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Product of Ginibre matrices: Fuss-Catalan and Raney distributions
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Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized
by probability distributions Ps(x), such that their moments are equal to the Fuss–Catalan numbers of order s.
We find a representation of the Fuss-Catalan distributions Ps(x) in terms of a combination of s hypergeometric
functions of the type sFs−1. The explicit formula derived here is exact for an arbitrary positive integer s, and for
s = 1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform
and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of
which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be
considered as a two-parameter generalization of the Wigner semicircle law.

DOI: 10.1103/PhysRevE.83.061118 PACS number(s): 05.40.−a, 02.50.Ey, 05.30.Ch

I. INTRODUCTION

Random matrices of various ensembles find numerous ap-
plications in several fields of statistical physics. In the general
class of non-Hermitian random matrices an important role is
played by the Ginibre ensemble [1]. A matrix G of size N of
such an ensemble consists of N2 independent random complex
numbers, drawn according to the Gaussian distribution with
zero mean and a fixed variance [2,3]. Such matrices are used
to describe nonunitary dynamics of chaotic systems and open
quantum systems [4]. This ensemble of random matrices can
also be used to analyze the human electroencephalogram
data [5], for telecommunication applications based on the
scattering of electromagnetic waves on random obstacles [6],
or in mathematical finance to describe correlation matrices of
various stocks [7,8].

The spectrum of a non-Hermitian matrix G belongs to
the complex plane. Spectral density of random matrices
of the suitably normalized Ginibre ensemble is described
by the Girko circular law [9], as in the limit N → ∞ it
covers uniformly the unit disk. The random matrix W = GG†,
called a Wishart matrix, is positive. Hence its eigenvalues λi ,
i = 1, . . . ,N , are real and nonnegative. Introducing a rescaled
eigenvalue, x = Nλ, one can show that in the limit of the
large matrix size the spectral density P (x) converges to the
Marchenko-Pastur (MP) distribution [10].

In general, products of random matrices have been a subject
of an intensive research for many years [11]. Recent studies on
products of Ginibre matrices concern multiplicative diffusion
processes [12], correlation matrices used in macroeconomic
time series [13], a random matrix approach to quantum
chromodynamics [14], and lattice gauge field theories [15].
Properties of the complex spectra of products of random
Ginibre matrices were recently analyzed in Ref. [16].

It is also interesting to study singular values of a product of
s independent Ginibre matrices, X = G1 · · · Gs . Note that a
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squared singular value of the product X equals the correspond-
ing eigenvalue of the Wishart-like matrix W = XX†. For s =
2, positive random matrices of the form W2 = G1G2(G1G2)†

found their applications in finance [13]. Matrices of the form
Ws = G1 · · ·Gs(G1 · · · Gs)† for an arbitrary s were used to
describe random quantum states associated with certain graphs
[17] and quantum states obtained by orthogonal measurements
in a product of maximally entangled bases [18].

The corresponding asymptotic-level density distribution
Ps(x) is called a Fuss-Catalan distribution of order s, since
its moments are given [19–21] by the Fuss-Catalan numbers
[22,23] (also called Fuss1 numbers [24]). Strangely enough,
the Fuss-Catalan numbers generalize the Catalan numbers,
although the work of Fuss [25] was done much earlier then
the contribution of Catalan [26]. The Catalan number can be
defined as a number of different bracketings of a product of
n + 1 numbers, or the number of possible n foldings of a map
that contains n + 1 pages in a row [27].

The Fuss-Catalan distribution describes asymptotically
statistics of singular values of the sth power of random Ginibre
matrices. This result obtained recently by Alexeev et al. [28]
was derived by estimating the moments of the distribution of
squared singular values of a power Gs of a random matrix
and showing that these moments converge asymptotically to
the Fuss-Catalan numbers. This is true under rather weak
assumptions: All entries of the matrix G are independent
random variables characterized by the zero mean, variance
set to unity, and finite fourth moment.

The Fuss-Catalan distribution can be considered as a
generalization of the MP distribution, which is obtained for
s = 1. Moreover, the distribution Ps(x) belongs to the class of
free Meixner measures [29], and in terms of free probability
theory it appears as the free multiplicative convolution product

1When Leonard Euler, after an eye operation in 1772, became almost
completely blind, he asked Daniel Bernoulli in Basel to send a young
assistant, well trained in mathematics, to him in St. Petersburg. It was
Nikolaus Fuss, who arrived in St. Petersburg in May 1773 [49].
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of s copies of the MP distribution [21,30], which is written as
Ps(x) = [P1(x)]�s.

An explicit form in the case s = 2 was derived in Ref. [31]
in context of construction of generalized coherent states from
combinatorial sequences. The spectral distribution of Ps(x)
for a product of an arbitrary number of s random Ginibre
matrices was recently analyzed by Burda et al. [32] also in
the general case of rectangular matrices. The distribution was
expressed as a solution of a polynomial equation, and it was
conjectured that the finite size effects can be described by a
simple multiplicative correction. Another recent work by Liu
et al. [33] provides an integral representation of the distribution
Ps(x) derived in the case of s square matrices of size N , which
is assumed to be large. However, these recent contributions do
not provide an explicit form of the distribution Ps(x).

The aim of this note is to derive exact and explicit
formulas for the Fuss-Catalan distribution Ps(x), which can be
represented as a combination of s hypergeometric functions.
The derivation is presented in Sec. II, and auxiliary information
on special functions and the proof of positivity of Ps(x) are
provided in Appendices A and B, respectively. In Sec. III
we discuss a certain two-parameters generalization of Fuss-
Catalan numbers. As these numbers quantify generalized
Raney sequences [22], the corresponding probability measures
Wp,r (x) will be called Raney distributions. As special cases
they include the Marchenko-Pastur distribution, Fuss-Catalan
distributions, and Wigner semicircle law. We find exact
expressions for Raney distributions corresponding to integer
parameter values in the general case and provide explicit
formulas in the simplest cases of small values of the integer
parameters 1 � r � p.

II. FUSS-CATALAN DISTRIBUTIONS

For any integer number s one can use the binomial symbol
to define a sequence of integers denoted by Cs(n),

Cs(n) := 1

sn + 1

(
sn + n

n

)
. (1)

Here n = 0,1, . . . , while s = 1,2, . . . , and these numbers are
called the Fuss-Catalan numbers of order s [22].

We enumerate some of these sequences for n = 0, . . . ,7:

C1(n) = 1,1,2,5,14,42,132,427, . . . ,

C2(n) = 1,1,3,12,55,273,1428,7752, . . . ,

C3(n) = 1,1,4,22,140,969,7084,53 820, . . . ,

C4(n) = 1,1,5,35,285,2530,23 751,23 1880, . . . .

The above sequences are contained in the Online Encyclopedia
of Integer Sequences (OEIS) [34] under the labels (A000108),
(A001724), (A002293), and (A002294), respectively. These
sequences can be considered as a generalization of the
sequence C1(n), which consists of Catalan numbers, C1(n) =

1
n+1 ( 2n

n
).

We will show that for any given s there exists a density
distribution Ps(x), which satisfies∫ Ks

0
xnPs(x) dx = Cs(n), n = 0,1, . . . , (2)

where

Ks := (s + 1)s+1/ss. (3)

In other words, we are looking for a positive density Ps(x)
that satisfies the above infinite system of equations. As the
density turns out to be defined in a finite segment [0,Ks], the
solution of this Hausdorff moment problem [35] associated
with the Fuss-Catalan numbers is unique. An explicit proof of
positivity of Ps(x) is provided in Appendix B.

We employ the method of the inverse Mellin transform,
which was previously used to construct explicit solutions of the
Hausdorff moment problem [36,37] and to derive explicit form
of the Lévy-stable distributions [38]. The Mellin transform
M of a function f (x) and its inverse M−1 are defined by a
pair of equations:

f ∗(σ ) := M[f (x); σ ] =
∫ ∞

0
xσ−1f (x) dx (4)

and

f (x) := M−1[f ∗(σ ); x] = 1

2πi

∫ c+i∞

c−i∞
x−σ f ∗(σ ) dσ, (5)

with complex σ . In (5) this variable is integrated over a vertical
line in the complex plane [39]. For discussion concerning
the role of c, see Refs. [39–41]. Therefore the solution of
Eq. (2) can be obtained by extending integer variable n to
complex σ by a substitution n → σ − 1. The desired form of
the distribution Ps(x) can be formally written as an inverse
Mellin transform:

Ps(x) = M−1[Cs(σ ); x] . (6)

To find such a transform we will bring the Fuss-Catalan
numbers into a more suitable form. Representing the binomial
symbol in (1) by the ratio of Euler’s gamma function, one
obtains

Cs(σ ) = �
[
(s + 1)

(
σ − s

s+1

)]
�

[
s
(
σ − s−2

s

)]
�(σ )

. (7)

After applying twice the Gauss-Legendre formula (A1) for
multiplication of the argument of the gamma function one
arrives at

Cs(σ ) = 1√
2π

[
(s + 1)s+1

ss

]σ

× ss−3/2

(s + 1)s+1/2

[
s−1∏
j=0

�
(
σ + j−s

s+1

)
�

(
σ + 2+j−s

s

)
]
. (8)

Obtaining the above form of the Cs numbers, in which a ratio
of products of the gamma functions of a shifted argument
appears, is a key step of our reasoning. It allows us to represent
the inverse Mellin transform of Eq. (8) as a certain special
function. To see this, recall that the Meijer G function of the
argument z can be defined by the inverse Mellin transform [40]:

Gm,n
p,q

(
z
∣∣α1···αp

β1···βq

)

= M−1

[ ∏m
j=1 �(βj + σ )

∏n
j=1 �(1 − αj − σ )∏q

j=m+1 �(1 − βj − σ )
∏p

j=n+1 �(αj + σ )
; z

]
.

(9)
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This definition involves four lists of parameters, which can
be represented by p complex numbers αj and other q complex
numbers βj . Integers numbers p and q can be equal to zero, and
it is assumed that 0 � m � q and 0 � n � p, so that possibly
empty products in this form are taken to be equal to unity. A
detailed description of the integration contours of the Mellin
transform (9), general properties of the Meijer functions, and
their special cases can be found in Ref. [40].

Direct comparison of expression (8) for the Fuss Catalan
numbers and the Mellin transform as the Meijer G function
(9) allows us to represent the Fuss-Catalan distribution Ps(x)
by a Meijer G function,

Ps(x) = 1√
2π

ss−3/2

(s + 1)s+1/2
Gs,0

s,s

(
z
∣∣α1···αp

β1···βq

)
(10)

of the argument z = xss(s + 1)−(s+1). Looking at the range of
the parameter j in (8) we see that the numbers of parameters
of the Meijer G function have to be set to n = 0, p = s,
and m = q = s. Hence this function involves 2s parameters,
which read αj = (1 + j − s)/s and βj = (j − 1 − s)/(s + 1)
for j = 1, . . . ,s.

As there are only two products of gamma functions in
(8), in contrast to four in (9), which is equivalent to setting
n = 0 and m = q, a further simplification of the above
formula is possible. In this case the Meijer G function
can be written as a combination of hypergeometric func-
tions of the same argument z [see Eq. (5.2.11), p. 146 of
Ref. [41]].

Let pFq([{aj }pj=1],[{bj }qj=1]; x) denote the hypergeometric
function [42] of the type pFq with p “upper” parameters
aj and q “lower” parameters bj of the argument x. The
symbol {ai}ri=1 represents the list of r elements, a1, . . . ,ar .
Then formula (10) for the Fuss-Catalan distribution can be
rewritten as

Ps(x)

=
s∑

k=1

�k,sx
k

s+1 −1
sFs−1

{[(
1 − 1 + j

s
+ k

s + 1

)s

j=1

]
,

[(
1 + k − j

s + 1

)k−1

j=1

,

(
1 + k − j

s + 1

)s

j=k+1

]
;

ss

(s + 1)s+1
x

}
.

(11)

where the coefficients �k,s read for k = 1,2, . . . ,s,

�k,s := s−3/2

√
s + 1

2π

(
ss/(s+1)

s + 1

)k

×
[∏k−1

j=1 �
(

j−k

s+1

)][∏s
j=k+1 �

(
j−k

s+1

)]
∏s

j=1 �
(

j+1
s

− k
s+1

) . (12)

This formula, along with Eq. (22), constitutes the key result
of the present note. It gives an exact result for the Fuss-Catalan
(FC) distribution Ps(x) for an arbitrary natural s. The FC
distribution describes the density of squared singular values
of a product of s independent square Ginibre matrices in the
limit of a large matrix size.

The convergence conditions of the hypergeometric series
sFs−1 immediately yield the support of Ps(x), which is equal

FIG. 1. (Color online) Marchenko-Pastur distribution P1(x) com-
pared with the Fuss-Catalan distribution P2(x). The singularity at
x → 0 is of the type Ps(x) ∼ x−s/(s+1).

to [0,(s + 1)s+1/ss]. For small values of x the distribution
behaves as x−s/(s+1). It is comforting to see that in the simplest
case s = 1 the above complicated form reduces indeed to the
Marchenko-Pastur distribution,

P1(x) = 1

π
√

x
1F0

([
− 1

2

]
,[ ];

1

4
x

)
=

√
1 − x/4

π
√

x
. (13)

Furthermore, the distribution P2(x), shown in Fig. 1,

P2(x) =
√

3

2πx2/3 2F1

([
−1

6
,
1

3

]
,

[
2

3

]
;

4

27
x

)

−
√

3

6πx1/3 2F1

([
1

6
,
2

3

]
,

[
4

3

]
;

4

27
x

)
(14)

is equivalent to the form

P2(x) =
3
√

2
√

3

12π

[ 3
√

2(27 + 3
√

81 − 12x)
2
3 − 6 3

√
x]

x
2
3 (27 + 3

√
81 − 12x)

1
3

, (15)

valid for x ∈ [0,27/4] and obtained first in Ref. [31] in the
context of construction of generalized coherent states from
combinatorial sequences. The distribution P3(x), plotted in
Fig. 2, is given by a sum of three terms:

P3(x) = 1√
2πx3/4

3F2

([
− 1

12
,
1

4
,

7

12

]
,

[
1

2
,
3

4

]
;

27

256
x

)

− 1

4πx1/2 3F2

([
1

6
,
1

2
,
5

6

]
,

[
3

4
,
5

4

]
;

27

256
x

)

−
√

2

64πx1/4 3F2

([
5

12
,
3

4
,
13

12

]
,

[
5

4
,
3

2

]
;

27

256
x

)
. (16)
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FIG. 2. (Color online) Fuss-Catalan distributions Ps(x) plotted
for parameter s equal to 3, 4, 5, and 6 are supported on the interval
[0,(s + 1)s+1/ss]. To show behavior at the right side of the support
the figure is plotted for x � 5.

In Fig. 2 we present the Fuss-Catalan distributions Ps(x) for
s = 3, 4, 5, and 6.

III. RANEY DISTRIBUTIONS

The Fuss-Catalan numbers Cs(n) defined in (1) can be
considered as a special cases of a larger family of sequences,

Rp,r (n) := r

pn + r

(
pn + r

n

)
, (17)

defined for n = 0,1, . . .. Here p and r are treated as integer
parameters, p � 2, r = 1,2, . . .. Setting r = 1 and p = s + 1
we have 1

np+1 ( np+1
n

) = 1
n(p−1)+1 ( np

n
), so the numbers Rs+1,1(n)

are equal to Cs(n). Further relations involving the sequences
Rp,r (n) are

Rp+1,p+1(n) = Cp(n + 1) (18)

and

Rp,p(n) = Rp,1(n + 1), (19)

which can be verified directly from their definitions (1)
and (17).

The Raney lemma [43] implies that the number of the
Raney sequences of order p and length pn + 1, for which
all partial sums are positive, is given by the Fuss-Catalan
numbers Cp−1(n) = Rp,1(n). Furthermore, as the number of
positive generalized Raney sequences is equal to Rp,r (n) [22]
we will refer to Rp,r (n) defined in (17) as Raney numbers.
These numbers appear as coefficients in a generalized bino-
mial series [22]. Some representative examples of sequences

Rp,r (n), for n = 0,1, . . . ,7 are given together with their OEIS
labels [34]:

R4,2(n)=1,2,9,52,340,2394,17 710,135 720, . . . (A069271),

R5,2(n)=1,2,11,80,665,5980,56 637,556 512, . . . (A118969),

whereas the two following sequences are not represented in
OEIS:

R4,5(n) = 1,5,30,200,1425,10 626,81 900,647 280, . . . ,

R6,3(n) = 1,3,21,190,1950,21 576,250 971,302 5308, . . . .

In a recent work Młotkowski [20] has shown that the
sequence (17) describes moments of a probability measure
μp,r with a compact support contained in [0,∞), if point (r,p)
that determines parameters of the Raney numbers belongs to
the set 	 defined by inequalities p � 1 and 0 < r � p. Note
that the point (1,1) implies a constant sequence of moments,
R1,1(n) = 1, which represents a singular, Dirac delta measure,
μ1,1 = δ(x − 1).

In the case where the measure μp,r is represented by a
density, we will denote it by Wp,r (x). Setting r to 1, one gets the
Fuss-Catalan numbers, which implies that W2,1(x) represents
the Marchenko-Pastur distribution, while Ws+1,1(x) reduces to
the Fuss-Catalan probability density Ps(x).

In general parameters p and r can be taken to be real, and
then the moments of the measure are expressed by the gamma
functions:∫

xnμp,r (x) dx = r

np + r

�(np + r + 1)

�(n + 1)�(np + r − n + 1)
,

(20)

where the integration covers entire support of the measure μp,r .
For 1 � r � p the distribution Wp,r (x) is a positive function;
see Ref. [20] and Appendix B.

The corresponding distribution Wp,r (x) can be written im-
plicitly by its S transform, which allowed Młotkowski to estab-
lish relations between various Raney distributions [20], listed
in Appendix C. For a precise definition of the S transform (or
the free multiplicative convolution), see Eq. (4.9) in Ref. [20].
In spite of these concrete results an explicit form of the
Raney distribution Wp,r (x) has not appeared in the literature
so far.

Making use of the inverse Mellin transform and the Meijer
function we can generalize results of the previous section and
obtain explicit expressions for the Raney distributions Wp,r (x),
which correspond to integer values of the parameters p

and r .
Repeating steps analogous to Eqs. (7)–(10) we can represent

distribution Wp,r (x) in terms of the Meijer G function. The
explicit expression generalizing Eq. (10) reads

Wp,r (x) = r√
2π

pr−p−1/2

(p − 1)r−p+3/2
Gp,0

p,p

(
z
∣∣α1···αp

β1···βq

)
, (21)

where the argument of the function is z = x(p − 1)p−1/pp,
while its parameters are α1 = 0, αj = (r − p + j )/(p − 1) for
j = 2, . . . , p, and βj = (r − p − 1 + j )/p for j = 1, . . . , p.
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In analogy to (11) this relation can be represented by the
following sum consisting of of p terms:

Wp,r (x) =
p∑

j=1

�(p,r; j )x
r−1+j

p
−1

pFp−1

{[
1 + βj ,

(1 + βj − αi)
p

i=2

]
,

[(
1 + j − i2

p

)j−1

i2=1

,

(
1 + j − i3

p

)p

i3=j+1

]
,

(p − 1)p−1

pp
x

}
, (22)

where pFp−1 is the hypergeometric function, and the numerical
coefficients �(p,r; j ), for j = 1,2, . . . , p, read

�(p,r; j ) := r√
2π

pr−p−1/2

(p − 1)r−p+3/2

[
(p − 1)p−1

pp

] r−p−1+j

p

× 1

�
(

p−r+1−j

p

)
[∏j−1

i1=1 �
(

ii−j

p

)][∏p−j

i2=1 �
(

i2
p

)]
∏p

i3=2 �
(

r−p+i3

p−1 − r−p−1+j

p

) .

(23)

Convergence properties of the hypergeometric function
imply that the Raney distribution Wp,r (x) for integer values
of its parameters is supported in the interval [0,Kp−1], where
Ks is given in Eq. (3). Formula (22) implies that for p > r the
distribution Wp,r (x) displays a singularity for small x of the
type x−(p−r)/p. For p = r the “diagonal” Raney distributions
behave for small arguments as Wp,p(x) ∼ x1/p.

It is helpful to add some clarifying remarks concerning the
key formula (22). We draw attention to the fact that some
simplifications will always occur for two reasons:

(a) First, one parameter from the “upper” list of the
parameters will always be equal to a parameter from the
“lower” list. Consider, for instance, the case p = 4 and r = 2.
Then the value of the first parameter in the “upper” list becomes
1 + (j − 3)/4, and it cancels with the value of i3 = 3 of the
first sequence of the “lower” parameters. One can demonstrate
that a similar cancellation effect takes place for any pair
(p,r). Therefore, the hypergeometric function pFp−1 in (22)
effectively reduces to p−1Fp−2.

(b) Second, we see from Eq. (23) that the coefficient
�(p,r; j ) vanishes for j = p + 1 − r , due to the presence of
the first gamma function in denominator. Therefore the sum in
Eq. (22) involves (p − 1) terms with different hypergeometric
functions p−1Fp−2. Then it can be explicitly verified that
from the equality between the numbers Rs+1,1(n) = Cs(n), the
corresponding equality between the probability distributions

Ws+1,1(x) = Ps(x) (24)

follows. In particular, the following identity between the coef-
ficients holds: �(s + 1,1; j ) = �j,s , whose demonstration is
rather tedious and will not be reproduced here.

With the two provisos explained under items (a) and (b)
above, Eq. (22) will be used to obtain explicit forms of

FIG. 3. (Color online) Raney distributions W2,r (x) with values
of the parameter r labeling each curve. For r = 1 it reduces to
the Marchenko-Pastur distribution P1(x), while a semicircle law is
obtained for r = 2. For r = 3 the function represented by dashed line
is not positive, which is implied by p < r .

distributions Wp,r (x) for small values of r and p. In particular,
the case W2,2(x) reduces to the celebrated semicircular law [2]:

W2,2(x) =
√

x

π
1F0

([
−1

2

]
,[ ];

x

4

)
= 1

2π

√
x(4 − x).

(25)

The above semicircle is centered at x = 2, while the Wigner
semicircle centered at x = 0 is used in random matrix
theory to describe the asymptotic level density of random
Hermitian matrices from Gaussian ensembles [2,3]. The Raney
distributions W2,r (x) are plotted in Fig. 3 for r = 1 and 2.
For comparison we have also plotted the function W2,3(x)
furnished by Eq. (22). According to the results of Młotkowski
[20] and our Appendix B this function is not positive in its
domain, so it does not represent a probability distribution.
Here we obtain it explicitly.

It is easy to observe that the above semicircle distribution
is related with the Marchenko-Pastur distributions P1(x) by a
relation W2,2(x) = xP1(x). This is a special case of a more
general relation involving the “diagonal” Raney distributions
with r = p and Fuss-Catalan distribution,

Wp,p(x) = xWp,1(x) = xPp−1(x). (26)

This result, established first in Ref. [20], follows also naturally
from Eqs. (21) and (22). Thus for p = 3 one has

W3,1(x) = P2(x) and W3,3(x) = xP2(x), (27)

where the Fuss-Catalan distribution P2(x) is given in (14).
Due to an equivalent expression (15) the distribution W3,3(x)

061118-5
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FIG. 4. (Color online) As in Fig. 3 for Raney distributions W3,r (x)
supported in [0,6 3

4 ]. The case W3,4(x) (dashed line) is not a probability
measure. Each curve is labeled by the value of r .

can also be expressed in terms of elementary functions. The
intermediate Raney distribution, corresponding to r = 2,

W3,2(x) =
√

3

2πx1/3 2F1

([
−1

3
,
1

6

]
,

[
1

3

]
;

4

27
x

)

−
√

3x1/3

18π
2F1

([
1

3
,
5

6

]
,

[
5

3

]
;

4

27
x

)
, (28)

is shown in Fig. 4. In a close analogy to Eq. (15) this distri-
bution enjoys a similar representation in terms of elementary
functions,

W3,2(x) =
√

3 3
√

2

36π

[(27 + 3
√

81 − 12x)
4
3 − 18 3

√
2x

2
3 ]

x
1
3 (27 + 3

√
81 − 12x)

2
3

.

(29)

Observe that the distribution W3,1(x), W3,2(x), and W3,3(x)
behave for small x as x−2/3, x−1/3, and x1/3, respectively.

Let us now discuss the case p = 4 illustrated in Fig. 5. Due
to relations (26) one has

W4,1(x) = P3(x) and W4,4(x) = xP3(x), (30)

where the Fuss-Catalan distribution P3(x) is given in (16). Two
intermediate Raney distributions have a similar form:

W4,2(x) = 1

πx1/2 3F2

([
−1

6
,
1

6
,
1

2

]
,

[
1

4
,
3

4

]
;

27

256
x

)

−
√

2

4πx1/4 3F2

([
1

12
,

5

12
,
3

4

]
,

[
1

2
,
5

4

]
;

27

256
x

)

−
√

2x1/4

128π
3F2

([
7

12
,
11

12
,
5

4

]
,

[
3

2
,
7

4

]
;

27

256
x

)

(31)

FIG. 5. (Color online) As in Fig. 3 for Raney distributions
W4,r (x). Dashed line corresponds to a quasimeasure W4,5(x), which
is not positive.

and

W4,3(x) = 1√
2πx1/4

3F2

([
−1

4
,

1

12
,

5

12

]
,

[
1

4
,
1

2

]
;

27

256
x

)

− 3
√

2x1/4

64π
3F2

([
1

4
,

7

12
,
11

12

]
,

[
3

4
,
3

2

]
;

27

256
x

)

− x1/2

32π
3F2

([
1

2
,
5

6
,
7

6

]
,

[
5

4
,

7

12

]
;

27

256
x

)
. (32)

The general formula (22) allows us to obtain an explicit form
of the function W4,5(x), which is not positive, and it does not

FIG. 6. (Color online) “Diagonal” Raney distributions Wr,r (x)
form a generalization of the semicircle law W2,2(x). For small x they
behave as x1/r . Value of r labels each curve.
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FIG. 7. Raney distributions in the parameter space (p,r):
Marchenko-Pastur distribution P1 is represented by the point (2,1),
while Fuss-Catalan distribution Ps is represented by (∗) at (s + 1,1).
The semicircle (sc) law corresponds to (2,2) and the “diagonal” Raney
distributions (+) to (p,p). As shown in Ref. [20] any point in the
shaded set 	 corresponds to a probability measure with a compact
support in [0,∞).

represent a probability distribution; see the dashed curve in
Fig. 5.

Figure 6 presents the Raney distributions Wp,r (x) in the
“diagonal” case, r = p. As the distribution W2,2(x) represents
Eq. (25), the diagonal Raney distributions, Wr,r (x), can thus
by considered as a generalization of the semicircular law: they
are defined for x ∈ (0,Kr−1) where Ks = (s + 1)s+1/ss ; they
are equal to zero at both ends of the domain, and they are
characterized by a single maximum. However, of r > 2 the
functions Wr,r (x) are not symmetric anymore; see Fig. 6. A
plot of the parameter space (p,r) in which these distributions
are marked together with the Fuss-Catalan distributions is
presented in Fig. 7.

IV. CONCLUDING REMARKS

In this work we obtained an explicit form of the Fuss-
Catalan distribution Ps(x). The obtained result is exact for an
arbitrary s, and it allows for a simple use of these probability
distributions. Results derived are relevant from the point
of view of statistical physics as they describe asymptotic
level density of a normalized positive random matrix of the
product form X = (G1 · · · Gs)(G1 · · · Gs)†, where G1, . . . ,Gs

denote s independent random matrices from the complex
Ginibre ensemble. The variable x = Nλ denotes the rescaled
eigenvalue λ of random matrix X of size N .

It should be emphasized here that the Marchenko-Pastur
and Fuss-Catalan distributions describe the level density of
Wishart-like random matrices in the limiting case N → ∞
only. In practice, for any fixed N the finite size effects occur.
As discussed by Blaizot and Nowak [44,45] the finite N

effects are related with the diffraction phenomena, while the
large N limit of the random matrix theory may be compared
with the geometric limit of wave optics or the semiclassical
limit of quantum theory. An explicit description of finite N

corrections to the spectral density of Wishart matrices obtained

from products of Ginibre matrices is provided by Burda et al.
[32,46].

A simple argument put forward in Ref. [18] (see
Appendix B therein) implies that the same FC distributions
describe also the spectral density of a product of s random
matrices taken from the real Ginibre ensemble [47]. The
case of a product of two real matrices, recently studied in
context of quantum chromodynamics [48], is also important
in applications in econophysics, where one uses a product of
two real correlation matrices [13].

The Catalan numbers are a special case of a more general,
one-parameter family of Fuss-Catalan numbers, which from
a subset of two-parameter family of Raney numbers. In the
same way, the Marchenko-Pastur distribution P1(x) is a special
case of the Fuss-Catalan distributions, which in turn belong
to the two-parameter family of Raney distributions Wp,r (x).
This wide class of probability distribution includes, e.g., the
Dirac delta, δ(x − 1) and the semicircle law, W2,2(x). Applying
the inverse Mellin transform for integer parameter values of
the parameters we found an explicit exact representation of the
Raney distributions in terms of the hypergeometric functions.
For any r = 1,2, . . . ,p the Raney distribution Wp,r (x) is
supported in the interval [0,pp/(p − 1)p−1]. For small x the
distribution behaves as

Wp,r (x) ∼
{

x
− p−r

p if r < p,

x
1
p if r = p.

(33)

The Raney numbers (17) imply that the mean value of the
Raney distribution Wp,r (x) is equal to r , while the second
moment reads r(2p + r − 1)/2.

Let us conclude the paper with the following remark. The
Fuss-Catalan distribution describes statistical properties of
singular values of products of random matrices of the Ginibre
ensemble. It is then natural to ask, whether there exist any
ensembles of random matrices, such that their squared singular
values can be described by the Raney distributions.
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APPENDIX A: INFORMATION ON SPECIAL FUNCTIONS

Special functions of interest for this note are related to the
Euler gamma function, which admits the following integral
representation: �(z) = ∫ +∞

0 t z−1 e−t dt. Integrating by parts
we see that �(z + 1) = z�(z). For an integer argument the
Euler function is given by factorial, �(n + 1) = n! . The
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Gauss-Legendre formula allows one to compute the Euler
gamma function of a multiple of argument [42],

�(kz) = (2π )(1−k)/2kkz−1/2
k−1∏
j=0

�

(
z + j

k

)
, (A1)

for k = 1,2,3, . . . and z �= 0, − 1, − 2, . . . .

The generalized hypergeometric series is a series in which
the ratio of successive coefficients indexed by n is a rational
function of n. It can be defined as

pFq

([{aj }pj=1

]
,
[{bj }qj=1

]
; z

)
:=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
, (A2)

where we use the Pochhammer symbol, defined by (a)n =
a(a + 1)(a + 2) · · · (a + n − 1) and (a)0 = 1.

The series (A2), if convergent, defines a generalized
hypergeometric function, which may then be defined over a
wider domain of the argument by analytic continuation.

Note that for s = 2 expression (11) involves the Gauss
(ordinary) hypergeometric function

2F1([a,b],[c]; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (A3)

which includes many other special functions as special or
limiting cases.

APPENDIX B: POSITIVITY OF THE DISTRIBUTIONS
Ps(x) AND Wp,r (x)

For completeness we prove in this appendix that for any
integer s the distribution Ps(x) is positive for x ∈ (0,Ks),
where Ks = (s + 1)s+1/ss . Equation (6) implies that Ps(x) is
given as the inverse Mellin transform of Eq. (8). We are going
to use the convolution property for two Mellin transforms,
M[f (x); σ ] = f ∗(σ ) and M[g(x); σ ] = g∗(σ ), which reads
[36,37]

M−1[f ∗(σ )g∗(σ ); x] =
∫ ∞

0
f

(
x

t

)
g(t)

dt

t

=
∫ ∞

0
g

(
x

t

)
f (t)

dt

t
. (B1)

If x > 0 and both functions f (x) and g(x) are positive,
then their Mellin convolution defined by the integrals (B1)
conserves positivity.

Consider now, for a given j = 0,1, . . . ,(s − 1), the indi-
vidual term in the product in Eq. (8). Its Mellin transform
will satisfy [due to formula (8.4.2.3), p. 631 in Ref. [40]] the
following equality:

M−1

[
�

(
σ + j−s

s+1

)
�

(
σ + 2+j−s

s

) ; x

]
= xj−s(1 − x)

1+s(1+j−s)
s+1

�

[
2(s+1)+js−s2

s+1

] , (B2)

which for all j = 0,1, . . . ,(s − 1), is a positive function for
x ∈ (0,1). Then Eq. (8) can be viewed as a (s − 1)-fold
convolution of positive functions, which by (B1) is itself
positive for x ∈ (0,Ks). The upper edge Ks of the support
can be read off from the prefactor in Eq. (8).

In a similar way one can prove positivity of Raney
distribution Wp,r (x) for natural values of the parameters,
provided r � p. Here is the streamlined version of the proof.
We use the aforementioned formula 8.4.2.3 of Ref. [40] for
b > a,

M−1

[
�(σ + a)

�(σ + b)
; x

]
= [�(b − a)]−1xa(1 − x)b−a−1, (B3)

which describes a positive function for 0 < x < 1. We quote
now the full version of the analog of Eq. (8) for Rp,r (σ ), with
σ = n + 1 and p = 2,3, . . .:

Rp,r (σ ) = r√
2π

pr−p−1/2

(p − 1)r−p+3/2

[
pp

(p − 1)p−1

]σ

×
�

(
σ + r−p

p

)
�(σ )

p−1∏
j=1

[
�

(
σ + r−p+j

p

)
�

(
σ + r−p+j+1

p−1

)
]
. (B4)

Consider first the case 1 � r < p. The weight func-
tion Wp,r (x) is the inverse Mellin transform, Wp,r (x) =
M−1

[
Rp,r (σ ); x

]
, and, from (B4) via Eq. (B1), it is the p-fold

Mellin convolution of �[σ + (r − p)/p]/�(σ ) and of p − 1
factors in the product in Eq. (B4). For each of these individual
ratios of gamma function relation (B3) holds. Therefore,
with Eq. (B4), the positivity of the distribution Wp,r (x)
follows.

In the second case, r = p, only p − 1 factors in Eq. (B4)
intervene in the convolution. Hence Wp,p(x) is also pos-
itive. If r > p the first ratio in Eq. (B4) destroys the
positivity, so no further considerations are needed to show
that in this case the function Wp,r (x) is not a probability
distribution.

APPENDIX C: RELATIONS BETWEEN RANEY
DISTRIBUTIONS Wp,r (x)

The Raney distribution Wp,r (x) may be implicitly written
by its S transform, which allowed Młotkowski [20] to establish
a relation between distributions with various values of their
parameters in terms of the free multiplicative convolution
denoted by � (compare Eq. 4.10 in Ref. [20]):

W1+p,1 � W1+q,1 = W1+p+q,1. (C1)

This result, valid for p,q > 0, can be generalized for an
arbitrary positive r:

Wp,r � W1+q,1 = Wp+rq,r . (C2)

Moreover, there exists yet another relation:

[W1+p,1]�s = W1+sp,1, (C3)

which holds for s > 0 and is equivalent to the free multiplica-
tive convolution property for the Fuss-Catalan distribution.
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[38] K. A. Penson and K. Górska, Phys. Rev. Lett. 105, 210604
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