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Lévy stable two-sided distributions: Exact and explicit densities for asymmetric case
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We investigate functions g(α,β; x) which are heavy-tailed Lévy stable probability distributions of index
0 < α � 2 and appropriate asymmetry parameter β. They are of central importance in physics of amorphous
and disordered systems, econophysics, geology, hydrology, internet traffic, dynamics of human relations, etc. We
present an ensemble of exact and explicit solutions of g(α,β; x) for all admissible rational values of α and β.
We reproduce all the previously known cases and furnish distributions for values α and β which were previously
inaccessible. We point out many instances of experimental and statistical data that could be described by our
results.
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I. INTRODUCTION

The probability distributions characterizing anomalous
diffusive behavior have been a subject of intense activity
on experimental and theoretical sides. Among various forms
proposed, that of the heavy-tailed Lévy stable laws is of
widespread use, mostly due to their universal presence in such
diversified fields as econophysics [1,2], physics of amorphous
materials [3], geology [4], biophysics [5], statistics of phone
networks [6], internet traffic [7], and dynamics of human
contacts [8]. Entire monographs are devoted to the thorough
study of this huge field [9]. Comprehensive reviews are
available reporting on the state of the art [10–13]. Further
references may be traced back from [14,15].

The goal of the paper is to give exact and explicit expression
for the two-sided Lévy stable distributions g(α,β; x), 0 < α

� 2 for symmetric (β = 0) and asymmetric (β �= 0) cases.
Since g(1,β; x) requires special treatment [9] we omit the
case α = 1.

The probability density function (PDF), g(α,β; x), is called
stable if the product of characteristic functions (CF) of two
such laws is a CF of another law of the same type. The general
PDF of this type g(α,β; x), where either −∞ < x < ∞, or x

is confined to one of semiaxes (see below), has the CF defined
as the Fourier transform in the form [9,16–18]

ĝ(α,β; p) = exp{−|p|α exp[iβπ sgn(p)/2]}, (1)

where |p| and sgn(p) are the absolute value and the sign of
p, respectively, and ĝ(α,β; p) satisfy the relation ĝ(α,β; −p)
= ĝ(α,−β; p). According to the values of parameters α and
β we can distinguish the following variants. (i) For 0 < α < 1
and |β| � α we have for β = −α one-sided PDFs defined
for 0 � x < ∞, whereas for β = α they are defined only
for −∞ < x � 0, otherwise they are two sided, that is, −∞
< x < ∞. (ii) For 1 < α � 2 and |β| � 2 − α the PDFs
are always two sided. Only under these restrictions on
α and β the positivity of g(α,β; x) for all allowed x is
guaranteed [9,17,18].
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The finding of exact and explicit form of two-sided
g(α,β; x) turned out to be a true challenge. In the literature we
can find only a limited number of exact formulas for g(α,β; x).
The two-sided asymmetric cases include α = 1/3 and β

= ±2/3 [9], α = 3/2 and β = ±1/2 [9,19]. The symmetric
cases (β = 0) concern α = 4/3 [20,21], α = 5/4 and 6/5 [20],
α = 1/3 and 1/2 [20,21], α = 1/5, 1/4, 2/5, 3/5, 3/4, and
4/5 [20]. The exact solutions for one-sided case β = −α for
rational α have been recently obtained in [15]. For any other
values of α and β for two-sided situation the only source of
information are numerical calculations, often problematic if
not impossible for small values of α [22,23].

In what follows we shall indicate how the approach of
[15] can be extended to obtain new exact representations for
two-sided case with rational values of α and β. One should be
reminded at this point that the functional structure of g(α,β; x)
depends in an essential way on the value of α [9,17]: for
1 < α � 2 g(α,β; x) is a unique function for both signs of
x. On the contrary, for 0 < α < 1, β �= 0, −α, the function
g(α,β; x) is obtained by matching of two different functions
g(α,−β; x) for x < 0 with g(α,β; x) for x > 0, at the point
x = 0. In any case it is sufficient to use g(α,β; x) defined
as [17,18,24]

g(α,β; x) = 1

π
Re

∫ ∞

0
dp e−ipxe−pα exp(iβ π/2). (2)

Before going to the most general case let us embark upon an
intermediate situation where for a given α only certain values
of β intervene.

II. TWO-SIDED DENSITIES FROM DUALITY LAW

The general form of one-sided g(α,−α; x) for rational α

= l/k, l < k, where l,k are integers, was recently presented in
[15] where it is denoted by gα(x). As an initial approach to the
two-sided case we shall generate certain two-sided solutions
g(α�,β�; x), α� = α−1, 1 < α� � 2, and β� = α� − 2, via the
duality law (DL) [9,17] applied to one-sided g(α,−α; x).
The DL implies, for α < 1, g(α�,α� − 2; x) = x−(1+1/α)g(α,
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FIG. 1. Comparison of the one-sided distribution g(4/5,

− 4/5; x) and its dual two-sided counterpart g(5/4,−3/4; x) [see
Eq. (3)].

−α; x−1/α), from where for rational α = (α�)−1 = l/k we
have, according to [15]

g(α�,α� − 2; x)

=
k−1∑
j=1

bj (k,l)

x1−j l+1Fk

(
1,�(l,1+j l/k)
�(k,j+1)

∣∣∣(−1)k−l ll xk

kk

)
. (3)

In Eq. (3) pFq(
(ap)
(bq ) |z) is the generalized hypergeometric func-

tion with the upper and lower parameter lists equal to (ap) and
(bq), respectively [25], and �(n,a) = a

n
, a+1

n
, . . . , a+n−1

n
is a

special list of n parameters. The numerical coefficients bj (l,k)
in Eq. (3) have the form of Eq. (4) in [15]. We emphasize
that while the distributions g(α,−α; x) are defined for x � 0,
g(α�,α� − 2; x) are automatically valid for −∞ < x < ∞.
To carry out this procedure we consider Eq. (6) of [15] for
p = 4 which corresponds in our notation to g(4/5,−4/5; x),
x � 0. The DL yields g(5/4,−3/4; x) for −∞ < x < ∞
whose exact form is given by Eq. (3) for l = 4 and k = 5. In
view of previous remarks and the values of α� and β� involved,
g(5/4,−3/4; x) is the unique function for both semiaxes. In
Fig. 1 we compare both of these distributions. As far as we
know the function g(5/4,−3/4; x) is a new exact solution for
two-sided case. According to Eq. (3) it can be represented,
after appropriate simplifications of their parameter lists (ap)
and (bq), as a sum of four hypergeometric functions of type 3F3

of argument (−44 x5/55). For a given 0 < α < 1 this DL route
based on one-sided solutions in [15] will always yield special
two-sided densities in the form g( 1

α
, 1−2α

α
; x), −∞ < x < ∞.

They should be considered as known [26].

III. GENERAL TWO-SIDED DENSITIES

In fact, we have achieved a more ambitious goal by finding
exact g(α,β; x) without restrictions on β imposed by the DL.
By extending the method of [15] we have established a general
and universal formula for g(α,β; x) which encompasses both

one- and two-sided cases. The general form of Eq. (2) for
appropriate rational α = l/k and β = α − 2r/k, where l, k,
and r are positive integers (see [27]), is given by the exact
expression

g(α,β; x) =
M−1∑
j=1

cj (l,k,r)

x1∓j l/M

× m+1FM

(
1,�(m,1+j m/M)
�(M,j+1)

∣∣∣(−1)r−M mm x±l

MM

)
,

(4)

where m = min(l,k), M = max(l,k), the lower sign is for l

< k and the upper sign for l > k, with the coefficients

cj (l,k,r) = M1/2−j m1/2+jm/M

2−r (2π )(l+k)/2

[
m−1∏
i=0

�

(
j

M
+ i + 1

m

)]

×
[∏j

i=1 �
(

i−j−1
M

)] [∏M
i=j+2 �

(
i−j−1

M

)]
∏r−1

i=0

[
sin

(
π i

r
− π

j

M

)]−1 .

(5)

Here is the sketch of derivation of Eqs. (4) and
(5). They result from the application of the Mellin
transform to g(α,β; x) of Eq. (2), M[g(α,β; x); s]
= ∫ ∞

0 dx xs−1g(α,β; x) for complex s, which is equal to
1

απ
cos(π β

2α
+ π s

α−β

2α
)�(s) �( 1−s

α
). Then, g(α,β; x) will be

perceived as the inverse Mellin transform, that is, it is for-
mally equal to M−1[ 1

απ
cos(π β

2α
+ π s

α−β

2α
)�(s)�( 1−s

α
); x].

The next steps involve the use of Euler’s reflection formula for
cosinus, the passage to rationals α = l/k and β = (l − 2r)/k,
and the use of Gauss-Legendre multiplication formula for all
gamma functions. Putting all the terms together, we employ, as
an intermediate tool, the storing of the inverse Mellin transform
as the Meijer G function Gm,n

p,q (z|......) [25]. The final use of
conversion formula 8.2.2.3, p. 618 of Ref. [25] yields Eqs. (4)
and (5).

The actual construction of g(α,β; x) from Eqs. (4) and
(5) for a given triple (l,k,r) boils down into three distinct
alternatives. (a) For α = l/k < 1, β = α − 2r/k = −α which
gives r = l; it yields a one-sided g( l

k
,− l

k
; x) for x � 0,

elaborated in [15]; furthermore, for α = l/k < 1, but for
β = α − 2r/k = α, which gives r = 0, it yields a one-sided
g( l

k
, l
k
; x) defined only for x � 0. (b) For α = l/k such

that 1 < l/k � 2 and |β| = |(l − 2r)/k| � 2 − l/k, which
implies l − k � r � k, both two-sided density functions
g( l

k
, l−2r

k
; x) and g( l

k
, 2r−l

k
; x) are defined on −∞ < x < ∞

[and are mutually symmetric with respect to (0,y), see
Fig. 2]. (c) For α = l/k < 1, but |β| = |(l − 2r)/k| < α,
which implies 0 < r < l; here the density g(α,β; x) decom-
poses into two different functions according to the sign of x,
and is given by g( l

k
, l−2r

k
; x)θ (−x) + g( l

k
, 2r−l

k
; x)θ (x), with

θ (x) the Heaviside function. The matching at x = 0 of these
two components assures the continuity of g(α,β; x) at x = 0,
along with all its higher derivatives (see Figs. 2, 3, and 4).

Equations (4) and (5) can be equivalently represented as a
single infinite series derived by Bergström and Feller [16,17],
which is a two-sided variant of the Humbert expansion [28].
This formula {vide Eqs. (4) and (6) in [16]} is however very
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FIG. 2. Comparison of asymmetric distributions g(α,β; x) for
α = 7/5 and β = −3/5, −2/5, −1/5, 1/5, and 2/5, respectively,
starting from the right. The dashed curve is the symmetric case
α = 7/5, β = 0.

slowly convergent in both regions of α → 0 and α � 1. Some
plots of g(α,β; x), obtained either from the infinite series
of [16,17] or from numerical inversion of Fourier transform of
Eq. (2), can be found in [29], but for α � 0.5 only. Other plots
of stable densities, obtained by various numerical methods,
are given in [9–11]. We mention also that a general solution
for α, β (not necessarily fractional) can be given in terms of
the Fox H functions, see [19] and [30]. The explicit form
of the Fox H functions is not known for general values
of parameters and in practice one has to use their series
expansion [31], becoming slowly convergent for small α. The
Fox functions are not yet implemented in current computer
algebra systems and they do not lend themselves for graphical

FIG. 3. Comparison of g(α,β; x) for α = 1/15 and β = −1/15,
0, and 1/45. For β = −1/15 the distribution is one-sided. For β

= 1/45 the exceedingly large peak is at very small x < 0.

FIG. 4. Comparison of asymmetric distributions g(α,β; x) for
β = 1/3 and α = 1/3, 1/2, and 2/3. The distribution g(2/3,1/3; x)
was calculated with Eqs. (6) and (7).

representation. On the contrary, Eq. (4) is easily adaptable
to computer algebra systems, with built-in pFq providing
improved convergence, see [32] for ready-to-use Maple R©

procedure L2S. In Fig. 3 we present g(α,β; x) for small values
of α and β (α = 1/15 = −β, and β = 1/45) for which neither
Bergström-Feller formula nor numerical calculations [22,23]
are applicable.

From formulas (4) and (5) we can retrieve all exactly
known cases enumerated in [9,15,19–21] and give an unlimited
number of new exact solutions g(α,β; x); for example, for
α = 2/3, β = 1/3 (here l = 4, k = 6, r = 1, see [27]) and
x � 0,

g

(
2

3
,
1

3
; x

)
=

5∑
j=1

cj (4,6,1)

x1+2j/3 5F6

(
1,�(4,1+2j/3)
�(6,j+1)

∣∣∣ −44

66x4

)
(6)

and for x < 0, where l = 4, k = 6, r = 3:

g

(
2

3
, − 1

3
; x

)
=

5∑
j=1

cj (4,6,3)

|x|1+2j/3 5F6

(
1,�(4,1+2j/3)
�(6,j+1)

∣∣∣ 44

66|x|4
)

.

(7)

These two components neatly match at x = 0. The coefficients
cj (4,6,1), in Eq. (6) are equal to �(2/3)

3π
, −2

9�(2/3) ,
1

3π
, −5�(2/3)

37/2π
,

7×3−11/2

�(2/3) , and in Eq. (7) cj (4,6,3) are equal to 2�(2/3)
3π

, 0, −1
3π

, 0,
14×3−11/2

�(2/3) , respectively. This density is depicted in Fig. 4.
In Fig. 2 we present new distributions g(7/5,β; x) for

different β, including symmetric g(7/5,0; x), not explicitly
discussed in [21]. In Fig. 4 we display the PDFs g(α,1/3; x)
for different α, including α = 2/3 [see Eqs. (6) and (7)] as
well as g(1/3,1/3; x) confined to −∞ < x � 0. Our method
confirms all the results for symmetric case β = 0 obtained
in related works [20,21], in which unfortunately no graphical
analysis was attempted. Our graphical representations warrant
that it is α which grossly determines the global shape of
g(α,β; x) as well as their heavy tails. From Fig. 2 we also
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conclude that β has a much weaker influence on their shape
as g(α = const,β; x) for different β are loosely evocative of
each other.

IV. DISCUSSION AND CONCLUSIONS

The precise knowledge of distribution functions g(α,β; x)
is a prerequisite for developing all the theories of anoma-
lous diffusion based on the Fokker-Planck equations [33]
in conventional and fractional derivatives versions [18,33].
The new solutions presented here offer a convenient starting
point for carrying out a systematic study of this approach,
as they explicitly contain the parameter β (usually set to
β = −α in earlier attempts). Our solutions will also directly
apply to analysis of hydrogen diffusion in the amorphous,
high-temperature phase of Pd85Si15H7.5 [3] in which α = 1.54.
In econophysical context [1] the values α ≈ 1.42–1.81 were
observed, whereas in [2] the values α = 1.64, 1.78, and 1.33

were attributed to the fits of statistics of 2000 Dow Jones
Industrial Averages, to 1635 Boeing stock price returns, and
to the fluctuations of Yen-US$ exchange rate (1978–1991),
respectively.

In conclusion, the presence of two natural parameters α

and β in our solutions could permit a precise description
of experimental and statistical data characterized by Lévy
distributions. The index α governs the heavy tails, whereas α

and β adjust the position of distribution peaks. We expect that
these solutions will be of use in the wide, boundary-crossing
field of applications of Lévy laws.
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