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Directed excitation transfer in vibrating chains by external fields
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We study the coherent dynamics of excitations on vibrating chains. By applying an external field and matching
the field strength with the oscillation frequency of the chain it is possible to obtain an (average) transport of an
initial Gaussian wave packet. We distinguish between a uniform oscillation of all nodes of the chain and the chain
being in its lowest eigenmode. Both cases can lead to directed transport.
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I. INTRODUCTION

The transport of energy or charge is fundamental for a
large variety of physical, chemical, and biological processes.
One of the most prominent examples is the energy transfer in
the light-harvesting complexes in photosynthesis [1]. There,
the energy of the captured solar photons is transported via a
molecular backbone to the reaction center where the energy
is transformed into chemical energy. Recent experiments have
shown that coherent features of the transport process might
be crucial for a high efficiency [2,3]. Usually, the system and
the dynamics of the excitation (exciton) is modeled by open
quantum systems where the system of interest, e.g., the light-
harvesting complex, is coupled to an external environment.
It has been shown that the environment can also support the
coherent dynamics [4–10].

Most of the models assume a time-independent Hamil-
tonian motivated by the fact that, indeed, the network of
chromophores underlying the energy transfer is rather static,
even at higher (room) temperatures. However, this need not
be the case. One can easily imagine the situation where the
underlying molecule is not static but performs some kind
of mechanical oscillation. Asadian et al. have shown that
certain types of motions can enhance the transfer efficiency
when compared to the static situation [11]. In a related
model, Semião et al. studied the modulation of the excitation
energies of coupled quantum dots driven by a nanomechanical
resonator mode, also enhancing the transport efficiency [12].
Vaziri and Plenio showed that the periodic modulation of
ion channels leads to the emergence of resonances in their
transport efficiency [13].

Another influence on the dynamics can be external fields.
Hartmann et al. have shown for the coherent transport of an
initial Gaussian wave packet on a discrete (static) chain of
nodes that by suitably switching the direction of a constant
external field, one can achieve directed transport [14]. There,
the switching frequency has been matched with the Bloch
oscillation frequency. The effect of Bloch oscillations on the
trapping of excitations has been studied by Vlaming et al.,
finding that the trapping efficiency crucially depends on the
strength of the external field (the bias) [15,16].

Clearly, mechanical motions and external fields are not
restricted to energy transfer in molecular aggregates. Other
examples include cold atoms in optical lattices whose spacings
can be periodically modulated [17] or waveguide arrays where
the “external field” is achieved by a linear variation of the
effective refractive index across the array (see, e.g., [18]).

A question we address in this paper is whether it is possible
to engineer the excitation transport in systems performing
mechanical oscillations with a constant external field such that
also here one obtains directed transport.

II. MODEL

We consider the excitation dynamics on a finite chain of
N nodes with time-dependent couplings Jn(t) between two
adjacent nodes of the chain. The dynamics will be modeled
by continuous-time quantum walks [19], a model motivated by
the mathematical similarities between the discrete Schrödinger
equation and the classical (diffusive) master equation [20].
In the case of a chain, such a model—sometimes in more
complicated forms—is known in various fields of physics
[21] and physical chemistry [22] under different names, e.g.,
“tight-binding model” [23], “hopping model” or “Anderson
model” (without disorder) [24], “Bose-Hubbard model” [25,
26], or “Frenkel exciton model” [27–29]. A short derivation
of the model for time-independent couplings between the
nodes can be found, e.g., in Chap. 2.1 of the second part
of [29]. It is straightforward to extend this to time-dependent
couplings between the nodes such that in second quantization
the Hamiltonian can be written as

H0 =
N∑

n=1

Enc
†
ncn +

N−1∑
n=1

Jn(t)
(
c†ncn+1 + c

†
n+1cn

)
, (1)

where En are the site energies which we choose to be equal
and constant, i.e., En = E [30]; c

†
n and cn are creation and

annihilation operators, creating and annihilating an excitation
at node n, respectively. In the node basis {|n〉, n = 1, . . . ,N}
we can write c

†
n = |n〉〈vac| and cn = |vac〉〈n|, where |vac〉 is

the “vacuum state” where no excitation is present in the system
(note that 〈vac|vac〉 = 1). Inserting this into Eq. (1) leads to
the following representation of the Hamiltonian:

H0 =
N∑

n=1

En|n〉〈n| +
N−1∑
n=1

Jn(t)(|n〉〈n + 1| + |n + 1〉〈n|).

(2)

Now, in addition, we apply an external field with strength f ,
such that the total Hamiltonian for an excitation on a vibrating
chain reads

HS = H0 + f

N∑
n=1

n|n〉〈n|. (3)
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For chains whose nodes (molecules or atoms) interact via
dipole-dipole forces, the couplings decay with the third power
of the distance between the nodes. Here, on a chain of length
L two nodes k and j have positions (k − 1)L/(N − 1) and
(j − 1)L/(N − 1), respectively, such that their (chemical)
distance rkl = |k − l|L/(N − 1). Then, two adjacent nodes
have rk,k+1 = L/(N − 1). Now, for dipole-dipole forces, the
coupling between next-nearest neighbors is by a factor of
1/8 smaller than the coupling between nearest neighbors.
Therefore, we neglect next-nearest neighbor couplings and
consider only nearest neighbor couplings in H0.

Now, there are two competing effects: On the one hand, ex-
citations in a static chain with an external field perform Bloch
oscillations [14,31,32]. On the other hand, the time-dependent
couplings can cause an enhanced transport efficiency [11–13].
If the oscillations are periodic, the distances between two
adjacent nodes vary in a given interval. Short distances means
stronger couplings and thus faster transport from node to
node. Longer distances lead to weaker couplings and slower
transport. Therefore, matching the Bloch frequency with the
frequency of the chain oscillation should lead to an effective
transport in one direction along the chain. The reason is that in
the first half of the Bloch period TB the distances between the
nodes are smaller, while in the second half of TB the distances
are larger. This leads to different displacements in the two half
periods and consequently, to an overall displacement of the
inital excitation in one direction.

We choose the same two scenarios as used by Asadian
et al. [11] for the couplings Jn(t):

(i) Each node of the chain oscillates uniformly with the same
frequency ω and with the same amplitude a. The couplings
follow now as

Jn(t) = J (t) = −V/[1 − 2a sin(ωt + φ)]3. (4)

(ii) The chain is in its lowest eigenmode, such that for
the qth eigenmode the couplings Jn,q(t) between the nth and
(n + 1)st nodes are

Jn,q(t) = −V/[1 − 2an,q sin(ωqt + φ)]3 (5)

(see Sec. III C for details).
Clearly, for time-constant Jn = J we recover the known

Bloch oscillations with frequency ωB = f/h̄ (we set h̄ =
1 in the following). Thus, the period of the oscillation
TB = 2π/ωB = 2π/f .

The dynamics of an initial excitation is governed by the
Liouville–von Neumann equation for the density operator ρ(t).
Without any external environment leading to decoherence, the
dynamics is fully coherent following

ρ̇(t) = −i[HS,ρ(t)]. (6)

Now, if the system is coupled to an environment such that
the total Hamiltonian can be split into three parts, H tot = HS

+ HR + HRS , where HR is the Hamiltonian of the environ-
ment and HRS is the Hamiltonian of the system-environmental
coupling. For small couplings to the environment we will study
the dynamics by the Lindblad quantum master equation [33]

ρ̇(t) = −i[HS,ρ(t)] − λ

N∑
j=1

(ρ(t) − 〈j |ρ(t)|j 〉)|j 〉〈j |, (7)

where we assumed Lindblad operators of the form
√

λ|j 〉〈j |.
The term proportional to λ mimics the influence of the
environment leading to decoherence. In the following we will
consider the occupation probabilities ρkk(t) ≡ 〈k|ρ(t)|k〉 for a
given initial condition ρ(0).

III. RESULTS

In all calculations shown below we used N = 103 and an
initial Gaussian wave packet centered at Nc(0) = N0 with a
standard deviation of σ = 6. We adjust N0 such that in the
first two periods of the Bloch oscillations the wave packet
does not encounter the edges of the chain, such that we can
exclude interference effects caused by reflection. We further
take V = 1.

A. Static chain

We start by considering the static chain, i.e., no oscil-
lations (a = 0). Without any external field and no external
environment, the dynamics of wave packets on the static
chain is very similar to the motion of a quantum particle in a
box [34,35]. One can also observe (partial) revivals of initially
localized wave packets caused by reflections at the end of the
chain, thus obtaining the discrete analog of so-called quantum
carpets [36,37].

When applying an external field, the situation changes.
Figure 1 shows for N0 = 78 the well-known Bloch oscillations
in the occupation probabilities ρkk(t) with Bloch frequency
ωB = f for f = 0.2 with no external coupling, λ = 0 (left
panel) and with small external coupling, λ = 0.05 (right
panel). One clearly recognizes the oscillation period of
TB = 2π/f = 10π . The coupling to the environment leads
to a spreading of the wave packet over more and more nodes
as time progresses. Eventually, this will lead to the equilibium
distribution.

In a continuous approximation for an infinite line, the
position of the center of the wave packet follows for vanishing
initial momentum as [14,31,32]

�N (t) ≡ Nc(t) − N0 � −4V

f
sin2(f t/2). (8)

Obviously, there is no transport after integer values of TB ,
only after TB/2 = π/f has the wave packet traveled by
|�N (TB/2)| = 4V/f = 20 nodes in the direction of the field.
We note that by instantly reversing the field after TB/2 the
wave packet will continue to move to the left side, such that it
is possible to obtain directed transport by switching the field
every half-period, see [14] for details.

B. Uniformly oscillating chain

If the chain is not static (a �= 0) but oscillates such that the
couplings are given by Eq. (4), it is possible to obtain—on
average—a net transport of the wave packet in one direction.
However, this will depend on the choice of the field strength
f , i.e., on the frequency of the Bloch oscillation, on the phase
shift φ, and on the amplitude a.
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FIG. 1. (Color online) Static chain: Contour plot of the occupation probabilities for a = 0 and f = 0.2 with λ = 0 (left panel) and λ = 0.05
(right panel). Dark (black) regions correspond to large probabilities, while bright (yellow/white) regions correspond to low probabilities.

1. Analytical approximation

Before turning to the numerical results, we give an
analytical estimate of the displacements �Nl ≡ [Nc(lTB)
− N0] (l ∈ N) of the center of the wave packet after integer
values of the Bloch period TB . For the static (infinite) chain,
starting from Eq. (8) and differentiating with respect to time,
one has

Ṅ (t) = −4V sin(f t/2) cos(f t/2) = −2V sin(f t), (9)

which gives the temporal change of the displacement. Thus,
the rate of transport from node to node is V . We extend this idea
to the oscillating chain and replace the coupling V with the
time-dependent coupling J (t). Then, we define the approx-
imate displacements by integrating Ṅ (t) over integer values
of TB :

�Nl,approx ≡ −2V

∫ lTB

0
dt

sin(f t)

[1 − 2a sin(ωt + φ)]3
. (10)

For ω = f this leads to

�Nl,approx = −12lπaV cos φ

f (1 − 4a2)5/2
. (11)

Clearly, the displacement is maximal for φ = 0 and minimal
(zero) for φ = π . Note that �Nl,approx is only valid for the
infinite chain. In the following we will compare �Nl,approx to
numerical results obtained from Eq. (7). As we will show, for
the uniformly oscillating chain, �Nl,approx agrees very well
with the numerical results. Also, for the chain in its lowest
eigenmode we will use �Nl,approx as a starting point to define
an ad hoc fitting function �Nl,fit which also turns out to be in
very good agreement with the numerical results.

2. Numerical results

Figure 2 shows the occupation probabilities ρkk(t) for the
case ωB = f = ω = 0.2 with a = 0.1 and for different phase
shifts φ. Again, the left panels show the results for isolated
chains (λ = 0) and the right panels for small couplings to
an external environment (λ = 0.05). Plots in different rows
correspond to different φ. Matching f with ω and having no
phase shift results —on average—in a directed transport of the
initial wave packet in the direction of the field. In the second
half of each Bloch period TB the wave packet moves in the

opposite direction. However, this is overcompensated by the
motion in the direction of the field in the first half of each
period.

The dependence on the phase shift can be expressed by
only considering the average displacement �Nl . Figure 3
shows the dependence of �N1 and �N2/2 on φ for the same
parameters as in Fig. 2. We chose the initial condition such
that interference effects due to reflections at the boundaries
are avoided, i.e., for φ = 0 we take N0 = 39, for φ = π/2 we
take N0 = 52, and for φ = π we take N0 = 78. Note that this
has no influence on the dynamics because the couplings in the
chain are translational invariant. We distinguish between �N1

after one and �N2 after two periods because, in general, one
cannot expect a linear behavior of �Nl in l. However, as it
turns out �Nl is approximately linear in l for the uniformly
oscillating chain.

Changing the phase shift allows one to control the transport:
No phase shift (φ = 0) results in values of �N1 ≈ −21 after
one period. A phase shift of φ = π/2 results in a behavior
similar to the Bloch oscillations in the static chain, i.e., no
transport (see also Fig. 1). Increasing φ further leads to a
reversed motion, i.e., the wave packet moves “uphill” against
the direction of the field. For φ = π the maximal displacement
after one period of �N1 ≈ 21 is obtained. For the uniformly
oscillating chain, the values for �N2/2 coincide with the
ones for �N1 leading to the linear behavior �Nl = l�N1.
In addition, Fig. 3 shows the analytical estimate of Eq. (10),
which agrees with the numerical results.

The magnitude of the displacements �Nl also depends on
a. Figure 4 shows �Nl/l as a function of a for N0 = 52 and
φ = 0,π/2, and π . While for φ = π/2 there is no displacement
after integer values of TB , the displacements for φ = 0 and for
φ = π grow with increasing a. Again, the dashed lines show
the approximation �N1,approx, which nicely agrees with the
numerical results.

The effect of having directed transport depends on having
the field strength in resonance with the chain oscillation
frequency. In order to see how crucial the exact matching
of f and ω is, we study slightly detuned frequencies ωB ,
i.e., a mismatch between ω and f . Figure 5 shows for φ = 0
(leading to maximal �Nl for ω = f ) and for ω = 0.2 the
occupation probabilities ρkk(t) for different values of f . Note
that changing f also changes the Bloch period TB = 2π/f ,
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FIG. 2. (Color online) Oscillating chain: Contour plot of the occupation probabilities ρkk(t) for a = 0.1 and ω = f = 0.2 with λ = 0 (left
panels) and λ = 0.05 (right panels). The three rows correspond to different values of φ = 0,π/4, and π/2, respectively.

thus the time axes are different for different f . A field strength
of f = 0.18 or f = 0.22 reflects a detuning by ±10% of
ω. This still results in an average directed transport after
two periods of �N2 ≈ 30 for f = 0.18 and of �N2 ≈ 36
for f = 0.22. Increasing the detuning further diminishes the
transport.
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FIG. 3. (Color online) Oscillating chain: Displacements �Nl/l

with l = 1,2, extracted from the occupation probabilities for N0 = 52,
as a function of φ for a = 0.1, ω = f = 0.2, and λ = 0. The dashed
lines show �Nl,approx given in Eq. (10).

Figure 6 shows the displacements �Nl/l for φ = 0 and
different values of f . The maximal displacement is obtained
for ω ≈ f , as expected. Decreasing or increasing f results in
smaller displacements: For f > ω the decrease in displace-
ment is slower than for f < ω. One also observes that the
displacements change direction. For f < ω, �N2/2 changes
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FIG. 4. (Color online) Oscillating chain: Displacements �Nl/l

with l = 1,2 as a function of a for ω = f = 0.2, λ = 0, and φ

= 0,π/2,π with N0 = 39, 52, and 78, respectively. The dashed lines
show �Nl,approx given in Eq. (10).
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FIG. 5. (Color online) Oscillating chain: Contour plot of the
occupation probabilities ρkk(t) with ω = 0.2, a = 0.1, φ = 0, and
λ = 0 for different values of f .

direction at about f/ω = 0.8 and �N1 at about f/ω ≈ 0.67.
For f > ω, the direction change happens at larger deviations
from the resonance condition. Additionally, there are maximal
displacements in the opposite direction.

As before, we can obtain an approximation to the numerical
results: Considering now f �= ω in Eq. (10) and numerically
integrating over integer values of the Bloch oscillation yields
the dashed curves shown in Fig. 6. Again, the approximation
is in very good agreement with the numerical data.

Having now explored a large region of the parameters f/ω,
a, and φ, we see that the dynamics of an initial Gaussian
wave packet can be manipulated by a suitable choice of
these parameters: We can make the wave packet move—on
average—in one preferred direction by choosing the phase
shift φ. The magnitude of the displacements in either direction
is given by a. Moreover, we do not have to exactly match the
Bloch frequency ωB = f with the oscillation frequency ω in
order to obtain directed transport; there is a fairly large range of
roughly ±10% around f/ω = 1 in which large displacements
can be obtained.

C. Chain in lowest eigenmode

In contrast to the previous section, we now consider the
dynamics on a finite chain in its lowest eigenmode. Although
this mode is similar to the uniform oscillation, the finite size of
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FIG. 6. (Color online) Oscillating chain: Displacements �Nl/l

with l = 1,2 as a function of f for a = 0.1, ω = 0.2, φ = 0, and
λ = 0 (note the semilogarithmic scale). The dashed lines show the
approximation obtained by numerical integration (see text for details).

the chain becomes crucial leading to a nonuniform oscillation
of the nodes.

The couplings Jn,q (t) in Eq. (5) between the nodes are
obtained from a normal mode analysis of a free chain of
nodes connected by springs (see [11] for details). Although
the motion of the nodes is not uniform [38], there are close
similarities to the results presented in the previous section.

In order to obtain comparable results we have to adjust
the amplitudes and frequencies according to the couplings
Jn,q (t) between nodes n and n + 1 for the qth eigenmode. The
couplings in Eq. (5) can be written as

Jn,q(t) = −V

[
1 − 2a sin[2ωt sin(qπ/2N ) + φ]

cos(qπ/2N )

× sin(nqπ/N ) sin(qπ/2N )

]−3

, (12)

such that one has

an,q ≡ a sin(nqπ/N ) sin(qπ/2N )

cos(qπ/2N )
(13)

and

ωq ≡ 2ω sin(qπ/2N ). (14)

Thus, in the following we will use ωq = f as the resonance
condition for the frequency and the field. For the amplitude an,q

to be comparable to the amplitudes in the previous section, we
consider the average absolute value of the amplitudes, i.e.,

āq ≡ 1

N

N∑
n=1

|an,q | = a

N
tan(qπ/2N )

N∑
n=1

| sin(nqπ/N )|

= aq

N
tan(qπ/2N ) cot(qπ/2N ) = aq

N
. (15)

Thus, we consider amplitudes āq which—on average—are of
the same order as the ones in the previous section. This means
that we choose the parameter a in Eq. (13) to be a = Nāq/q.

Similarly to Fig. 2, Fig. 7 shows the occupation probabilities
ρkk(t) for the case ωB = f = ω1. All plots in Fig. 7 show
results for ā1 = 0.04. We use ā1 = 0.04 because this clearly
avoids interference effects due to reflections at the ends of
the chain. Coupling this system to an external environment
leads, again, to decoherence and a spreading of the initial
wave packet.

Figure 8 shows a comparison of the displacements �Nl as
a function of the phase shift φ for different N0. Already for
the central initial node, N0 = 52 (upper panel), one notices
the asymmetry between the behavior of �N1 and �N2/2 for
values of φ ∈ [0,π/2] and values of φ ∈ [π/2,π ]. For φ >

π/2 the difference between �N1 and �N2/2 is smaller than for
φ < π/2 (see, in particular, the points for φ = 0 and φ = π ).
One also notices that φ = π/2 yields �Nl �= 0, in contrast to
the uniformly oscillating chain. However, the overall behaviors
for the two chains are very similar. Therefore, we fit our
numerical result for �N1 by a cosine, as suggested by Eq.
(10), namely, we use

�Nl,fit ≡ βl

ā1 cos(φ + αl)(
1 − 4ā2

1

)5/2
, (16)
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FIG. 7. (Color online) Lowest eigenmode: Contour plot of the occupation probabilities ρkk(t) for ā1 = 0.04 and ω1 = f = 0.2 with λ = 0
(left panels) and λ = 0.05 (right panels). The three rows correspond to different values of φ = 0,π/4, and π/2, respectively.

where αl and βl are (l-dependent) fit parameters. This already
yields very good agreement with the numerical results (see the
dashed lines in Fig. 8).

Changing the initial node N0 influences the behavior
of the wave packet. Figure 8 also shows the behavior of
�N1 and �N2/2 for N0 = 42 (lower panel, right half) and
N0 = 78 (lower panel, left half). While for N0 = 52 one has
|�N1| � |�N2/2|, one observes for N = 42 and for N0 = 78
that |�N1| � |�N2/2|. However, for all initial nodes shown
in Fig. 8, the maximal displacements (for φ = 0 and φ = π )
are in the same region about |�Nl/l| ≈ 12.

The slight asymmetry can be attributed to the nonuniform,
i.e., nontranslational invariant, motion of the nodes of the chain
and the additional influence of the external field, which breaks
the point symmetry with respect to the center.

The ā1 dependence of the displacements is shown in
Fig. 9. Although the absolute values of �Nl/l are different
for different N0, there is a similar behavior for different values
of φ. Moreover, the behavior is similar to the one for the
uniformly oscillating chain (see Fig. 4). Therefore, we fit the
ā1 dependence of �N1 by �N1,fit given in Eq. (16). Also
here are the fits in very good agreement with the numerical
results.

Figure 10 shows the displacements �N1 and �N2/2 as
a function of f for φ = 0 with N0 = 52. Similar to the
oscillating chain, the displacements are maximal for f ≈ ω1.
The dashed lines show the approximations obtained for the
oscillating chain (see Fig. 6) but rescaled by a factor 1/2.
Already this rough approximation yields good agreement to
the numerical results. However, the points for f/ω = 0.6 have
to be considered with care, because such a detuning leads to
interference effects due to reflection at the end node of the
chain after one half period. This interference obviously can
influence the dynamics of the wave packet.

Now, also for the chain in its lowest eigenmode, we
obtain similar results to the ones for the oscillating chain.
However, the absolute values of the parameters are different.
Nevertheless, the approximations given by Eq. (10) turn out
to give qualitatively the correct behavior. Therefore, the same
conclusions as for the oscillating chain apply here.

D. Effect of disorder

In order to study the robustness of the directed transport we
examine the dynamics of the initial wave packet with diagonal
disorder. Biased chains with disorder but without vibrations
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FIG. 8. (Color online) Lowest eigenmode: Displacements �Nl/l

with l = 1,2 for N0 = 52 (upper panel) and for N0 = 42 and N0 = 78
(lower panel) as a function of φ for ā1 = 0.04, ω1 = f = 0.2, and
λ = 0. The dashed lines show the fits for �Nl,fit given by Eq. (16).

have been studied before [15]. Here, it was found that for
given disorder strength the transport can be tuned by varying
the strength of the bias, thus compensating the (Anderson)
localization by Bloch oscillations.

Since the uniformly oscillating chain and the chain in its
lowest vibrational eigenmode qualitatively behave in a similar
way, we exemplify the effect of disorder for the uniformly
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show the fits for �N1,fit given by Eq. (16).
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FIG. 10. (Color online) Lowest eigenmode: Displacements
�Nl/l with l = 1,2 as a function of f for N0 = 52, ā1 = 0.04,
ω1 = 0.2, φ = 0, and λ = 0 (note the semilogarithmic scale). The
dashed lines show the approximations of Fig. 6 scaled by a factor of
1/2 (see text for details).

oscillating chain with Gaussian disorder of different strengths
(standard deviation) σd . Here, we consider diagonal (on-site)
energetic disorder, i.e., the on-site energies are augmented with
uncorrelated random numbers from a Gaussian distribution
centered around zero with standard deviation σd . We also re-
strict ourselves to the case where one has—for fixed amplitude
a—the most effective directed transport, i.e., we neglect any
coupling to an environment (λ = 0) and we fix ω = f = 0.2
and φ = 0. Figure 11 shows the ensemble-averaged occupation
probabilities after two Bloch periods, ρ̄kk(2TB), for the same
system size as above without disorder (σd = 0), and with
different strengths (standard deviations) of Gaussian disorder
(σd = 0.1V, . . . ,1.0V ); the ensemble average runs over 500
realizations.

While with relatively weak disorder (σd = 0.1V ) the
effect of directed transport is still present, although in the
ensemble average the occupation probabilities ρ̄kk(t) do not
fully conserve the Gaussian shape (see solid lines), this effect
is destroyed for larger disorder. For larger disorder strengths
(σd = 0.5V ), there is still a remainder of the Bloch oscillation
after two Bloch periods, visible as a broad distribution of
ρ̄kk(2TB), which has its maximum on the left-hand side of the
initial distribution. Increasing the disorder further (σd = 1.0V )
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FIG. 11. (Color online) Oscillating chain with Gaussian diagonal
disorder: Ensemble averaged occupation probabilities after two
Bloch periods TB , ρ̄kk(2TB ) (symbols), for a chain of length N

= 103 without disorder (σd = 0), and different strengths (standard
deviations) of Gaussian disorder (σd = 0.1V, . . . ,1.0V ). All other
parameters for the chain are chosen to yield (for a = 0.1) the largest
deviation after two Bloch periods, i.e., ω = f = 0.2, φ = 0, and
λ = 0. The ensemble average runs over 500 realizations. The solid
lines show Gaussian fits to ρ̄kk(2TB ).
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results in localization around the initial condition. Therefore,
instead of varying the field strength f with fixed disorder
strength σd as in [15], we find that the directed transport in
chains vibrating with frequency ω and with an external field of
strength f = ω crucially depends on the disorder. In particular,
weak disorder still allows for directed transport.

Apart from Anderson localization which is due to disorder,
it is also known that a time-dependent external field can lead
to (dynamic) localization of excitations in static chains [39].
Since in our case a rather sensitive matching of field strength
with the chain’s vibrational frequency is needed in order to
achieve directed transport, we expect that a time-dependent
field will hamper, if not prevent, directed transport. A more
detailed study of both localization effects will be given
elsewhere.

IV. CONCLUSIONS

We have studied the coherent transport of excitations
on a finite chain with time-dependent couplings between
adjacent nodes of the chain and in the presence of an external
field. The field leads to Bloch oscillations, while regular
time-dependent couplings can lead to an increased transport
efficiency of excitations along the chain. We showed for

uniformly oscillating chains and for a chain in its lowest
eigenmode that matching the Bloch oscillation frequency with
the frequency of the chain leads to an (average) directed
displacement of an initial Gaussian wave packet, even for weak
disorder. Applying a phase difference allows one to manipulate
the direction of the transport, while changing the amplitude of
the regular oscillation allows one to manipulate the strength of
the displacements. We corroborate our findings by an analytic
(continuous) approximation for the average displacement of an
initial Gaussian wave packet in an infinite chain after integer
values of the Bloch period. For the uniformly oscillating chain,
this ansatz yields a functional form for the displacements,
which agrees very well with the numerical data. Using the same
functional form also allows one to define a fitting function
for the chain in its lowest eigenmode, also leading to very
good agreement with the numerical results. In both cases,
interference effects due to reflections at the ends of the chains
have been neglected.
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