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Frequency-resonance-enhanced vibrational resonance in bistable systems
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The dynamics in an overdamped bistable system subject to the action of two periodic forces (assuming their
frequencies are ω and �, and amplitudes are A and B, respectively) is studied. For the usual vibrational resonance,
the nonmonotonic dependence of signal output of the low frequency ω on the change of B for a fixed �, the
condition � � ω is always assumed in all previous studies. Here, removing this restriction, we find that a resonant
behavior can extensively occur with respect to the changes of both the frequency � and amplitude B. Especially,
the resonance becomes stronger when � is chosen such that it is exactly in frequency resonance with ω. This
combinative behavior, called frequency-resonance-enhanced vibrational resonance, is of great interest and may
shed an improved light on our understanding of the dynamics of nonlinear systems subject to a biharmonic force.
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I. INTRODUCTION

Stochastic resonance, the phenomenon of the response of
nonlinear systems to a weak periodic signal enhanced by
an appropriate amount of noise, has drawn much attention
in nonlinear sciences for more than 30 years [1–3]. The
constructive role of noise has been extensively studied in
a variety of nonlinear systems, e.g., bistable systems [4,5],
monostable systems [6], excitable systems [7], nondynamical
threshold models [8], and ensembles of interacting nonlinear
elements [9]. Considerable works on theoretic analysis [10]
and experimental observations [11] have been conducted, and
now the focus has been moved to its applications in diverse
fields.

Recently, a high-frequency signal, as another type of
excitation, has been proposed in the context of stochastic
resonance and found that it can play a similar role as noise
[12–15]. The system’s response to a weak low-frequency
signal can also become maximal by an appropriate choice
of vibration amplitude for the high-frequency signal. This
phenomenon is referred to as vibrational resonance. Since
biharmonic signals are pervasive in many science and appli-
cation fields, such as acoustics [16], neuroscience [17], laser
physics [18], engineering [19], and even the Global Positioning
System [20], the study of vibrational resonance is of great
significance, and indeed it has been widely investigated in
various systems, including excitable [21–24], bistable [25–28],
and spatially extended systems, etc. [29–31]. Chizhevsky
et al. provided the first experimental evidence of vibrational
resonance in a bistable vertical cavity laser system [32]. A
recent theoretical study demonstrated that with the change
of driving amplitude, a high-frequency signal may induce a
system transition from bistable to monostable and result in a
substantial change of the system response across the critical
point [33].

Although vibrational resonance is called resonance, it has
little in common with the classical concept of (frequency)
resonance [34]. Vibrational resonance means the resonant am-
plification of the signal output with respect to the amplitude of
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the external force, which is usually assumed as high frequency,
whereas frequency resonance means its resonant amplification
with respect to the frequency of the external force, especially
when it becomes exactly equal to or is multiples of the natural
frequency of the system. Therefore, basically, vibrational
resonance is an amplitude effect and frequency resonance
is a frequency effect. In frequency resonance, small periodic
driving forces can produce a large amplitude output, whereas in
vibrational resonance, only sufficiently large periodic driving
forces can produce a large amplitude effect. So far, to the best of
our knowledge, in all existing works on vibrational resonance,
the condition for a biharmonic force with two very different
frequencies was always preassumed, and thus the possible
connection and interplay between vibrational resonance and
frequency resonance remains unclear.

In this paper, we attempt to study vibrational resonance
within the whole parameter plane constructed by the pa-
rameters of amplitude and frequency, in the absence of the
condition of two frequencies being very different. We find
that vibrational resonance can appear under the condition
of only two low frequencies, and more interestingly, the
frequency-resonance effect may even be superimposed on
the vibrational resonance curve. These findings show the
combinative effects of the system nonlinearity and two external
competitive signals.

II. MODEL

We still consider the classical model written by

ẋ = x − x3 + A cos(ωt) + B cos(�t + φ). (1)

The model describes the overdamped motion in the bistable
potential U (x) = x4

4 − x2

2 subject to the modulation of two
different periodic signals with frequencies ω (ω = 2π/T ) and
� (� = 2π/T

′
), respectively. Their corresponding driving

intensities (amplitudes) are A and B. Different with previous
studies on vibrational resonance with the restriction of � � ω,
here we are interested in the system response with � capable
of being freely chosen. Namely, the value of � can be tuned
from zero to a very large number. Without losing generality,
the first periodic signal is always set to be weak (subthreshold)
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and of low frequency (A � 1 and ω � 1). Therefore, without
the second signal �, no system transition can occur. Under
this condition, B is always sufficiently larger than A and
the term A cos(ωt) in Eq. (1) can be ignored, and thus the
value of φ is not important. However, if the values of B

and A are comparable (A � 1 and B � 1), φ should be
important in the resonance case � = nω; a similar idea has
been applied in the chaos control within the framework of
the phase control method [35]. In this paper, the parameters
A = 0.1, ω = 0.2, and φ = 0 are always chosen and fixed. For
the computer simulation of Eq. (1), the standard fourth-order
Runge-Kutta approach with a fixed time step �t = 0.01 is
applied.

To quantify the response of the system to the first weak
periodic signal, we calculate Q [12],

Q =
√

Q2
c + Q2

s

/
A,

Qc = 2

nT

∫ nT

0
x(t) cos(ωt)dt, (2)

Qs = 2

nT

∫ nT

0
x(t) sin(ωt)dt,

after discarding transient processing. Clearly the value of Q

is proportional to the Fourier transform coefficient F (ω′) at
ω′ = ω [F (ω′) = ∫ +∞

0 eiω′t x(t)dt], i.e.,

Q ∝ |F (ω′ = ω)|. (3)

The benefit of calculating Q is that it is direct and fast, as we
do not need to calculate the Fourier transform spectrum for
all ω′.

III. OBSERVATIONS AND RESULTS

Figures 1(a) and 1(b) show Q as a function of � and
B in a three-dimensional (3D) plot and a two-dimensional
(2D) contour plot, respectively. Clearly the usual vibrational
resonance occurs with a change in B for a sufficiently large,
fixed � (� � ω). Say, e.g., � = 5.0. These resonance peaks
can also be viewed to exist in the � direction for a fixed B,
and their height is nearly unchanged for � � ω and B � 1.
With a decrease of both � and B, surprisingly, we find that
the value of Q may even become larger, compared to the
constant value within the high-frequency � region. Roughly,
the peak is located at � ≈ 0.7. With a further decrease of �

and B, along the peak curve Q quickly damps and vanishes.
As a result, a clear resonant curve for the local maximum Q

appears on the (�, B) plane and its peak value depends on the
values of both � and B. Explicitly, we may denote its locus as
(�∗, B∗).

If we take a closer look at the pattern in Fig. 1, we can well
recognize some small, sharp resonant peaks on the resonant
curve, which clearly come from frequency resonance between
ω and �. We show Q vs �∗ in Fig. 2(a) and its magnified
plot in Fig. 2(b). Clearly these peaks are located at � = nω,
for n = 2, 3, and 4. Based on these observations, we may call
it frequency-resonance-enhanced vibrational resonance. It is
notable that these sharp resonant peaks are located above the

FIG. 1. (Color online) (a) and (b) The 3D plot and contour plot of
response Q as a function of � and B. The other parameters, A = 0.1,
ω = 0.2, and φ = 0, are fixed.

vibrational resonance curve and depend on the values of both
�∗ and B∗.

All these findings indicate that the vibrational resonance,
which has long been believed to occur only with two very
different frequencies (one is low-frequency and the other
is high-frequency), actually can appear in a much broader
parameter region. More interestingly, the system response gets
stronger at proper values of both � and B (usually � is only
several times of ω); this gives rise to the vibrational resonance
at small � and the frequency-resonance-enhanced vibrational
resonance at � = nω.

In Fig. 1, for even smaller �, something unusual appears.
Q monotonically increases with B, when � = ω is chosen.
This is easy to understand. For several other discrete values of
� (� < ω), it appears that the monotonic increase of Q vs B

is unchanged. At the end of the paper, we will give a detailed
discussion on this phenomenon.

In Ref. [33], the vibrational resonance of a high-frequency
force was theoretically studied by the method of inertial
approximation, with which, relying on � � ω, x(t) in
Eq. (1) can be decomposed into a slow motion X(t) and a fast
motion �(t), and the evolution equation of the slow motion
X(t) can be written as

Ẋ =
(

1 − 3B2

2�2

)
X − X3 + A cos(ωt). (4)
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(a)

(b)

FIG. 2. (Color online) (a) Q vs �∗ and (b) its magnification
plot, showing the resonant curve of Q vs �∗ (also B∗) on the locus
of the bifurcation parameter (�∗,B∗) and the frequency-resonance-
enhanced vibrational resonance effect. ω = 0.2.

Based on the bifurcation analysis of such a simplified equation
and the dynamical stabilization of the unstable point, quanti-
tatively we have [33]

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
ω2+4

(
1− 3B2

2�2

)2
, B < Bc1,

1√
ω2+

(
1− 3B2

2�2

)2
, B � Bc1,

(5)

where

Bc1 = �

√
2

3
. (6)

Clearly Q increases with B at B < Bc1 and decreases with
B at B � Bc1, and a vibrational resonance curve of Q vs
B appears. Due to this linear dependence of Bc1 on �, a
vibrational resonance with � also exists, which is exactly
what we see in Fig. 1 for � � ω and B � 1. Thus the high-
frequency signal can change the dynamics of the slow motion,
giving rise to a system transition from bistable to monostable,
and make the amplitude of the slow motion become maximal at
the transition point. Therefore, theoretically the peak position
for the vibrational resonance should correspond to the system
threshold from bistable to monostable.

Our numerical result shows that this is correct and the above
picture can be generalized to the whole � parameter region. In
Fig. 3, the local maximum data in Fig. 1 indicating (�∗, B∗)
are chosen and plotted by a solid line, and the threshold data
from bistable to monostable denoted by Bc are numerically
obtained and plotted by a dashed line. [As some examples,
bifurcation diagrams of x(t) for different �’s are illustrated in
Fig. 4, where the dynamical changes across point Bc are clear.]
Comparing these two lines, we find that they match mostly,
except for a slight deviation for large �. This mismatch can

FIG. 3. (Color online) The plots of B∗ (solid line), Bc (dashed
line), Bc1 (dashed-dotted line) from Eq. (6), and Bc2 (dotted line)
from Eq. (7) vs �. Obviously, for any �, the peak of the vibrational
resonance at (�∗,B∗) originates from the system bifurcation from
bistable to monostable at Bc.

also be found in the experimental and numerical observations
in Ref. [33]. Therefore, we know that basically within the
whole (�, B) parameter plane, the vibrational resonance
exists and comes from the system transition from bistable
to monostable, with the feature independent of the specific
value of �.

For comparison, the theoretical prediction Bc1 in Eq. (6) is
shown with a dashed-dotted line in Fig. 3. In addition, another
prediction Bc2,

Bc2 = �

√
2(1 − u∗)

3
, (7)

u∗ = S+ + S−, S± =
[

3A2 ±
[

9A4 + 6ω6

27

]1/2
]1/3

,

according to the method of harmonic balance [36], is also
calculated and plotted by a dotted line. Obviously, it fits the
line Bc well, but it still deviates the line B∗.

FIG. 4. (Color online) (a)–(c) Bifurcation diagrams of x(t)
for different values of �: � = 0.12, 0.6, and 4.0, respectively,
indicating the system transition from bistable to monostable across the
threshold Bc.

061122-3



CHENGGUI YAO, YAN LIU, AND MENG ZHAN PHYSICAL REVIEW E 83, 061122 (2011)

(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

FIG. 5. (Color online) Time series x(t) for different parameter
values of � and B. From the top row to the bottom row, different
�’s are chosen: � = 0.12, 0.6, and 4.0, respectively. From the left-
hand column to the right-hand column, different B’s are chosen:
B < B∗,B = B∗, and B > B∗, respectively. Specifically, B = 0.3
(a), 0.44 (b), 0.5 (c), 0.4 (d), 0.56 (e), 0.7 (f), 2.0 (g), 2.8 (h), and 3.5
(i). In the middle column, how to calculate period Ti and amplitude
Ai of the slow motion is schematically shown, and the solid lines
stand for the periodic signal A cos(ωt).

In order to make the dynamical behaviors clearer, the time
series of x(t) in Eq. (1) for different parameter values of
� and B are given in Fig. 5. For the rows, from top to
bottom, � = 0.12, 0.6, and 4.0. For the columns, from left
to right, different values of B (B < B∗,B = B∗, and B > B∗)
are chosen. Comparing any three subfigures in each row, we
do find the dynamical change from bistable to monostable.
For different �’s, we also find a stronger high-frequency
modulation effect with an increase of � (comparing the third
row with the first two rows).

So far we know that the vibrational resonance can occur
for all �’s as shown in Fig. 1. However, the problem as to
why the resonance occurs on the bifurcation parameter curve
(�∗,B∗) as shown in Fig. 2 remains unanswered. We do not
understand why for proper intermediate values of � and B

the system can oppositely respond stronger, as compared to
much larger values of � and B. We also do not understand
how the frequency-resonance-enhanced vibrational resonance
occurs. To this end, we study the time series x(t) on the
parameter set (�∗,B∗), as shown the middle column in
Fig. 5, and check their changes. For example, we first select
all the local maximum points (denoted by open circles), and
then calculate the system instantaneous period Ti by the time
interval between any two successive maximum points among
all these selected points and the system amplitude 2Ai by the
amplitude difference between any two successive maximum
and minimum points among all these selected points again.
The calculation process is schematically shown in the figures.
The values of Ti and Ai should catch the essential feature
of the system dynamics, the slow motion. The results for Ti

and Ai with a change of �∗ are shown in Figs. 6(a) and 6(c).
The magnification of Fig. 6(a) is shown in Fig. 6(b). From
these figures, we can find that Ti is multivalued, except for
several discrete parameters at �∗ = nω and n � 2, which is

FIG. 6. (Color online) (a) and (c) Ti and Ai (from Fig. 5) vs �∗. (b)
The zoomed-in picture of (a), showing Ti = T ≈ 31.4 at �∗ = nω.
Clearly the resonant curve in Fig. 2 comes from the coaction of Ti

and Ai .

much clearer in Fig. 6(b). Only at these parameters (open
circles) is Ti exactly equal to the low-frequency period T ,
i.e., Ti = T = 2π/ω ≈ 31.4. Meanwhile, in Fig. 6(c), with an
increase of �∗, Ai monotonically decreases from Ai ≈ 0.9 to
0.5, after the first approximately constant region (�∗ � 0.8).
Based on these observations, Q monotonically increases with
� for small �, as Ti becomes ordered and saturates to
T , and meanwhile Ai is independent of the change of �.
After that (� ≈ 0.7), Q monotonically decreases with � due
to the monotonic decrease of Ai . Hence the nonmonotonic
resonancelike dependence of Q on �∗ (also B∗) occurs in
Fig. 2. On the other hand, the values of Q become much
larger at the resonant frequencies: � = nω and the resonant
effect becomes enhanced, due to exact match of Ti with T .
When � � ω, the frequency resonant effect fades. Since
the system response should be contributed to by both the
amplitude and phase of the slow motion, now it is easy to
understand the occurrences of the resonant curve with �∗ and
the frequency-resonance-enhanced effect in Fig. 2.

Finally, let us move to the smaller � parameter region
(� < ω) and study the underlying mechanism for the peaks.
A detailed study shows that these peaks only occur at some
specific values of �: � = ω

n
, where n is odd. In Fig. 7(a), Q

is plotted as a function of B for � = ω
3 , ω

5 , ω
7 , ω

9 ; clearly Q

monotonically increases after the first fluctuation region for
small B. In Fig. 7(b), Q is plotted as a function of � for a
fixed B = 5.0; the peaks at � = ω, ω

3 , ω
5 , . . ., are clear. In

Figs. 7(c) and 7(d), the time series x(t) and the corresponding
power spectra are shown, respectively, for � = 0.03 (solid
line) and � = 0.04 = ω

5 (dotted line); B = 5.0. Clearly as
now a sufficiently large B is generally considered (B � A)
and � < ω, the system will perform a periodic motion with
the period T ′ (T ′ = 2π/�). This is a key difference with
the situation of � > ω. Based on the symmetric potential
in Eq. (1), we have the system must be invariant under the
parity symmetry transformation T : x → −x,t → t + T ′

2 , i.e.,
x(t + T ′

2 ) = −x(t), and further x(t) should possess only odd
Fourier coefficients [2]. This point has been well confirmed by
Fig. 7(d), where only odd Fourier spectrum peaks at ω′ = �,
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FIG. 7. (Color online) The study of signal enhancement at � < ω.
(a) Q vs B for � = ω

3 , ω

5 , ω

7 , ω

9 . (b) Q vs � for a fixed B (B = 5.0).
(c) and (d) The time series x(t) and its power spectra, respectively, for
� = 0.03 (solid line) and 0.04 (dotted line); B = 5.0 and ω = 0.2.
For � = ω/5 = 0.04, a peak appears at ω′ = ω = 5� in the spectrum
in (d), giving rise to the peak at � = ω/5 = 0.04 in the pattern of
Fig. 1.

3�, 5�, and 7� exist. Therefore, it is easy to understand
the observations in Figs. 1 and 7(b) for the peaks existing
only at some specific values of �: � = ω/n, with n being
odd. As a result, for � < ω these peaks might simply come
from the coincidence of the two frequencies ω and � (or
their components); they are fundamentally different with the
resonant effect for � > ω, as we have observed.

IV. CONCLUSION AND DISCUSSIONS

In conclusion, we have generalized the usual vibrational
resonance in bistable systems subject to a biharmonic force
with very different frequencies to any two frequencies, and
found that the system response to the weak signal can be
optimized by the other signal with an intermediate amplitude
and an appropriate frequency. When the frequency is exactly
a multiple of the low frequency, the resonance can even get
stronger, signaling the occurrence of a frequency-resonance-
enhanced vibrational resonance. Clearly this is a unique
type of resonance. It is fundamentally different from a pure
vibrational resonance or frequency resonance, but nevertheless
it combines the mutual action of vibrational resonance, which
is an essential dynamical bifurcation effect, and frequency
resonance as well, which is an essential frequency match
effect. Therefore, it is quite natural that it should depend
on the values of both the amplitude and frequency. These
behaviors are universal, as several other frequency parameters
(e.g., ω = 0.05 or 0.1) have been systematically tested and all
qualitative results have been found unchanged.

Below it is necessary to give some further discussions.
It is well known that both the stochastic resonance with a
white noise and vibration resonance, where a high-frequency
signal plays the role of a white noise, can be considered in
a unique framework [37]. It is interesting to compare the
results of the present work with the results of stochastic
resonance generated by an exponentially correlated noise,

where the noise correlation time might play the role of a period
of a strong harmonic signal [38]. The system dynamics is
given by

ẋ = x − x3 + A cos(ωt) + y(t),

ẏ = − y

τ
+

√
2D

τ
ξ (t),

(8)

where ξ (t) is a Gaussian white noise with correlation
〈ξ (t)ξ (s)〉 = δ(t − s) and D denotes the noise strength.
This colored noise y(t) therefore possesses the following
correlation:

〈(t)y(s)〉 = D

τ
exp−|t−s|/τ , (9)

with τ being the noise correlation time. Clearly the colored
noise y(t) approaches the case of white noise as τ → 0. In the
numerical simulations of Eq. (8), the standard Heun scheme is
used, and the same system parameters A = 0.1 and ω = 0.2
are chosen. The result for the system response Q as a function
of 2π/τ and D is shown in Fig. 8(a). For the x axis, τ is changed
linearly from τ = 0.01 to 2 with �τ = 0.01. In Fig. 8(b), the
dependence of Q on D for two different τ ’s, τ = 0.01 and
2.0, is displayed. From these plots, we can clearly see that Q

nonmonotonically depends on the value of noise strength D,
indicating the occurrence of the usual stochastic resonance.
Under this situation, the high-frequency signal in Eq. (1)
in vibrational resonance does play a similar role of noise.
However, we do not find a significant resonance curve (�∗,B∗)
and a frequency-resonance-enhanced vibrational resonance

3.14 4.187 6.28 12.56 6280.5
1.0

1.5
2

0.5

1

1.5

2

2.5

2π/τ

D

Q

0  0.4 0.8 1.2 1.6 2

0.5

1

1.5

2

2.5

D

Q

(a)

(b)

=0.01

=2.0τ

τ

FIG. 8. (Color online) (a) The 3D plot of response Q as a function
of 2π/τ and D for the noisy system (8). In the x axis, the value of
τ is linearly scanned from τ = 0.01 to 2.0, with �τ = 0.01. The
parameters A = 0.1 and ω = 0.2 are fixed and the same as in Fig. 1,
to be compared with system (1). (b) Q vs D for τ = 0.01 and 2.
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peaks for the noisy system (8), after comparing these two corre-
sponding 3D plots. Intuitively, the noise correlation time is still
not a pure time scale, which certainly cannot produce a strong
time-scale match (or frequency match) effect as we have seen
in the frequency-resonance-enhanced vibrational resonance.

Finally, it is worth noting that two-frequency signals with
very different frequencies (as in the case of the vibration
resonance) are important for communication, since a low-
frequency signal modulates a high-frequency carrier signal,
and is also an object of interest in several other important fields.
For the case considered in the present paper, the condition for
two sufficiently different frequencies is unnecessary and some
possible applications are still obvious and wide. Examples
include a technique for the display of picosecond laser
pulses using two different optical frequencies [39], the pitch
perception of two-frequency stimuli by the human ear in

acoustics [40], the Faraday waves in a pattern formation
with two-frequency parametric excitation (one is the signal
frequency ω and the other is the subharmonic frequency
ω/2) [41], neurobiological reaction controlling by electrical
stimulation of different frequencies [42], and so on. Therefore,
we believe that all these findings are of not only interest
for researchers in nonlinear dynamics, but also valuable in
engineering for potential applications.
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