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The phenomenon of stochastic resonance (SR) is known to occur mostly in bistable systems. However, the
question of the occurrence of SR in periodic potential systems has not been resolved conclusively. Our present
numerical work shows that the periodic potential system indeed exhibits SR in the high-frequency regime,
where the linear-response theory yields maximum frequency-dependent mobility as a function of noise strength.
The existence of two (and only two) distinct dynamical states of trajectories in this moderately feebly damped
periodically driven noisy periodic potential system plays an important role in the occurrence of SR.
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I. INTRODUCTION

Stochastic resonance (SR) was discovered theoretically
about three decades ago [1]. Since then, SR has been inves-
tigated with vigor, and many notable reviews have appeared;
see, for instance, [2,3]. Physical systems are always subject to
internal or external (thermal or otherwise) fluctuations (noise).
The optimal periodic response of a system to an external
periodic drive as a function of noise strength is referred to
as stochastic resonance. It has been experimentally found to
occur in electronic circuits [4–6], two-mode ring lasers [7],
nanomechanical systems [8], and neuronal systems [9–12],
just to name a few. Its main attraction lies in its practical
utility of selecting and enhancing a signal of a particular
frequency out of a host of signals by tuning the noise strength.
Presumably, biological systems use SR to their advantage [13].
It has the potential to be utilized to control kinetically the
pathways of a biochemical reaction [14].

SR has been predicted and shown to occur mostly in
bistable systems [2,15]. However, there have been some
notable investigations of SR in monostable and also periodic
potential systems [16,17]. In the monostable systems, SR is
shown to occur in the high-frequency regime close to the
natural frequency of oscillation at the bottom of the potential.
However, the occurrence of SR in periodic potentials has not
been conclusive [18].

Dykman and co-workers [17] used an interesting model in
which a single-well Duffing oscillator with additive noise is
driven at a frequency close to the natural frequency of the
oscillator. The model is used under a linear-response theory
formalism to study fluctuation phenomena associated with two
coexisting periodic attractors. A weak Gaussian noise causes
a transition between these two attractors. The populations of
these two attractors become equal at a particular noise strength
where the response becomes maximum. This is considered
to be a genuine signature of a (nonconventional) stochastic
resonance. The theoretical result was supported by an analog
electronic circuit experiment. A similar result was obtained
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in an underdamped superconducting quantum interference
device [19].

The same resonance behavior as in Ref. [17] in the
frequency-dependent mobility was obtained by Kim and Sung
[18] in a periodic potential using linear-response theory in the
high-frequency range of the external periodic drive. However,
these authors ascribe this resonant behavior as simply a
noise-assisted standard dynamical resonance as the transitions
involve only intrawell motion. Also, in the interwell hopping
(low) frequency regime, the frequency-dependent mobility
shows monotonic behavior as a function of noise strength,
thereby discounting the possibility of the occurrence of SR in
periodic structures. However, the authors show that SR can
occur if the driven system has a tilted periodic potential so that
the passages are allowed only in one direction.

Moreover, it was observed recently that in a bistable poten-
tial, V (x) = V0e

−ax2 + b|x|q/q, the confinement parameter q

plays an important role in deciding whether the system will
show SR [20]. For q � 2 the system shows SR, whereas for
q < 2 it does not. In addition, we find that the input energy
expended per period of the external field on the system by the
field acts as a good quantifier of SR [21]. This input energy
is ultimately dissipated into the thermal bath. This is naturally
a measure of the hysteresis loop area in position(x)-force(F )
space. Although the input energy and hysteresis loop area are
exactly the same in magnitude, the latter is an average quantity,
whereas input energy has a well-defined distribution. The input
energy distribution provides useful information about stochas-
tic resonance behavior. In particular, the distribution shows
a characteristic largest shoulder (bimodality) at stochastic
resonance [22–24]. On the other hand, hysteresis loops carry
important information about the phase relationship between x

and F , which have also been of interest to SR [21,25,26].
In the present work, we explore the possibility of the

occurrence of SR in a periodic sinusoidal potential using input
energy and hysteresis loop area as quantifiers. Moreover, one
can take various values of the wave vector k of the potential
analogously varying the effect of the confinement parameter
q of the bistable potential discussed above. However, we only
present results for k = 1.

We find that the periodic sinusoidal potential does not show
SR when driven by a low-frequency field corresponding to
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Kramers rates across the maxima of the potential or when
driven at a still lower frequency. The same conclusion was
arrived at in Ref. [27] while studying the diffusion coefficient
in a periodic system. However, it should be noted that in
Ref. [27], the probability P (τ ′) of a particle, after going from
one well to an adjacent one and returning back to the same
initial well in the subsequent time τ ′, shows periodic peaks.
The strength of the first peak of P (τ ′) shows SR-like behavior.
However, P (τ ′) has, by construction, the bearings of a bistable
system and not that of a periodic potential system.

We further find that in the high-frequency range, the input
energy behaves similarly to the response function in the
work of Dykman and co-workers [17] and to the frequency-
dependent mobility in the work of Kim and Sung [18]. In
addition, our work shows that the input energy peaks as a
function of noise strength. This is an indication of SR arising
due to a competition between two dynamical states of particle
trajectories (to be elaborated in Sec. III) as in the case of
bistable systems. Though the trajectories are intrawell in
nature, close to SR the transition between these two states
is also aided by interwell passages of particles across the
potential maxima.

The two dynamical states of trajectories are distinctly iden-
tified by the phase difference φ between the periodic forcing
F = F0 cos(ωt) and the trajectory x(t) = x0 cos(ωt + φ), one
having a fixed phase lag φ = φ1 and the other φ = φ2. Note
that because the system at finite T is stochastic in nature, φ1 and
φ2 are average quantities. These individual phase lags φ1 and
φ2 effectively do not vary with the noise strength. However,
the relative cumulative length of these two dynamical states
in a trajectory changes with the noise strength. The average
phase lag, therefore, changes with noise strength, similar to
what was predicted and observed in Refs. [25,26] in the case
of bistable systems. Moreover, the distribution of input energy
shows very similar behavior across the input energy peak to
that in the case of SR in a bistable system, thus affirming
the genuineness of SR in the present periodic potential
system.

We consider two model systems for our study. In one case,
the medium is considered to have uniform friction, whereas
in the other case, the friction is considered to be nonuniform.
The nonuniform friction γ (x) has an exact analogy in the
resistively and capacitively shunted junction (RCSJ) model
of the Josephson junction. In the RCSJ model, the “cos φ”
term, arising out of the interference between the quasiparticle
tunneling and the Cooper pair tunneling across the junction, is
equivalent to the nonuniform part of γ (x) in the present case.
The systems with nonuniform friction, however, are not very
rare and are not without practical relevance [28]. Since the
potential is symmetric and periodic, the homogeneous system
does not show any average mobility. The nonuniform system,
however, shows an average current when driven by a sinusoidal
forcing in the underdamped system [29].

Interestingly, for the uniform system, φ1 � −0.013π and
φ2 � −0.5π , whereas in the nonuniform case, φ1 � −0.025π

and φ2 � −0.85π . In either case, the trajectories have distri-
butions of these two phases depending on the noise strength.
This is reflected in the form of the (x − F ) hysteresis loops,
and hence in the average response amplitude and phase lag. In
the homogeneous case, the behavior of the average phase lag

conforms only approximately to the SR prediction of [21,26],
and in the other case it follows closely the observations of [25]
in bistable systems.

II. THE MODEL

In this work, we consider the underdamped motion of a
particle in a periodic potential V (x) = −V0 sin(kx), which
is symmetric in space [about kx = (2n + 1)π/2, n = 0,

± 1, ±2, . . .]. The system is driven periodically by an external
forcing F (t) = F0 cos(ωt). We study two cases of the
system: when the friction coefficient γ (x) is uniform (=γ0)
(system is homogeneous) and when the friction coefficient
is space-dependent, γ (x) = γ0[1 − λ sin(kx + θ )] (system is
inhomogeneous). In the latter case, the friction is periodic
with the same periodicity as the potential, but it has a phase
difference θ with it (θ �= 0,π ). λ (0 � λ < 1) determines the
degree of inhomogeneity of the system (λ = 0 corresponds to
the homogeneous system).

A particle of mass m moving in a periodic potential V (x) =
−V0 sin(kx) in a medium with friction coefficient γ (x) and
subjected to an external periodic forcing F (t) is considered to
be described by the Langevin equation

m
d2x

dt2
= −γ (x)

dx

dt
− ∂V (x)

∂x
+ F (t) +

√
γ (x)T ξ (t), (2.1)

m
d2x

dt2
= −γ0

dx

dt
− ∂V (x)

∂x
+ F (t) +

√
γ0T ξ (t). (2.2)

Equation (2.1) is for the inhomogeneous system and Eq. (2.2)
is for the homogeneous system. The temperature T is in units of
the Boltzmann constant kB . The inherent random fluctuations
in the system are represented by ξ (t), which satisfy the
following statistics: 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′).
The equations are written in dimensionless units by setting
m = 1, V0 = 1, and k = 1. The Langevin equations, with
reduced variables denoted again now by the same symbols
corresponding to Eqs. (2.1) and (2.2), are written as

d2x

dt2
= −γ (x)

dx

dt
+ cosx + F (t) +

√
γ (x)T ξ (t), (2.3)

d2x

dt2
= −γ0

dx

dt
+ cosx + F (t) +

√
γ0T ξ (t). (2.4)

The potential barrier between any two consecutive wells of
V (x) disappears at the critical field value F0 = Fc = 1. The
noise variable in the same symbol ξ satisfies similar statistics
to those mentioned earlier.

III. NUMERICAL RESULTS

The trajectories x(t) are obtained numerically [30] by solv-
ing the Langevin equations (2.3) and (2.4) corresponding to the
inhomogeneous and the homogeneous system, respectively,
with the amplitude of the drive field, F0 = 0.2 and ω = 2π/τ ,
with τ = 8. The value of ω is close to the natural frequency of
the potential. At high temperatures T , the average behavior
of these trajectories is the same regardless of the initial
conditions. However, at low temperatures, and especially in
the limit of deterministic motion, and at such a low field
amplitude as F0 = 0.2, the trajectories are intrawell in nature.
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FIG. 1. Plot of x(t) (solid line) and F (t) (dot-dashed line) for T =
0.015. The particle exhibits both kinds of trajectories with a transition
from out-of-phase to in-phase, in this case, at around t = 460; τ = 8,
F0 = 0.2, and γ0 = 0.12.

Yet their behavior is very sensitive to the initial conditions,
x(0) = x(t = 0) and v(0) = v(t = 0) [31]. In our numerical
calculations, we take v(0) = 0 and x(0) at N equispaced
intervals, xi , i = 1,2, . . . ,N , between the two consecutive
peaks, e.g., [−π/2 < xi � 3π/2], of the periodic potential
V (x). In most of the cases we take N = 100, but at some
values of temperature we take N = 300.

Depending on the range of x(0), we get two distinctly
different kinds of trajectories, one that lags behind the applied
field by a small phase difference φ1 and the other by a
large phase difference φ2. For the sake of convenience, we
call the former kind of trajectories in-phase and the other
out-of-phase. The out-of-phase trajectories always have much
higher amplitude than the in-phase trajectories; see Fig. 1. At
the lowest temperature considered here, there is no transition
between these dynamical states of trajectories. However, as
the temperature (or the noise strength) is increased, transitions
do take place (Fig. 1). Yet the trajectories are found basically
only in these two states even at temperatures where interwell
transitions lead the trajectories out of the initial well.

Following the stochastic energetics formulation of Seki-
moto [32], the input energy, or work done by the field on the
system W in a period τ , is calculated as

W (t0,t0 + τ ) =
∫ t0+τ

t0

∂U (x(t),t)
∂t

dt, (3.1)

where the potential U (x(t),t) = V (x) − xF (t), V (x) =
− sin(x), and F (t) = F0 cos(ωt). The average input energy
per period over an entire trajectory W is

W = 1

N1

n=N1∑
n=0

W (nτ,(n + 1)τ ). (3.2)

Typically, the number of periods N1 taken in a trajectory ranges
between 105 and 107, as required. Finally, the average input
energy per period 〈W 〉 is calculated by averaging W over all
the trajectories. From Eq. (3.1), the distribution P (W ) is also

calculated. As we shall see below, P (W ) provides an important
complementary criterion for stochastic resonance.

Equation (3.1) can be further written as

W (t0,t0 + τ ) =
∫ t0+τ

t0

∂U (x(t),t)
∂t

dt = −
∫ F (t0+τ )

F (t0)
xdF,

(3.3)
which is the hysteresis loop area over a period. Since x(t) is
a stochastic variable, it is unreasonable to expect a sensible
hysteresis loop over a period of the field. However, when
averaged over the entire duration of a trajectory, a well-defined
hysteresis loop x(F (ti)) and its area A are obtained:

x(F (ti)) = 1

N1

n=N1∑
n=0

x(F (nτ + ti)) (3.4)

for all [0 � ti < τ ], and

A = |W |. (3.5)

The calculation of the hysteresis loops x(F (ti)), Eq. (3.3),
is correct at the lowest temperatures where the trajectories
maintain the same phase φ throughout, and also at higher
temperatures where trajectories change phase between φ1

and φ2 during their journey. However, the hysteresis loops
will be different for different trajectories depending on
the cumulative duration of the dynamical states φ1,2 of the
segments of the individual trajectories. Therefore, an ensemble
average 〈x(F (ti))〉 is taken over all the trajectories considered.
The hysteresis loop 〈x(F (ti))〉, with area 〈A〉, reflects the
average response x(t) of the system to the applied field
F (t). In the linear-response regime, one would expect x(t) =
x0 cos(ωt + φ) for F (t) = F0 cos(ωt), ω = 2π/τ , where φ is
the average phase lag to be observed experimentally [25].
Notice that φ will, in general, be different from the fixed phases
φ1 and φ2 characterizing the individual dynamical phases of
the trajectories.

In the following, we present the results of our numerical
calculations and analyze how the particle trajectories in the
sinusoidal potential, and hence the input energy and the hys-
teresis loops, are affected by noise strength. We examine the
occurrence of stochastic resonance in the periodic potential,
referring to the standard SR criteria in bistable systems.

A. Homogeneous systems

1. The intra- and interwell transitions and input energy

Figure 2(a) shows the plot of input energy W averaged over
a trajectory with initial position x(0) at the lowest temperature
T = 0.001 for the homogeneous system [γ (x) = γ0]. W

are confined to two narrow bands around 0.094 and 1.179
corresponding to x(0) values that lie in contiguous regions
in the range [−π/2,3π/2] and no points in between. The
input energies W = 0.094 correspond to in-phase trajectories
with phase lag φ1 � −0.013π , and those with W = 1.179
correspond to out-of-phase trajectories with phase lag φ2 �
−0.5π . The trajectories continue to be in the same state of
phase lag throughout their journey. At this low temperature,
the trajectories are quite stable. The inset of Fig. 2(a)
shows the (x-v) plane Poincaré (stroboscopic) plots revealing
the two attractors corresponding to the two dynamical states
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FIG. 2. Plot of W with x(0) for T = 0.001 (a), T = 0.003
(b), and T = 0.016 (c); τ = 8, F0 = 0.2, and γ0 = 0.12. The insets in
(a) and (c) show the stroboscopic (Poincaré) plots in the (x-v) plane
at times τn = nτ,n = 0, ±1, ±2, · · ·

of the trajectories. The (stochastic) spread in the plots is due
to the finite temperature of the system.

It may be recalled that the results are obtained by taking
v(0) = 0. However, the two dynamical states of the trajectory
are genuinely stable as revealed, in Fig. 3, by the basins of
attraction of the two attractors at T = 0.001. In the figure, the
in-phase and the out-of-phase states are indicated, respectively,
by inp(l) and outp(m) for l,m = 0, ±1, ±2, etc. The indices
l,m (within the parentheses) specify the well number where the
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FIG. 3. The basins of attraction of the in-phase (inp) and out-
of-phase (outp) attractors at temperature T = 0.001 are shown. The
bracketed numbers on inp and outp indicate the well number of the
periodic potential where the trajectory settles down in the in-phase or
out-of-phase states. The region marked “a” corresponds to inp(−1),
“b” corresponds to outp(−2), “c” corresponds to the continuation
of inp(−2) indicated on the left side, “d” corresponds to inp(−3),
and “e” corresponds to outp(−3). The boundaries correspond to the
end of the phase indicated above the respective lines. The thick line
separating outp(2) and inp(1) indicates that some other phases also
chip in between. The phase inp(1) at the top right corner is just the
continuation of the phase inp(1) on the left top corner of the figure.
For this figure, τ = 8, F0 = 0.2, and γ0 = 0.12.

particle settles down as it begins from the initial well (l,m = 0).
Even though the attractors correspond to wells l,m �= 0, the
phase and amplitude of the trajectories remain exactly the
same as when they are in the initial well (l,m = 0). Thus,
the differently labeled trajectories are physically the same two
and the only two: the in-phase and the out-of-phase with fixed
φ1 and φ2, respectively.

Figure 2(b) shows the same plot as Fig. 2(a) but at T =
0.003. The figure clearly shows that a few points have deserted
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FIG. 4. Plot of the particle trajectories x(t) for T = 0.04. Transi-
tions are seen between the in-phase to the out-of-phase states. Inset is
a magnified figure. F (t) (dashed line) is also included for comparison;
x(0) = 2.0, τ = 8, F0 = 0.2, and γ0 = 0.12.
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FIG. 5. A schematic depiction of the two dynamical energy states
of the particle trajectories. In the figure, E3 − E1 � 0.016 and E3 −
E2 � 0.003.

the upper band of W , and all but one have already joined,
with the lone one on its way to join the lower band of W .
This shows that all of these few out-of-phase trajectories have
made a transition to the in-phase state (as shown in Fig. 1)
quite early during the 105 periods of the trajectory, and the
lone one has done so somewhere in the middle of all these
periods. It should be noted that no transition has taken place
from the in-phase state to the out-of-phase state. This shows
that the out-of-phase state is less stable than the in-phase state,
and they are separated by an energy barrier of about 0.003
(in units of V0, the amplitude of the sinusoidal potential) from
the out-of-phase side. This trend continues until T = 0.016,
where W consists of only one band, i.e., the lower band [see
Fig. 2(c)]. The stroboscopic plot in the (x-v) space, inset of
Fig. 2(c), shows the lone attractor at T = 0.016. The other
attractor has now ceased to exist. From T = 0.003–0.016, the
ensemble-averaged input energy 〈W 〉 decreases very rapidly
attaining the lowest value at T = 0.016.

For T > 0.016, transitions start taking place from the
in-phase to the out-of-phase state too. Consequently, 〈W 〉
begins rising for T > 0.016. Of course, the out-of-phase state
lives for a very short duration before a larger temperature
is reached. This is demonstrated in Fig. 4 for T = 0.04.
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FIG. 6. Plot of x(t) for T = 0.08. The figure shows interwell
transitions as also numerous transitions between the in-phase (lower
amplitude) and out-of-phase (higher amplitude) states. At around
t = 3700 and 5400, the interwell jump also leads to a transition from
the out-of-phase to the in-phase state; x(0) = 2.0, τ = 8, F0 = 0.2,
and γ0 = 0.12.

Therefore, there is an energy barrier of roughly about 0.016
from the in-phase state side to the out-of-phase side. One can
thus roughly picturize the two states as shown in Fig. 5 with
the bottom of the wells at −φ1 = 0.013π and −φ2 = 0.5π .

As the temperature is increased further, the relative popula-
tion of the out-of-phase state keeps increasing with an increase
of temperature. The transitions in both directions maintain
a constant ratio at any given temperature. Moreover, by the
temperature T ∼ 0.08, the interwell transitions have already
set in and have become numerous. These interwell transitions
also help intrawell transitions; see Fig. 6. At around T = 0.2,
the relative populations of both states become almost equal and
the input energy 〈W 〉 peaks. T = 0.2, thus, falls in the region
of kinetic phase transition [33] between the two dynamical
states.

Beyond T = 0.2, the intrawell transitions become more
frequent and so do the interwell transitions. The transition
points or the attempted transition points lead to lower
amplitude motion. This results in gradual lowering of 〈W 〉
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FIG. 7. Plot of P (W ) for different values of T [(a) for T < 0.016 and (b) for T > 0.016] for the homogeneous system. For large T , e.g.,
at T = 1.0, the distribution has a single peak structure; τ = 8, F0 = 0.2, and γ0 = 0.12.
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with temperature. At much higher temperatures T � 0.2, the
(intrawell as well as interwell) transitions become so numerous
that the phases effectively lose their distinct identity. This gets
reflected in the input energy distribution P (W ) as a single peak
(Fig. 7, T = 1.0).

In Fig. 7, the probability distribution of W is drawn
for various temperatures. At the lowest temperature T =
0.003, we see two distinct peaks of P (W ): The low W

peak corresponds predominantly to the in-phase state of the
trajectory and the other to the out-of-phase state. As the
temperature is gradually increased, the large W peak shrinks,
and at T = 0.016 this peak disappears completely. However,
as the temperature is increased further, the out-of-phase peak
reappears and begins to swell to maximize at T ∼ 0.2. At
T = 0.2, the broad shoulder of P (W ) characterizes the peak
in 〈W 〉. At the largest temperature shown, T = 1.0, both peaks
merge into a broad single peak. It is interesting that, although
〈W 〉 always remains > 0, thus never violating the second law
of thermodynamics, P (W ) is not confined to W > 0 but a
significant part of it lies at W < 0.

Figure 8 shows the variation of 〈W 〉 as a function of
temperature T . 〈W 〉 peaks at a temperature around T = 0.2.
This is a clear signature of stochastic resonance even if the
criterion for SR in a bistable system is adhered to as a
benchmark [20,22,23]. This is supported by the behavior of
P (W ) across T = 0.2. P (W ) shows a prominent shoulder
[22,23], characteristic of SR, around T = 0.2 (Fig. 7). In
the following, we examine the behavior of phase lag of the
response to the periodic field.

2. The hysteresis loop: Area and phase

From Eqs. (3.3), (3.4), and (3.5), the hysteresis loop area
〈A〉 being equal in magnitude to 〈W 〉, 〈A〉 does not provide any
additional information other than 〈W 〉. However, the hysteresis
loop itself does give an important insight. The amplitude F0 =
0.2 of the external applied field F (t) = F0 cos(ωt) being small,
one expects the response, namely the position x(t), to have a
linear variation with F (t): x(t) = x0 cos(ωt + φ). Hence, the
hysteresis loop 〈x(F (ti))〉 will closely resemble an ellipse.
The average phase difference φ is measured from the resulting
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T = 0.4, the curves have a monotonic behavior and are not shown.
The top figure is an exact reproduction of Fig. 8.

ellipse, Eq. (3.4). Unlike φ1 � −0.013π and φ2 � −0.5π ,
which remain more or less constant with T , the average phase
difference φ varies with T , as shown in Fig. 9. In Fig. 9, the
average amplitude x0 and the average area 〈A〉 are also plotted
for comparison.

At the lowest temperature T = 0.001, φ is close to φ2 �
−0.5π . At this temperature, x0 as well as 〈A〉 are also at
their respective maxima. As T is increased, −φ as well
as 〈A〉 decrease sharply, and attain a minimum at around
T = 0.016. The minimum φ is close to φ1 � −0.013π . This is
because at T = 0.016, all the trajectories are in the dynamical
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state of phase φ1. Thereafter for T > 0.016, −φ increases
monotonically. The inflection point of −φ(T ) occurs at T �
0.09, where −φ � π/4 as observed in Ref. [25]. However,
〈A〉 becomes maximum only at a much higher temperature
T � 0.2, where −φ � 0.35π . Therefore, 〈A〉 here does not
exactly satisfy the additional approximate SR criterion on
φ suggested in Ref. [25]. However, in the inhomogeneous
system, the SR criterion on φ suggested using linear-response
theory [26] appears to be respected.

B. Inhomogeneous systems

In this case, the particle experiences nonuniform friction
as it moves in the medium. As stated earlier, the poten-
tial is considered periodic: V (x) = V0 sin(kx). The friction
coefficient γ (x) is taken as γ (x) = γ0[1 − λ sin(kx + θ )]
instead of the constant friction coefficient γ (x) = γ0 as in
the homogeneous case. We take fixed values λ = 0.9 and
phase difference θ = 0.35 throughout. θ ( �= 0,π ) provides the
necessary asymmetry in the system to yield an average particle
current, the ratchet current [31], even when driven by a zero
time-average external forcing F (t) = F0 cos(ωt). For k = 1,
γ0 = 0.12, F0 = 0.7, and T = 0.4, the system shows a current
maximum at ω = 2π/140. Keeping ω = 2π/τ , τ = 140, and
other parameters fixed, the current maximizes at T � 0.25.
However, we do not see any maximum in the periodic response,
such as the hysteresis loop area, to the external periodic field

corresponding to these parameters. The system does not show
SR at this low frequency of drive.

Here, the particle position x(t) roughly follows the periodic
field with an irregular but large amplitude. There is also a
small-amplitude high-frequency component superimposed on
the low-frequency response to the field. The frequency of the
superimposed component is close to the natural frequency of
the potential. In the following, we consider the external field
F (t) with F0 = 0.2 and τ = 8, exactly as in the homogeneous
case, but keeping in mind that in the inhomogeneous case the
system is no longer symmetric. Therefore, even at this high
frequency, the system shows an average ratchet current, but
the current itself does not show any peaking behavior with T .

1. The intra- and interwell transitions and input energy

As in the homogeneous case, the system shows two distinct
dynamical states of trajectories, one with phase difference
φ1 � −0.025π and the other with φ2 � −0.85π . We again
refer to the trajectories with phase difference φ1 as being
in-phase and the other as out-of-phase with the external field,
the latter having much higher response amplitude x0 than the
former. The frictional nonuniformity, surprisingly, leads to an
out-of-phase trajectory amplitude about three times larger than
in the homogeneous case, and therefore a larger average energy
〈W 〉. As a consequence, the results are qualitatively different
from what was observed in the case of the uniform friction
system.
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At the lowest temperature T = 0.001, the trajectories are
bunched into two contiguous groups and continue to be so for
all time without ever jumping across the groups; see Fig. 10(a).
The inset of Fig. 10(a) shows, in the (x-v) plane stroboscopic
plots, the two attractors corresponding to the two dynamical
states of particle trajectories. The situation remains the same
until T = 0.01. However, the average energy 〈W 〉 decreases
with T due to a slight decrease in the out-of-phase trajectory
amplitude. Contrast this with the sharp decline in energy in
the homogeneous case due to the transition from out-of-phase
states to in-phase states. At T around 0.011, transitions begin
to take place from the in-phase states to the out-of-phase states
[Fig. 10(b)]; the out-of-phase state is more stable. The 〈W 〉
rises sharply thereafter. However, by T = 0.014, transitions
are also observed from out-of-phase states to in-phase states
[Fig. 10(c)]. Therefore, the potential barrier from the out-of-
phase side to the in-phase side is about 0.011, whereas in the
reverse direction the barrier height is about 0.014. Both states
are almost equally stable. By the temperature T = 0.016, even
interwell transitions are observed [Fig. 10(d)].

As the temperature is increased to 0.018, the average
energy 〈W 〉 attains a maximum. At this point, the two states
become almost equally populated, a point in the region of
the kinetic phase transition [33]. The variation of 〈W 〉 is
plotted in Fig. 11 as a function of temperature. This is a
signature of stochastic resonance occurring at T = 0.018.
The distribution P (W ) again shows the largest asymmetry
at the same temperature T = 0.018. Here P (W ) is distinctly
bimodal in nature; see Fig. 12. For this nonuniform friction
case, P (W ) behaves in a manner similar to the case of
a homogeneous system (Fig. 7). However, unlike in the
homogeneous case, here the out-of-phase state has the lowest
energy. At T = 0.018, we have the largest contributing second
peak of P (W ) to 〈W 〉 at any nonzero temperature. These in-
trawell transitions responsible for SR are effectively supported
by numerous interwell transitions in the periodic potential
system.

2. The hysteresis loop: Area and phase

Since the system is asymmetric and the amplitude x0 is
large, at low temperatures the hysteresis loops are not perfectly
elliptical. Yet it is possible to roughly calculate the average
amplitude x0 and phase lags −φ of the system response at all
temperatures. In Fig. 11, x0 and −φ are also plotted along with
〈W 〉. It is clear from the figure that 〈W 〉, x0, and −φ all peak at
almost the same temperature. Interestingly, the peak value of
−φ is about 0.82π . For this system, −φ satisfies the peaking
criterion of SR stated using the linear-response theory [26].
However, with respect to magnitude, the phase lag −φ is off
by about π/2.

IV. DISCUSSION AND CONCLUSION

A periodic potential system driven by a periodic applied
field of small subthreshold amplitude at a high frequency,
close to the natural frequency of the periodic potential
well bottoms, shows stochastic resonance. Here the average
input energy per period of the field is considered as the
quantifier of SR. The same quantifier had served SR correctly
in bistable systems. Moreover, the probability distribution
of the input energy exhibits similar qualitative behavior at
SR to that shown in the bistable systems. The linear-response
theory calculated frequency-dependent mobility was found
to show similar behavior to the input energy and was
previously termed as merely a dynamical resonance. It was
argued that the period of the drive was too small compared
to the Kramers time of interwell static potential barrier
crossing, thus disqualifying the resonance behavior from
being a genuine stochastic resonance. However, we find that
such an argument does not hold because, in the dynamical
situation, the interwell transitions become quite numerous at
the temperature where the input energy peaks. Moreover, and
most importantly, the intrawell trajectories show bistability
and the obtained resonance is a result of the transition
between these dynamical states effectively helped by interwell
transitions.

There have been two conflicting SR criteria involving the
phase lag between the response and the applied field: one [25]
stating that the phase lag shows inflection at SR with the phase
lag equaling π/4, and the other [26] that phase lag shows a
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peak at SR. We find that whereas the former criterion is only
approximately satisfied in the uniform friction case, the latter
is satisfied for the nonuniform friction case. Thus, these criteria
seem to be true for specific systems, and hence the phase lag
φ cannot be taken as a universal quantifier such as the input
energy for SR.
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