos(απ ) + (τcr)α]

+ γ rα}2 + (r2 + ω2)2 sin2(απ ). (A5)

The relaxation function H (t) can be represented via Mittag-
Leffler-type special functions [27]. But as in the last case
the numerical calculations are very complicated, so we
suggest, apart from possible representations via Mittag-Leffler
functions, a numerical treatment of Eq. (A1).

2. Complex susceptibility

Here the exact formulas for the imaginary part χ ′′ and for
the real part χ ′ of the complex susceptibility χ (�) = Ĥ (−i�)
are presented. From Eqs. (11) and (13) one can conclude that
the quantities χ ′′ and χ ′ are given by

χ ′ = ω2 − �2 + f1

(ω2 − �2 + f1)2 + f 2
2

, (A6)

χ ′′ = f2

(ω2 − �2 + f1)2 + f 2
2

, (A7)

where

f1 =
γ�α

[
cos

(απ

2

)
+ (τc�)α

]
1 + (τc�)2α + 2 (τc�)α cos

(απ

2

) ,

f2 =
γ�α sin

(απ

2

)
1 + (τc�)2α + 2 (τc�)α cos

(απ

2

) .

(A8)

Thus, for the amplitude A and the phase shift ϕ in Eq. (14)
[see also Eq. (15)] we obtain that

A2 = A2
0

(ω2 − �2 + f1)2 + f 2
2

(A9)

and

ϕ = arctan

(
f2

�2 − ω2 − f1

)
. (A10)

3. The relaxation functions for second moments

Now we present the time dependence of the relaxation
functions ψ(τ ) and F (τ ) [see Eqs. (19) and (20)]. From
Eqs. (23), (24), and (A1) we obtain

ψ(τ ) = e−βτ

u2 + v2

{
1

β
cos(ω∗τ )

− 1

β2 + ω∗2
[β cos(ω∗τ + 2�) − ω∗ sin(ω∗τ + 2�)]

}

+ γ sin(απ )

π

∫ ∞

0

rαdr

B(r)

{
e−rτ [1+ (τcr)α]

(r2 + ω2)[1 + (τcr)α] + γ rα

+ 2e−βτ [ω∗ cos (ω∗τ + �) + (r + β) sin (ω∗τ + �)]√
u2 + v2[(r + β)2 + ω∗2]

}

(A11)

and

F (τ ) = 2ω2e−βτ

√
u2 + v2(β2 + ω∗2)

[ω∗ cos(ω∗τ + �)

+β sin(ω∗τ + �)] + ω2γ sin(απ )

π

∫ ∞

0

e−rτ dr

r1−αB(r)
,

(A12)

where the quantities u, v, �, and B(r) are determined by
Eqs. (A3)–(A5).

From Eqs. (A1), (A11), and (A12) it follows that for large τ

the relaxation functions ψ(τ ), F (τ ), and H (τ ) decay as a power
law. Namely, at a long-time limit (τ → ∞), the asymptotic
behavior of ψ(τ ), F (τ ), and H (τ ) read as

ψ(τ ) ∼ γα

ω6
(1 − α)
τ−(1+α), (A13)

F (τ ) ∼ γ

ω2
(1 − α)
τ−α, (A14)

H (τ ) ∼ γα

ω4
(1 − α)
τ−(1+α). (A15)
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