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Prescription-induced jump distributions in multiplicative Poisson processes
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Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription
dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary
to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the
well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we
show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by
the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is
linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in
the jump probability distribution. We apply these results to a recently proposed stochastic model describing the
dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis
of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white
Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally
suggested to infer the most appropriate prescription from the data.
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I. INTRODUCTION

Intense and concentrated state-dependent forcing events
may often be modeled as multiplicative random jumps, taking
place according to an underlying point process. Unlike the
additive case, which counts a relatively vast literature [1–6],
state-dependent jumps have been less investigated [7–11] and,
usually, the state dependency is assumed to be in the frequency
of the jump occurrence rather than in its amplitude. The
generalized Langevin equation (GLE) for white multiplicative
noise ζ (t), which can be either Gaussian or non- Gaussian,

ẋ(t) = a(x,t) + b(x)ζ (t) (1)

is ill defined unless a prescription for the evaluation of the
stochastic term b(x)ζ (t) is specified [12]. While this issue
is well understood for Gaussian white noise (GWN) [13],
a precise characterization of the noise prescriptions and a
clear connection between the different interpretations are still
missing for other kinds of noises.

The last term in Eq. (1) for the white Poisson (WP)
process can be written as ζ (t) = ξρ(ν,t) = ∑

i wiδ(t − ti),
where the ti are the times at which jumps occur, δ is
the Dirac delta function, and the probability that n jumps
occur during a time interval �t is given by the Poisson
distribution Pn(t) = exp (−ν�t)(ν�t)n/n!. The jump heights
w are independent and identically distributed random variables
with a probability distribution function (PDF) ρ(w). We note
that the multiplicative case b(x)ζ (t) of Eq. (1) is a special case
in which the x dependence of a more general state-dependent
white noise ζ (x,t) can be factorized out. Note that, while it is
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always possible to reduce the state-dependent noise as in (1)
for GWN, because GWN is fully characterized by its mean
and variance, this is not the case for the WP process.

This paper is organized as follows. First, we show how
different prescriptions corresponding to the Itô (I ) and
Stratonovich (S) interpretation of a stochastic differential
equation (SDE) arise naturally for multiplicative jumps,
depending on the relevant time scales of the process. In
Sec. III, we present the master equation (ME) for a GLE
with multiplicative compound Poisson process in both the I

and S prescriptions. The core of this work is presented in
Sec. IV where we show how, in the linear case b(x) ∝ x,
the difference between prescriptions is properly interpreted
as a transformation of the jump size PDFs. We demonstrate
the relevance of these effects on a minimalist model of soil
salinization, describing possible long-term accumulation of
salt in soils in arid and semi-arid regions. In this problem, the
salt mass balance equation is characterized by state-dependent
losses concentrated in negative jumps due to the leaching
of salt produced by intense rainfall events. The stochastic
equation is solved analytically obtaining explicitly the jump
distributions that arise in connection to the different noise
interpretations.

II. CONNECTION BETWEEN DIFFERENT
PRESCRIPTIONS OF A GLE AND TIME

SCALES OF THE PROCESS

We begin with a pedagogical example of a particle that
experiences multiplicative impulsive forcing events, propor-
tional to �̇τ (t), of duration τ , in a field characterized by a
friction coefficient ψ . Our analysis is inspired by the work in
Refs. [14,15]. We choose �τ (t) = ϑ(t/τ ) with ϑ(z) → 1 (0)
in the limit z → ∞ (−∞) so that �̇τ (t) → δ(t) in the τ → 0
limit (in the distribution sense). We first consider the case
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of a single jump event at t = t0 > 0, where the dynamics is
described by the Newton equation

m ẍ(t) = −ψẋ + ψb(x)w�̇τ (t − t0), (2)

where the random jump w is drawn from the jump size PDF
ρ(w). Thus, in Eq. (2), we have two time scales σ = m/ψ and
τ . The former is associated with the relaxation time toward
stationarity, while the latter is related to the characteristic
duration of the impulsive forcing. Different prescriptions of
Eq. (1) arise depending on how the two emerging time scales
σ and τ in Eq. (2) go to zero, i.e., σ → 0 followed by τ → 0
or vice versa (see Fig. 1). For this reason, writing ẋ(t) =
b(x)wδ(t − t0) is ambiguous, being the result of two different
limit procedures with different physical and mathematical
meaning.

When σ � τ and then the zero limit of τ is taken in
Eq. (2), the S prescription of the SDE (1), which preserves
the usual rules of calculus, is obtained [16,17]. For example, if
b(x) = x, the resulting S equation d ln(x)/dt = w�̇τ (t − t0),
after performing the limit τ → 0, has the formal solution
x(t) = [1 + �(t − t0)(ew − 1)]x0, where x0 = x(0) and � is
the Heaviside function. The corresponding PDF is

pS(x,t) = δ(x − x0)[1 − �(t − t0)]

+�(t − t0)
ρ
[

ln
(

x
x0

)]
x

�

(
x

x0

)
, (3)

with initial condition ρS(x,0) = δ(x − x0). If otherwise τ �
σ , then Eq. (2) becomes σ ẍ + ẋ = b(x)wδ(t − t0). Imposing
the conditions of continuity and right and left differentiability
in t0, the initial conditions x(t−0 ) and ẋ(t−0 ), and taking the
limit σ → 0, the solution is [again for the case b(x) = x]
x(t) = x0 + x0w�(t − t0). Note that the latter corresponds to
the solution in the Itô prescription of the SDE (2). From the
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FIG. 1. (Color online) Comparison between trajectories of a
particle that undergoes impulsive multiplicative forcing in a viscosity
field for different time scales (τ and σ ), and the trajectories that result
from the SDE ẋ(t) = −x(t)

∑5
i=1 wiδ(t − ti) interpreted in the I and

S prescriptions. The jumps in this case are given by wi = ±0.4.

formal Itô solution of Eq. (2), we obtain the corresponding
PDF in the I sense:

pI (x,t) = δ(x − x0)[1 − �(t − t0)] + �(t − t0)
ρ
(

x−x0
x0

)
x0

.

(4)

The latter equation can not be made to correspond to Eq. (3)
for any choice of �(0). It is, in fact, interesting to observe that,
if we set �(0) = α, then the parameter α defines where the
b(x) that multiplies the jump is evaluated: When α = 0, b(x)
is evaluated before the jump, while α = 1/2 corresponds to
calculating b(x) in the middle of the jump. In the literature on
GWN, these choices are associated to the I and S prescriptions,
respectively [16,18]. Conversely, as just seen for a discrete
jump process, the S interpretation of the SDE (2) does not
correspond to any of the α prescriptions. In other words,
there is not an immediate intuitive interpretation of the S

prescription.

III. MULTIPLICATIVE COMPOUND POISSON NOISE

We generalize now our analysis to a process described by
the following SDE:

ẋ(t) = a(x,t) + b(x)ξ τ
ρ (ν,t), (5)

where ξ τ
ρ (ν,t) = ∑N(t)

i=1 w�̇τ (t − ti) is a colored compound
Poisson process (CP), with jump heights w, each time drawn
from a generic PDF ρ(w), and {ti} are random times, the
sequence of which is drawn from a homogeneous Poisson
counting process {N (t),t � 0} of rate ν. The case in Sec. II
corresponds to the special case of a finite deterministic number
of jumps. As before, the I interpretation consists of taking
τ = 0 and, should a jump occur at time t , evaluating b(x) at
the right-hand side of Eq. (5) before the jump occurrence, i.e.,
x = x(t−), while the S interpretation of Eq. (5) corresponds
to performing the zero limit of the correlation time τ of the
colored Poisson noise.

The S ME associated with the GLE (5) can be derived
through the generating function of ξ τ

ρ (ν,t) (see Appendix A),
or in a more formal way [8,19] as

∂P S(x,t)

∂t
=

[
− ∂

∂x
a(x,t) + ν

〈
e−w ∂

∂x
b(x) − 1

〉
ρ(w)

]
P S(x,t),

(6)

where 〈· · ·〉 denotes the ensemble average operator. A simpler
alternative derivation of the ME (6) can be obtained using
the fact that, in the S prescription, the rules of calculus are
preserved. Defining the function η(x) = ∫ x dx ′

b(x ′) , the ME can
be also written as (see Appendix B)

∂P S(x,t)

∂t
= − ∂

∂x
[a(x,t)P S(x,t)]

+ ν

∫ ∞

−∞

ρ[η(x) − η(x ′)]
|b(x)| P S(x ′,t)dx ′ − νP S(x,t).

(7)
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In the I prescription, x(t) at time t does not depend on the
noise ξ τ=0

ρ (ν,t) ≡ ξρ(ν,t) at the same time [20]. From this, it
follows that

〈b(x)ξρ(ν,t)〉 = 〈b(x)〉〈ξρ(ν,t)〉. (8)

Therefore, if (5) with τ = 0 is interpreted in the I sense, we
can change the size of the jumps from w to b(x)w, and the
corresponding ME can be derived without ambiguity [11,19]
as

∂P I (x,t)

∂t
= − ∂

∂x
[a(x,t)P I (x,t)] + ν

∫ ∞

−∞
ρ

(
x − x ′

b(x ′)

)

× P I (x ′,t)
|b(x ′)| dx ′ − ν P I (x,t). (9)

Alternatively, we achieved a different form of the I ME (9),
which is the I analogous of the S ME (6):

∂P I (x,t)

∂t
= − ∂

∂x
[a(x,t)P I (x,t)]

+ ν
〈

: e−w ∂
∂x

b(x) : −1
〉
ρ(w)P

I (x,t), (10)

where : · · · : is an operator (analogous to the normal order
operator in quantum field theory) that indicates that all the
derivatives must be placed on the left of the expression, i.e.,
: e−w ∂

∂x
b(x)F (x) := ∑+∞

n=0
(−w)n

n! ( ∂
∂x

)n[b(x)nF (x)]. For details,
see Appendix C.

When b(x) = b is constant, by using e−b w ∂
∂x P S(x,t) =

P S(x − bw,t), the I and S MEs become coincident, as
expected. In Appendix D, we also show that, taking the limit
ν → ∞, 〈w〉 → 0, i.e., infinite frequency and infinitesimally
small jumps, such that ν〈w〉2 = D remains constant, Eqs. (6)
and (10) reduce to the well-known I and S Fokker-Planck
equation (FPE) for GWN [16,18], respectively.

IV. PRESCRIPTION-INDUCED JUMP DISTRIBUTIONS

It is clear from the previous MEs (7) and (9) that the I and
S prescriptions of the GLE

ẋ(t) = a(x,t) + b(x)ξρ(ν,t) (11)

lead to different MEs. We now want to determine the connec-
tion between the two different interpretations. Specifically, we
seek the two jump PDFs in the I and S interpretation, ρI and
ρS , which give rise to the same process. We also seek how to
obtain one form when the other is given. To this purpose, it
is sufficient to equate the two MEs (7) and (9) for simplicity,
from which

1

|b(x ′)|ρI

(
x − x ′

b(x ′)

)
= 1

|b(x)|ρS[η(x) − η(x ′)]. (12)

As a result, if Eq. (12) can be solved, given the jumps
PDF and choosing the S (I ) prescription for Eq. (11), the
solutions ρI (ρS) of Eq. (12) give the equivalent corresponding
I (S) GLE and ME. This is one of the main results of this
paper and it provides the connection between the prescription-
induced jump distributions ρI and ρS , allowing the link to the
Itô ME and the Stratonovich ME corresponding to a GLE with
multiplicative white Poisson noise.

The previous equation, however, has a solution only when
b(x) is a linear function of x. To show this, we rewrite Eq. (12)
as

ρI (y) = |b(x ′)|
|b(x)| ρS[η(x) − η(x ′)] ≡ F (x ′,y), (13)

where y = (x − x ′)/b(x ′). Because the left-hand side of
Eq. (13) does not depend on x ′, we must have ∂F

∂x ′ = 0. If
the latter condition holds for all ρS , then we get b′′(x) = 0,
the solution of which is b(x) = kx + c (see Appendix E
for details). For other functional shapes of b(x), the jumps
PDF ρI (w) depend also on the state of the system, i.e., the
dependence on x of ρI (w|x) can not be factored out. In this
case, is not even clear what a Stratonovich prescription would
correspond to.

Finally, we derive the distribution of the impulses that may
be measured from the time series of the process (see inset in
Fig. 2). In fact, if a random jump [drawn from ρ(w)] occurs
at time t , then the size of the impulse that the whole process
experiences is yt = x(t + dt) − x(t). From the GLE (5), we
know that with probability ν dt , ẋ = b(x) w �τ (t). Taking the
limit τ → 0, and using the definition of η(x), we have (see
Appendix B)

y(t) =
{

w b(x), (I )
η−1[η(x) + w] − x, (S)

(14)

and thus we obtain

P̂ I (y,t) = 〈δ(y − yt )〉 =
∫ +∞

−∞
dx dw

1

|b(x)|
×P I (x,t)ρ(w)δ[w − y/b(x)], (15)
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FIG. 2. (Color online) Comparison of the steady state PDF of
Eq. (17): S solution [solid line, obtained analytically from Eq. (18)],
I solution (dashed-dotted line, from numerical simulation), and I

solution using the jump distribution given by Eq. (20) (dotted line,
from numerical simulation). The numerical simulations confirm our
analytical results. Inset: simulated trajectory of the salt mass under the
two different prescriptions. Note that, if artificial reflecting barriers
are not imposed, the salt mass given by the I prescription of Eq. (17)
may assume unphysical negative values. The parameters used for the
simulation are μ = 0.463, ν = 0.15 day−1, and ϒ = 30 mg/day.
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P̂ S(y,t) =
∫ +∞

−∞
dw dxP S(x,t)ρ(w)

× δ{w − [η(x + y) − η(x)]}
|b(x + y)| , (16)

i.e., the prescriptions characterize the PDF of the impulses of
the whole process.

V. APPLICATION TO SOIL SALINIZATION

The above mathematical problems naturally arise in the
context of the process of soil salinization. This is an extremely
relevant environmental problem as 4 million km2 in arid
and semi-arid lands are affected by soil salinization, causing
vegetation die-off and possible desertification [21,22]. In
natural salinization (unlike the anthropogenic one due to
irrigation), salt may accumulate in surface soils by dry and
wet deposition due to wind and rain. In this problem, state-
dependent Poisson jumps arise naturally when writing the salt
mass balance equation at the daily-to-monthly time scale for
soil root zone used as the control volume [22]. Salt inputs
due to rainfall and wind act almost continuously in time,
while the state-dependent losses of salt occur through negative
jumps due to the leaching caused by intense rainfall events.
Schematically, the salt mass at time x(t) in the root zone is
described by the GLE

dx

dt
= ϒ − x ξρ(ν,t), (17)

where ϒ is the time-averaged salt mass input flux and ξρ(ν,t)
is the leaching flux toward deeper layers, which can be ap-
proximated by a WP process with ρ(w) = μ exp(−μw)�(w).
The leaching parameters ν (frequency of leaching events) and
μ (mean jump) can be expressed in terms of the climatic, soil,
and vegetation properties [22]. Because the typical duration
of leaching events is on the order of a few hours, while the
equilibration times of salt in the soil solution (proportional to
the inverse of its dissolution rate) tend to be smaller (minutes
to hours), this means that the inertia in the dynamics is small
(σ � τ ) and the physically correct interpretation is likely to
be the Stratonovich one.

The stationary solution of Eq. (6) in the S prescription is a
gamma distribution (Fig. 2) [7,22]

P S(x) = N e−(x ν / ϒ) x1 /μ (18)

for x > 0 and whereN = ( ν
ϒ

)
1+μ

μ /�( 1+μ

μ
) is the normalization

constant and �(z) is the complete gamma function of argument
z. Equation (18) summarizes the soil salinity statistics as a
function of climate, soil, and vegetation parameters, which
may in turn be used in conjunction with the soil moisture
statistic to obtain a full characterization of the salt concentra-
tion in the root zone and the ensuing risk of salinization [22].

From Eq. (16), it is possible to derive the PDF of the
impulses of the process for the S interpretation as

P̂ S(y) = εeεy�(−y), (19)

which is an exponential distribution controlled by the pa-
rameter ε = ν/ϒ , given by the ratio between the rate of
leaching events and the average rate of salt input. Thus, if
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FIG. 3. (Color online) Comparison between a jump exponential
distribution ρ(w) with mean 1/γ = 0.8, and the solutions ρI (z), ρS(z)
of the prescription induced jumps corresponding to Eqs. (20) and (21)
respectively, corresponding to the given ρ(w).

time series of the process are available, the Stratonovich
assumption can be checked by backtracking information
on the physical time scales involved in the process via a
comparison with experimental data. A further support for the
S interpretation of Eq. (17) is given by the fact that x must
remain positive after a jump, a fact that is not ensured by the I

interpretation unless a reflecting boundary in x = 0 is imposed
(see Fig. 2). We also computed the prescription-induced
jump distribution correspondence for this case [b(x) = −x],
which is ρS(ln | x ′

x
|) = | x

x ′ |ρI (1 − x
x ′ ), where x ′ and x are the

variables before and after the jump, respectively. By taking
into account that in the S prescription x,x ′ > 0, the I -jump
PDF equivalent to ρS(w) = γ e−γw�(w) is

ρI (z) = γ (1 − z)γ−1, z ∈ [0,1]. (20)

This equivalence is indeed remarkable because it considerably
facilitates the numerical simulation of the salinity equation
in the S formulation (see Fig. 2). On the other hand, if the
GLE (17) were interpreted in the I sense, the ratio x/x ′
could also be negative and the solution of Eq. (12), for
ρI = γ�(w)e−γw, would read as

ρS(w) = γ e−γ−w
[
�(w)eγ e−w + e−γ e−w]

, w ∈ ( − ∞,+ ∞).

(21)

This implies that possible negative jumps (that occur for x < 0)
in the I prescription for the given ρI (w) would be explicitly
present in the corresponding equivalent S-jump PDF ρS(w)
(see Fig. 3).

VI. CONCLUSIONS

In this paper, we have proposed an alternative approach
to solve the Itô-Stratonovich (I -S) dilemma for GLE with
multiplicative WP noise. We have shown how different inter-
pretations lead to different results and that choosing between
the I and S prescriptions is crucial to describe correctly the
dynamics of the model systems, and how this choice can be
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determined by physical information about the time scales
involved in the process. Moreover, we have addressed the
related issue of finding a connection between the I and S

interpretations in the case of linear WP noise. Differently
from the introduction of a drift previously proposed [9,10], we
have found such connection in a transformation of the jumps
PDFs and tested our results numerically. Our results are also
consistent with the physics of the random forcing, which takes
place at specific points in time, whereas a continuously acting
spurious drift would conceptually violate the causality of the
process. In particular, once the GLE (11) is given, its I and S

interpretations are shown to be equivalent if ρI and ρS satisfy
the prescription-induced jumps PDF [Eq. (12)]. The case of
nonlinear multiplicative WP noise will be studied elsewhere.
We have applied our results to the geophysical problem of
soil salinization by solving a minimalist model that describes
the salt mass and concentration in a soil control volume as a
function of climatic and ecohydrological parameters.
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APPENDIX A

The stochastic process under study is described by the
GLE (5) presented in the main text. For simplicity, in the
following, we have set ξ τ

ρ (t,ν) = ξ (t). The CP is characterized
by the correlation structure (〈· · ·〉 denotes the ensemble
average)

〈ξ (t)ξ (t + τ )〉 ∼ e− t
τ , (A1)

where τ is the characteristic time of the process and we have
omitted all the subscripts and superscripts to simplify the
notation. If �t is the generating function of CP at time t ,
then

�t [v] = 〈
ei

∫ t

0 v(s)ξ (s)ds
〉 = e�t [v]

=
+∞∑
n=0

e−νt (νt)n

n!

∫
dw ρ(w)

×
∫ n∏

j=1

dtj

t
ei

∑n
j=1 wj

∫ t

0 v(s)�τ (s−tj )ds

=
+∞∑
n=0

e−νt ν
n

n!

[ ∫ t

0
dr

∫
dw ρ(w)

× exp

(
i

n∑
j=1

wj

∫ t

0
v(s)�τ (s − tj )ds

)]
. (A2)

Moreover, if we define ρ̂ = ∫ +∞
−∞ eivwρ(w)dw as the

characteristic function of ρ(w), then we have

�t [v] = exp

[
− νt + ν

∫ t

0
drρ̂

(∫ t

0
v(s)�τ (s − τ )dτ

) ]
,

(A3)

and thus

�t [v] = ln �t [v] = ν

∫ t

0
dr

[
ρ̂

(∫ t

0
v(s)�τ (s − τ )dτ

)
−1

]
.

(A4)

The Stratonovich interpretation of Eq. (11) arises when
the limit �τ (t − τ ) → δ(t − τ ) is taken [13,17], which is
considering a white Poisson process (WP) as the zero limit
of the correlation time of the corresponding CP. For a WP, the
logarithm of the generating function thus reads as

�t [v] = ν

∫ t

0
dr[ρ̂(v(r)) − 1]. (A5)

Finally, because of the Kubo theorem [23]

�t [v] =
∞∑

n=1

in

n!

∫ t

0
ds1, . . . ,dsnv(s1), . . . ,v(sn)

×〈〈ξ (t1), . . . ,ξ (tn)〉〉n, (A6)

where 〈〈· · ·〉〉j is the j th cumulant, i.e., 〈〈·〉〉1 = 〈·〉, 〈〈··〉〉2 =
〈··〉 − 〈·〉〈·〉, etc.

From Eqs. (A5) and (A6), we obtain the explicit formula to
calculate the cumulants:

〈〈ξ (t1)〉〉1 = δ�t

iδv(t1)
= ν

i
ρ̂ ′(v)|v=0, (A7)

〈〈ξ (t1)ξ (t2)〉〉2 = δ2�t

i2δv(t1)δv(t2)
= ν

i2
ρ̂ ′′(v)|v=0δ(t2 − t1),

(A8)

〈〈ξ (t1), . . . ,ξ (tn)〉〉n = δn�t

inδv(t1), . . . ,δv(tn)

= ν

in
ρ̂(n)(v)|v=0δ(t2 − t1), . . . ,δ(tn − tn−1).

(A9)

In this way, once ρ(w) is given, we have a complete description
of the WP. For example, in the case of exponential distributed
jumps, i.e., ρ(w) = 1

〈w〉e
− w

〈w〉 , the WP is fully characterized by
the moments

〈〈ξ (t)〉〉1 = ν〈w〉, (A10)

〈〈ξ (t1)ξ (t2)〉〉2 = ν〈w2〉δ(t1 − t2), (A11)

〈〈ξ (t1), . . . ,ξ (tn)〉〉n = ν〈wn〉δ(t1 − t2), . . . ,δ(tn−1 − tn).

(A12)

Once we have calculated all the moments of the WP process,
we can easily achieve the ME corresponding to the GLE (11).
For a given realization of ξ , the solution of Eq. (5) is

pS(x,t |ξ ) = δ[x − x(t)]. (A13)
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To obtain the general solution of Eq. (11), we simply have to
take the ensemble average of different trajectories

〈pS(x,t |ξ )〉 = P S(x,t). (A14)

By differentiating both sides of Eq. (A13) and using Eq. (11),
we have

∂tp
S(x,t |ξ ) = ∂xδ[x − x(t)][−ẋ(t)] (A15)

= −∂xδ[x − x(t)]{a[x,t] + b[x]ξ (t)},
(A16)

and thus we obtain a forward ME for the PDF conditioned by
a given realization of the WP:

∂

∂t
pS(x,t |ξ ) = −O(x,∂x,t) pS(x,t |ξ ), (A17)

where O(x,∂x,t) = ∂x{a[x,t] + b[x]ξ (t)} is the forward time
evolution operator. The solution of Eq. (A17) for the initial
condition pS[x(0),0|ξ ] = δ[x − x(0)] is

pS(x,t |ξ ) = T

[
exp

(
−

∫ t

0
{∂xa(x,τ ) + ∂xb[x(τ )]ξ (τ )}dτ

)]
× δ[x − x(0)], (A18)

where T is the T -product operator. By using Eq. (A14) and the
Kubo relation (A6), an explicit formula for the general formal
solution of the GLE (11) in the Stratonovich prescription is
obtained as

P S(x,t) = T

[
exp

(
−

∫ t

0
∂xa(x,τ )dτ −

∞∑
n=1

∫ t

0
dt1, . . . ,

×
∫ t

0
dtn∂xb[x(t1)], . . . ,∂xb[x(tn)] (A19)

×〈〈ξ (t1), . . . ,ξ (tn)〉〉
)]

δ[x − x(0)]. (A20)

Thanks to Eqs. (A7), (A8), and (A9), we have a complete
characterization of the cumulants and, thus, substituting
Eq. (A9) into Eq. (A19), we obtain

P S(x,t) = T

[
exp

(
−

∫ t

0
∂xa(x,τ )dτ

+
∞∑

n=1

ν

∫ t

0
{−∂xb[x(τ )]}n ˆρ(0)

(n)
dτ

)]

= T

[
exp

(
−

∫ t

0
∂xa(x,τ )dτ

− ν

∫ t

0
dτ 〈e−∂xb[x(τ )] − 1〉ρ(w)

)]
. (A21)

Eventually, differentiating Eq. (A21) with respect to t , we ob-
tain the ME corresponding to the GLE (11) in the Stratonovich
interpretation

∂P S(x,t)

∂t
=

[
− ∂

∂x
a(x,t) + ν

〈
e−w ∂

∂x
b(x) − 1

〉
ρ(w)

]
P S(x,t),

(A22)

which is the ME (6) reported in the main text.

APPENDIX B

We now show the derivation of the S ME (7) in the main
text and its equivalence with Eq. (6). We can write the GLE (5)
as

ẋ(t) =
{

a(x,t), with probability 1 − ν dt

b(x) w hτ (t), with probability ν dt , (B1)

where hτ (t) = �̇τ (t). We now consider only the effect of
the jumps on x. From Eq. (B1), we have that dx/b[x(t)] =
w hτ (t)dt , and setting

dη(x)

dx
= 1

b(x)
⇒ η(x) =

∫ x dx ′

b(x ′)
, (B2)

Eq. (B1) becomes

dη[x(t)] = w hτdt, (B3)

which, integrated between t and t + dt , reads as

η[x(t + dt)] = η[x(t)] + w ��τ (t)

⇒ x(t + dt) = η−1{η[x(t)] + w ��τ (t)},
(B4)

where ��τ (t) = �τ (t + dt) − �τ (t).
Finally, we can write the discrete ME corresponding to the

GLE (11) interpreted in the Stratonovich sense:

P S(x,t + dt) = (1 − ν)dt

∫ ∞

0
dx ′P S(x ′,t)δ{x

− [a(x ′)dt + x ′]} + νdt

∫ ∞

0

∫ ∞

0
ρ(w)

×P S(x ′,t)δ(x − {η−1[η(x ′) + w]})dwdx ′,
(B5)

where we have performed the limit τ → 0 of the GLE (5)
and used the fact that limτ→0 ��τ (t) = 1. The integral in
the right-hand side of Eq. (B5) can be rewritten, inverting
the Dirac delta with respect to w and using the rule of the
inverse function, as

∫ ∞
0

∫ x

0 ρ(w)P S(x ′) δ{w−[η(x)−η(x ′)]}
|1/η′(x)| dw dx ′

and, thus, after taking the continuum time limit, the master
equation (B5) becomes

∂P S(x,t)

∂t
= − ∂

∂x
[a(x,t)P S(x,t)] + ν

∫ ∞

0

ρ[η(x) − η(x ′)]
|b(x)|

×P S(x ′,t)dx ′ − ν P S(x,t), (B6)

which is Eq. (7) reported in the main text.
In order to show the equivalence between Eqs. (6) and (7),

we define

Q(x,w) =
∫ ∞

0
P S(x ′)δ(x − {η−1[η(x ′) + w]}) dx ′, (B7)

so we have that the integral in Eq. (B6) is simply∫ ∞
0 Q(x,w)ρ(w)dw.
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By differentiating Eq. (B7) with respect to w, we obtain the
partial differential equation

∂w Q(x,w) = −∂x b(x)Q(x,w) = −HQ, (B8)

where we used Eqs. (B2) and (B7) and the definition of the
derivative of the inverse function. The solution of Eq. (B8) is

Q(x,w) = e−wHQ(x,0) = e−w∂xb(x)P S(x). (B9)

We thus have∫ ∞

0

ρ[η(x) − η(x ′)]
|b(x)| P S(x ′,t)dx ′ = 〈e−w∂xb(x)〉ρP S(x,t),

(B10)

which substituted in Eq. (B6) proves the equivalence between
the MEs (6) and (7) in the main text.

APPENDIX C

We present in this appendix the derivation for the I ME (10)
and its equivalence with Eq. (9). We first note that the integral
in the ME (9) can be rewritten as∫ ∞

−∞
ρ

(
x − x ′

b(x ′)

)
P I (x ′,t)
|b(x ′)| dx ′

=
∫ ∞

−∞

∫ ∞

−∞
ρ(w)δ[x − x ′ − wb(x ′)]P I (x ′,t)dx ′dw. (C1)

Formally expanding the Dirac delta

δ[x − x ′ − wb(x ′)] =
+∞∑
n=0

(−w)n

n!

(
∂

∂x

)n

b(x ′)nδ(x − x ′)

(C2)

and substituting Eq. (C2) in (C1), we have∫ ∞

−∞
ρ

(
x − x ′

b(x ′)

)
P I (x ′,t)
|b(x ′)| dx ′ = 〈(

:e−w ∂
∂x

b(x):
)
P I (x,t)

〉
ρ
,

(C3)

where (:e−w ∂
∂x

b(x):)P I (x,t) ≡ ∑+∞
n=0

(−w)n

n! ( ∂
∂x

)nb(x)nP I (x,t).
Using the expression (C3) in Eq. (9), we obtain the ME (10).

APPENDIX D

We now derive the well-known FPE corresponding to
the GLE (5) when ξ (t) is a GWN with mean 〈ξ (t)〉 = 0
and correlation 〈ξ (t) ξ (s)〉 = 2D δ(t − s), from the MEs (6)
and (10) presented in the main text. We generalize our results
to any jump size PDF of the form

ρ(w) = γf (γw), (D1)

with γ > 0 and
∫

wnρ(w)dw = 〈wn〉ρ < ∞ ∀n. We
note that the latter condition implies γ

∫
dw wnf (γw) =

γ −n
∫

dz znf (z) = γ −n〈zn〉f < ∞ ∀n.
Stratonovich equation. The case for the Stratonovich

prescription has been first presented in [7]. The FPE corre-
sponding to multiplicative GWN process interpreted in the
Stratonovich sense is

∂

∂t
P S(x,t) = − ∂

∂x
[a(x,t) P S(x,t)]

+D
∂

∂x
b(x)

∂

∂x
b(x) P S(x,t). (D2)

Once we consider a zero mean WP process, the ME (6) reads
as [7]

∂P S(x,t)

∂t
= − ∂

∂x
[[a(x,t) − ν〈w〉b(x)]P S(x,t)]

+ ν
〈
e−w ∂

∂x
b(x) − 1

〉
ρ
P S(x,t) (D3)

= − ∂

∂x
[a(x,t)P S(x,t)] + ν

+∞∑
n=1

(
− 1

γ

)n 〈zn〉f
n!

×
(

∂

∂x
b(x)

)n

P S(x), (D4)

where the integral in the right-hand side of Eq. (D3) has been
expanded as

〈
e−w ∂

∂x
b(x)

〉
ρ
P S(x) =

+∞∑
n=0

(−1)n
〈wn〉
n!

(
∂

∂x
b(x)

)n

P S(x)

=
+∞∑
n=0

(
− 1

γ

)n 〈zn〉f
n!

(
∂

∂x
b(x)

)n

P S(x).

(D5)

Taking the limit ν,γ → ∞, such that ν
γ 2 = D′, then ν

γ n → 0
for n > 2 and the latter ME (D4) corresponds exactly to the
FPE (D2) with D = D′ 〈z〉f

2 .
Itô equation. The FPE corresponding to multiplicative

GWN process interpreted with the Itô prescription is

∂

∂t
P I (x,t) = − ∂

∂x
[a(x,t) P (x,t)],D

∂2

∂x2
[b(x)2 P I (x,t)].

(D6)

We now repeat the same procedure as before, starting from the
zero mean I ME

∂P I (x,t)

∂t
= − ∂

∂x
{[a(x,t) − ν〈w〉b(x)]P I (x,t)}

+ ν
〈(

:e−w ∂
∂x

b(x):
) − 1

〉
ρ
P I (x,t). (D7)

We can expand the right-hand side remembering that the
operator : · · · : means that all the derivatives must be placed
on the left of the expression:

ν
〈(

:e−w ∂
∂x

b(x):
) − 1

〉
ρ
P I (x,t)

= −ν〈w〉ρ ∂

∂x
[b(x)P I (x,t)] + ν

+∞∑
n=2

(
− 1

γ

)n 〈zn〉f
n!

×
(

∂

∂x

)n

[b(x)nP I (x,t)]. (D8)

Eventually, by inserting Eq. (D8) in the I ME (D7) and taking
ν,γ → ∞ with ν

γ 2 = D′ and D = D′ 〈z〉f
2 , we obtain the I

FPE (D6).
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APPENDIX E

In this appendix, we show how a solution of Eq. (12),
rewritten as

ρI (y) = |b(x ′)|
|b(x)| ρS[η(x) − η(x ′)] ≡ F (x ′,y), (E1)

where y = (x − x ′)/b(x ′), exists only if b is a linear function.
Because the left-hand side of Eq. (E1) does not depend on

x ′, we must have ∂F
∂x ′ = 0, which explicitly reads as

0 = ρS[η(x) − η(x ′)]
(

sgn[b(x ′)]
b′(x ′)
|b(x)| − sgn[b(x)]

× b′(x)

|b(x)|2 |b(x ′)|[1 + yb′(x ′)]
)

+ ρ ′
S[η(x) − η(x ′)]

× |b(x ′)|
|b(x)| {η′(x)[1 + yb′(x) − η′(x ′)]}. (E2)

The latter, using Eq. (B2), can be expressed as

ρ ′
S[η(x) − η(x ′)]

ρS[η(x) − η(x ′)]

(
1

b(x)
[1 + yb′(x ′)] − 1

b(x ′)

)

+ b′(x ′)
b(x ′)

− b′(x)

b(x)
[1 + yb′(x ′)] = 0. (E3)

Equation (E3) must hold for all ρS , then the solution of Eq. (E3)
is given by the function b, which satisfies the conditions

b(x ′)[1 + yb′(x ′)] = b(x), (E4)

b(x ′)b′(x)[1 + yb′(x ′)] = b(x)b′(x ′). (E5)

By combining Eqs. (E4) and (E5) and using x = b(x ′)y +
x ′, we obtain the equation b′[b(x ′)y + x ′] = b′(x ′). If we take
the derivative of both sides with respect to the independent
variable y, then we have b′′[b(x ′)y + x ′]b(x ′) = 0. This
implies b′′(x) = 0 ∀x, the solution of which is b(x) = kx (with
k any constant).
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