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Time-averaged quadratic functionals of a Gaussian process
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The characterization of a stochastic process from its single random realization is a challenging problem for most
single-particle tracking techniques which survey an individual trajectory of a tracer in a complex or viscoelastic
medium. We consider two quadratic functionals of the trajectory: the time-averaged mean-square displacement
(MSD) and the time-averaged squared root mean-square displacement (SRMS). For a large class of stochastic
processes governed by the generalized Langevin equation with arbitrary frictional memory kernel and harmonic
potential, the exact formulas for the mean and covariance of these functionals are derived. The formula for the
mean value can be directly used for fitting experimental data, e.g., in optical tweezers microrheology. The formula
for the variance (and covariance) allows one to estimate the intrinsic fluctuations of measured (or simulated)
time-averaged MSD or SRMS for choosing the experimental setup appropriately. We show that the time-averaged
SRMS has smaller fluctuations than the time-averaged MSD, in spite of much broader applications of the latter
one. The theoretical results are successfully confirmed by Monte Carlo simulations of the Langevin dynamics.
We conclude that the use of the time-averaged SRMS would result in a more accurate statistical analysis of
individual trajectories and more reliable interpretation of experimental data.
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I. INTRODUCTION

Single-particle tracking (SPT) techniques which survey
individual trajectories of tracer particles, assess the most
detailed information about dynamics in complex or vis-
coelastic media, notably in living cells [1–5]. The mean-
square displacement (MSD) of a tracer fluctuating inside the
substance is often used for extracting dynamical quantities
(e.g., diffusion coefficient or subdiffusion scaling exponent)
and microrheological quantities (e.g., stiffness [5], compliance
and dynamic moduli [6,7], or viscosities [8]). By its nature,
SPT techniques provide a limited number (from few to few
hundred) of random realizations of the underlying stochastic
process. Even if many realizations are available, statistical
“ensemble” averaging may still be problematic for tracers
that move in spatially heterogeneous and time-evaluating
media such as living cells. One faces therefore a challenging
problem of characterizing the process from several, or even
a single random realization. For comparison, fluorescence
photobleaching recovery or proton nuclear magnetic resonance
imaging [9–11], in which the signal is formed by an extremely
large number of molecules, provides the ensemble-averaged
information about the dynamics, and the aforementioned
problem does not appear.

The standard approach consists of replacing ensemble
averages by time averages [12–14]. If the sample duration
tm is long enough, a tracer is expected to experience various
features of the dynamics that would be somehow reflected
in the trajectory. In terms of ergodic theory, if the trajectory
is long enough to sample densely the whole phase space,
time-averaged characteristics of the process are expected to
be close to their ensemble-averaged counterparts.

*denis.grebenkov@polytechnique.edu

A practical implementation of time averaging faces several
problems. The ergodicity is a strong assumption which may
or may not be valid. For instance, continuous-time random
walks (CTRWs) exhibiting aging [15–18] are known to be
nonergodic, e.g., the time-averaged and ensemble-averaged
MSD are different [19–21]. The main difficulty is that the
ergodicity of a system is not known a priori and has to be
tested. Another, more practical, problem is to know whether
the sample duration tm is long enough for a sufficient reduction
of fluctuations in a time-averaged quantity. In order to illustrate
this point, we consider the time-averaged MSD which is the
most often used characteristic of diffusion:

M(t,tm) = 1

tm − t

∫ tm−t

0
dt0m(t,t0),

m(t,t0) = [X(t0 + t) − X(t0)]2 ,

(1)

where X(t) is the position of a tracer at time t . In spite of time
averaging, this is still a random variable (we stress that the
canonical term “mean-squared displacement” is misleading
here since there is no expectation or ensemble averaging). It
means that two acquisitions under identical conditions lead to
different values of M(t,tm). Only in the theoretical limit of in-
finitely long sample (tm → ∞), the random variable M(t,tm)
approaches its deterministic ensemble-averaged mean value
if the dynamics is ergodic. Note also that the unavoidable
presence of experimental noise, static localization uncertainty,
the blurring of a particle’s position over camera integration
times, and medium heterogeneities introduce artifacts into
measurements and thus require optimization of acquisition
techniques and data analysis [22–24]. Although these issues
are important for a reliable interpretation of experimental
data, they could not be included in the paper and will be
addressed in a future work. In turn, we focus on the intrinsic
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statistical uncertainty of time-averaged functionals of random
trajectories.

In practice, the sample duration tm is always finite, and the
fluctuations of M(t,tm) can be quantified by its variance. By
increasing tm, one expects to reduce the statistical uncertainty
in the determination of the ensemble-averaged value of
M(t,tm) by its empirical (random) realization extracted from
a measured individual trajectory. In other words, although
M(t,tm) remains random, its values for different random
trajectories become less fluctuating and closer to each other
and to the mean value as tm increases. This condition may be a
quantitative criterion for choosing the appropriate sample du-
ration, e.g., in optical tweezers microrheology. Alternatively,
the knowledge of the variance for experimentally accessible
tm allows one to characterize the accuracy of time-averaged
measurements. Although the time-averaged MSD is routinely
used for characterizing diffusion in living cells, only few
theoretical studies on the statistical uncertainty are available,
and uniquely in the case of normal diffusion [12–14,22].

In this paper, we derive exact explicit formulas for the mean
and covariance of the time-averaged MSD for a tracer under-
going the dynamics described by the generalized Langevin
equation (GLE) (Sec. II A). The analytical formula for the
mean M(t,tm) can be directly used for fitting experimental
MSD curves. As intuitively expected, the variance of the
time-averaged MSD is shown to increase with the lag time
t as the averaging window between 0 and tm − t shrinks. For a
large part of the data sample (when the condition t � tm is not
fulfilled), the time-averaged MSD is too much fluctuating and
thus inaccurate. For this reason, other functionals for extracting
information about the dynamics have been recently suggested,
e.g., the maximum likelihood estimator [24] and the mean
maximal excursion [25].

Searching for alternative characterizations of a stochastic
process from its single random trajectory, we consider another
quadratic functional of X(t), the time-averaged squared root
mean-square displacement (SRMS):

R(t,tm) ≡ 1

tm − t

∫ tm−t

0
dt0r(t,t0), (2)

where the SRMS between times t0 and t0 + t is defined as

r(t,t0) = 1

t

∫ t

0
dt ′

(
X(t ′ + t0) − 1

t

∫ t

0
dt ′′X(t ′′ + t0)

)2

=
(

1

t

∫ t

0
dt ′X2(t ′ + t0)

)
−

(
1

t

∫ t

0
dt ′′X(t ′′ + t0)

)2

(3)

[in fact,
√

r(t,t0) is the root mean square or quadratic mean of
tracer’s positions between t0 and t0 + t]. In contrast to MSD,
for which the integrand function m(t,t0) contained uniquely the
values of X(t) at two end points t0 and t0 + t of the averaging
window, the new integrand function r(t,t0) includes the time

averaging inside this window. Such a “double” time averaging
in Eqs. (2) and (3) is then expected to yield a smaller variance
for R(t,tm).

We derive exact explicit formulas for the mean and
covariance of R(t,tm). As for the time-averaged MSD, the
analytical formula for the mean R(t,tm) can be directly used
for fitting experimental time-averaged SRMS curves. Most
importantly, we shall show that the variance of R(t,tm) is
smaller than that of M(t,tm), especially at long times. As a
consequence, the use of the time-averaged SRMS would result
in a more accurate statistical analysis of individual trajectories
and more reliable interpretation of experimental data.

The paper is organized as follows. In Sec. II, we retrieve the
solution of the GLE in a convolution form and then derive the
explicit formulas for time-averaged MSD and SRMS for an
arbitrary memory kernel. The special case of massless tracers
with a power-law friction memory kernel is considered in
detail in Sec. III. In Sec. IV, a numerical solution of the GLE
via Monte Carlo simulations is used to illustrate fluctuations
of time-averaged characteristics. Appendixes present some
technical derivations.

II. ARBITRARY MEMORY KERNEL

A. Generalized Langevin equation (GLE)

We consider a large class of dynamics described by a GLE,

mẌ(t) +
∫ t

0
dt ′γ (t − t ′)Ẋ(t ′) + kX(t) = F (t), (4)

where m is the tracer mass, k is the spring constant of the
trapping harmonic potential (e.g., optical trap stiffness), γ (t)
is the friction memory kernel, and F (t) is the Gaussian thermal
force with mean zero and the covariance determined by the
fluctuation-dissipation theorem [26,27]:

〈F (t)F (t ′)〉 = kBT γ (|t − t ′|), (5)

with 〈· · · 〉 denoting the ensemble average over random realiza-
tions of the thermal force, kB being the Boltzmann’s constant,
and T the absolute temperature. The statistical properties
of solutions of the GLE have been intensively studied by
many authors (see, e.g., [28–34]). In particular, Desposito
and Vinales derived explicit formulas for the limiting MSD,
velocity autocorrelation function, and some other functionals
in the case of power-law memory kernels [35–38]. Following
their approach, we first recall the derivation of a formal solution
of Eq. (4).

The Laplace transform of the GLE (4) is

[ms2 + γ̃ (s)s + k]X̃(s) = {mv0 + [ms + γ̃ (s)] x0} + F̃ (s),

where tilde denotes Laplace-transformed quantities, and x0

and v0 are the initial position and velocity, from which

X̃(s) =
[
x0

1

s
+ mv0G̃(s) − kx0

G̃(s)

s

]
+ G̃(s)F̃ (s), (6)
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where

G̃(s) = 1

ms2 + sγ̃ (s) + k
. (7)

The inverse Laplace transform yields a formal solution,

X(t) = X0(t) +
∫ t

0
dt ′G(t − t ′)F (t ′), (8)

where X0(t) is a solution of the homogeneous Langevin
equation without thermal force, i.e., the inverse Laplace
transform of the first term in Eq. (6),

X0(t) = x0 + mv0G(t) − kx0G
(1)(t), (9)

with G(t) being the inverse Laplace transform of G̃(s), and
G(n)(t) the nth iterative integral of G(t):

G(n)(t) ≡
∫ t

0
dt ′G(n−1)(t ′) (n = 1,2, . . .).

Being related to the Gaussian force F (t) through linear
Eq. (8), the process X(t) is itself Gaussian. Throughout this
paper, we focus on this class of Gaussian processes which are
defined by setting the friction memory kernel γ (t).

B. Time-averaged MSD

Substituting Eq. (8) into Eq. (1), one can split the mean
time-averaged MSD in two terms,

〈M(t,tm)〉 = M1(t,tm) + 〈M2(t,tm)〉,

where

M1(t,tm) = 1

tm − t

∫ tm−t

0
dt0 [X0(t0 + t) − X0(t0)]2 ,

M2(t,tm) = 1

tm − t

∫ tm−t

0
dt0

[∫ t0+t

0
dt1G(t0 + t − t1)F (t1)

−
∫ t0

0
dt1G(t0 − t1)F (t1)

]2

, (10)

where the condition 〈F (t)〉 = 0 was used. The explicit form
(9) for the homogeneous solution X0(t) yields

M1(t,tm) = 1

tm − t

∫ tm−t

0
dt0[U0(t,t0)]2, (11)

with

U0(t,t0) = mv0[G(t0 + t) − G(t0)]

− kx0[G(1)(t0 + t) − G(1)(t0)]. (12)

The ensemble average of the second contribution can be
written as

〈M2(t,tm)〉 = kBT

tm − t

∫ tm−t

0
dt0U (t,t,t0,t0), (13)

where

U (t1,t2,t01,t02) = K(t01 + t1,t02 + t2) − K(t01,t02 + t2)

−K(t01 + t1,t02) + K(t01,t02) (14)

and

K(t1,t2) =
∫ t1

0
dt ′1G(t1 − t ′1)

∫ t2

0
dt ′2G(t2 − t ′2)γ (|t ′1 − t ′2|).

(15)

The double Laplace transform of the function K(t1,t2) with
respect to t1 and t2 is

K̃(s1,s2) = G̃(s1)G̃(s2)
γ̃ (s1) + γ̃ (s2)

s1 + s2
.

Introducing g(t) ≡ dG(t)/dt for which

g̃(s) = sG̃(s) = s

ms2 + γ̃ (s)s + k
,

and writing explicitly the sum of g̃(s1) and g̃(s2), one obtains

s1s2K̃(s1,s2) = g̃(s1) + g̃(s2)

s1 + s2
− mg̃(s1)g̃(s2) − kG̃(s1)G̃(s2).

The inverse Laplace transform of the right-hand side is

H (t1,t2) ≡ g(|t1 − t2|) − mg(t1)g(t2) − kG(t1)G(t2), (16)

from which

K(t1,t2) =
∫ t1

0
dt ′1

∫ t2

0
dt ′2H (t ′1,t

′
2)

= G(1)(t1) + G(1)(t2) − G(1)(|t2 − t1|)
−mG(t1)G(t2) − kG(1)(t1)G(1)(t2),

and we assumed that G(0) = 0 here and throughout this section
(see Sec. III for discussion). After the substitution of this
formula into Eqs. (13) and (14), many terms cancel each other,
and one gets

〈M2(t,tm)〉 = M(t) − kBT

tm − t

∫ tm−t

0
dt0

× [m [G(t0 + t) − G(t0)]2

+ k[G(1)(t0 + t) − G(1)(t0)]2], (17)

where

M(t) = 2kBT G(1)(t). (18)

In the special case of massless tracers moving without
harmonic potential (i.e., m = 0 and k = 0), the second
term vanishes, and the mean time-averaged MSD becomes
independent of the sample duration tm. Note that Eq. (18) can
potentially be used to access the friction memory kernel γ (t)
by measuring 〈M(t,tm)〉.

The mean time-averaged MSD from Eq. (17) is also reduced
to M(t) in the limit of infinitely long sample (tm = ∞). The
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same expression (18) was derived by Desposito and Vinales
for the limiting MSD [38]:

lim
t0→∞〈[X(t0 + t) − X(t0)]2〉 = M(t).

Although the limiting MSD is convenient for theoretical de-
scription, it is inaccessible from experimental measurements.
In turn, the time-averaged MSD is directly related to the
acquired trajectory of a tracer. Equation (17) proves that these
two quantities become identical in the limit of infinitely long
time averaging (tm → ∞).

The covariance of the time-averaged MSD is derived in
Appendix A:

CM(t1,t2,tm) ≡ 〈M(t1)M(t2)〉 − 〈M(t1)〉〈M(t2)〉
= 2(kBT )2

(tm − t1)(tm − t2)

∫ tm−t1

0
dt01

∫ tm−t2

0
dt02

×
(

[U (t1,t2,t01,t02)]2

+ 2

kBT
U0(t1,t01)U0(t2,t02)U (t1,t2,t01,t02)

)
,

(19)

where the functions U0 and U are given by Eqs. (12) and (14).
The variance of the time-average MSD is simply CM(t,t,tm). If
the initial conditions are irrelevant, setting x0 = 0 and v0 = 0
yields a more compact formula for the variance:

var{M(t,tm)}= 2(kBT )2

(tm − t)2

∫ tm−t

0
dt01

∫ tm−t

0
dt02[U (t,t,t01,t02)]2.

(20)

C. SRMS

We start by noting that the definition (3) of SRMS between
t0 and t0 + t can equivalently be written as

r(t,t0) = 1

t

∫ t

0
dt ′

(
X(t ′ + t0) − 1

t ′

∫ t ′

0
dt ′′X(t ′′ + t0)

)2

(21)

[the equivalence is shown by taking the difference between
Eqs. (3) and (21) and integrating by parts]. By technical
reasons, we shall use Eq. (21) in the following derivations.

Denoting the time-averaged position of the tracer as

Y (t,t0) ≡ 1

t

∫ t

0
dt ′X(t ′ + t0),

using Eq. (8) and integrating by parts, one obtains

Y (t,t0) = 1

t

∫ t

0
dt ′X0(t ′ + t0) +

∫ t+t0

0
dt ′G(t + t0 − t ′)F (t ′)

−1

t

∫ t

0
dt ′t ′

∫ t ′+t0

0
dt ′′g(t ′ + t0 − t ′′)F (t ′′), (22)

from which

r(t,t0) = 1

t

∫ t

0
dt ′

(
X0(t ′ + t0) − 1

t ′

∫ t ′

0
dt ′′X0(t ′′ + t0)

+ 1

t ′

∫ t ′

0
dt ′′t ′′

∫ t ′′+t0

0
dt ′′′g(t ′′ + t0 − t ′′′)F (t ′′′)

)2

.

(23)

The mean value of the SRMS from Eq. (21) can be split in two
terms:

〈r(t,t0)〉 = r1(t,t0) + 〈r2(t,t0)〉,
where

r1(t,t0) = 1

t

∫ t

0

dt ′

t ′2
[J0(t ′,t0)]2,

r2(t,t0) = 1

t

∫ t

0
dt1

×
(

1

t1

∫ t1

0
dt ′t ′

∫ t ′+t0

0
dt ′′g(t ′ + t0 − t ′′)F (t ′′)

)2

,

(24)

with

J0(t,t0) ≡ tX0(t + t0) −
∫ t

0
dt ′X0(t ′ + t0)

= mv0Ĝ
(0)(t,t0) − kx0Ĝ

(1)(t,t0) (25)

and

Ĝ(n)(t,t0) ≡ t sgn(t + t0)G(n)(|t + t0|)
−G(n+1)(|t + t0|) + G(n+1)(|t0|) (26)

[the explicit form (9) and the condition 〈F (t)〉 = 0 were used].
After numerous integrations by parts of the first relation in
Eq. (24), one gets

r1(t,t0) = −
(

mv0
G(1)(t + t0) − G(1)(t0)

t

− kx0
G(2)(t + t0) − G(2)(t0)

t

)2

+ 1

t

∫ t+t0

t0

dt ′(mv0G(t ′) − kx0G
(1)(t ′))2. (27)

The second relation in Eq. (24) can be explicitly written by
using the fluctuation-dissipation relation (5) as

〈r2(t,t0)〉 = kBT

t

∫ t

0
dt ′

J (t ′,t ′,t0,t0)

t ′2
, (28)

where

J (t1,t2,t01,t02) ≡
∫ t1

0
dt ′1t

′
1

∫ t2

0
dt ′2t

′
2H (t ′1 + t01,t

′
2 + t02),

(29)
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and the function H (t1,t2), which was given by Eq. (16),
represents

H (t1,t2) =
∫ t1

0
dt ′1g(t1 − t ′1)

∫ t2

0
dt ′2g(t2 − t ′2)γ (|t ′1 − t ′2|).

Substituting Eq. (16) into Eq. (29) and integrating by parts,
one finds

J (t1,t2,t01,t02)

= Ĝ(2)(t1,t01 − t02) + Ĝ(2)(t2,t02 − t01)

− Ĝ(2)(t1 − t2,t01 − t02) − t1t2G
(1)(|t1 − t2 + t01 − t02|)

−mĜ(0)(t1,t01)Ĝ(0)(t2,t02) − kĜ(1)(t1,t01)Ĝ(1)(t2,t02).

(30)

In particular, one gets

J (t,t,t0,t0) = 2Ĝ(2)(t,0) − m[Ĝ(0)(t,t0)]2 − k[Ĝ(1)(t,t0)]2.

(31)

Substituting this result into Eq. (28) and integrating by parts
the first term, one finally obtains

〈r2(t,t0)〉 = R(t) + kBT

(
m

[G(1)(t + t0) − G(1)(t0)]2

t2

+ k
[G(2)(t + t0) − G(2)(t0)]2

t2

− 1

t

∫ t+t0

t0

dt ′{m[G(t ′)]2 + k[G(1)(t ′)]2}
)

, (32)

where

R(t) = 2kBT
G(3)(t)

t2
. (33)

These equations provide a general solution for the mean value
of the SRMS for arbitrary memory kernel γ (t).

D. Time-averaged SRMS

Since the SRMS involves only a part of the sample, high
fluctuations are expected at short lag times t . Averaging
this quantity in Eq. (2) over the whole sample reduces the
fluctuations. Substituting Eqs. (27) and (32) into Eq. (2) and in-
tegrating by parts the last term in order to eliminate the double
integral, one obtains the meanR(t,tm) as the sum of two terms:

R1(t,tm) = − 1

t2

1

tm − t

∫ tm−t

0
dt0{[mv0[G(1)(t0 + t) − G(1)(t0)] − kx0[G(2)(t0 + t) − G(2)(t0)]]2

+ t t0[[mv0G(t + t0) − kx0G
(1)(t + t0)]2 − [mv0G(t0) − kx0G

(1)(t0)]2]} + 1

t

∫ tm

tm−t

dt ′(mv0G(t ′) − kx0G
(1)(t ′))2,

〈R2(t,tm)〉 = R(t) + kBT

t2

1

tm − t

∫ tm−t

0
dt0{m[[G(1)(t0 + t) − G(1)(t0)]2 + t t0([G(t0 + t)]2 − [G(t0)]2)]

+ k[[G(2)(t0 + t) − G(2)(t0)]2 + t t0([G(1)(t0 + t)]2 − [G(1)(t0)]2)]} − kBT

t

∫ tm

tm−t

dt ′(m[G(t ′)]2 + k[G(1)(t ′)]2).

(34)

Although these expressions are cumbersome, their numerical
computation for a given kernel G(t) is rather straightforward.
In what follows, we shall show that, if the sample duration
tm is long enough, the main contribution to 〈R(t,tm)〉
is provided by the simple term R(t). More importantly,
the time-averaged SRMS will be shown to have smaller
fluctuations than M(t,tm). For this purpose, the covariance of
the time-averaged SRMS is computed in Appendix B:

CR(t1,t2,tm) ≡ 〈R(t1)R(t2)〉 − 〈R(t1)〉〈R(t2)〉
= 2(kBT )2

t1t2(tm − t1)(tm − t2)

∫ tm−t1

0
dt01

∫ tm−t2

0
dt02

×
∫ t1

0

dt ′1
(t ′1)2

∫ t2

0

dt ′2
(t ′2)2

(
[J (t ′1,t

′
2,t01,t02)]2

+ 2

kBT
J0(t ′1,t01)J0(t ′2,t02)J (t ′1,t

′
2,t01,t02)

)
.

(35)

One can note that this expression resembles Eq. (19) for the
covariance of the time-averaged MSD, but two additional

integrals (over t ′1 and t ′2) stand for the moving average inside
the chosen window. The variance of the time-averaged SRMS
is simply CR(t,t,tm). If the initial conditions are irrelevant,
setting x0 = 0 and v0 = 0 yields a more compact formula for
the variance:

var{R(t,tm)} = 2(kBT )2

t2(tm − t)2

∫ tm−t

0
dt01

∫ tm−t

0
dt02

×
t∫

0

dt1

t2
1

∫ t

0

dt2

t2
2

[J (t1,t2,t01,t02)]2. (36)

III. SUBDIFFUSION WITH POWER-LAW MEMORY
KERNEL

A power-law memory kernel

γ (t) = γαt−α

�(1 − α)
(0 < α < 1) (37)

is often considered as a paradigm of strongly correlated
processes and is known to lead to subdiffusive behavior with
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the scaling exponent α (here γα is a generalized friction
coefficient in units kg secα−2).1 For this case, Desposito and
Vinales used the recipes from [39] to provide the explicit
representation of the kernels g(t), G(t), and G(1)(t) [35], e.g.,

G(t) = t

m

∞∑
n=0

(−1)n

n!
(t2k/m)nE(n)

2−α,2+αn(−γαt2−α/m),

(38)

where E
(n)
α,β (z) is the nth order derivative of the Mittag-Leffler

function Eα,β (z),

E
(n)
α,β (z) =

∞∑
j=0

(j + n)!zj

j !� [α(j + n) + β]
,

and the Mittag-Leffler function is

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, (39)

with �(z) being the Gamma function. It is worth stressing that
G(0) = 0 whenever m > 0 as we assumed in Sec. II.

Although the representation (38) of the kernel G(t) is
exact and explicit, a theoretical investigation of the mean
and variance of the time-averaged MSD and SRMS is rather
sophisticated. To further proceed, we introduce three time
scales of the GLE (4):

τin,fr =
(

m

γα

)1/(2−α)

, τin,ha =
√

m

k
, τfr,ha =

(
γα

k

)1/α

.

These time scales describe the balance between the inertial
term and the frictional force, the inertial term and the harmonic
force, and the frictional and harmonic forces, respectively
(after normalization by the thermal force). Comparing t with
these time scales, one can distinguish different regimes of the
Langevin dynamics. An estimation of the time scales may
allow one to simplify the problem by neglecting the forces
which are irrelevant for given experimental setup. In what
follows, we consider two limiting cases which are important
for practical applications.

(i) When there is no harmonic potential (k = 0), two time
scales are infinite, τin,ha = τfr,ha = ∞, while the remaining
τin,fr controls the Langevin dynamics. All the terms in
Eq. (38) vanish except that for n = 0:

G(t) = t

m
E2−α,2(−γαt2−α/m).

Using the identity [39]

∂

∂t
tβ−1Eα,β(−ctα) = tβ−2Eα,β−1(−ctα), (40)

one deduces

G(n)(t) = t1+n

m
E2−α,2+n(−γαt2−α/m) (41)

1Note that for normal diffusion without memory (with α = 1),
Eq. (37) is replaced by γ (t) = 2γ1δ(t), where δ(t) is the Dirac
distribution.

[note that g(t) is obtained for n = −1]. We shall briefly discuss
this case in Appendix C.

(ii) In many microrheological experiments, the size of
tracer particles is below a micron, and the inertial effects can
often be neglected. In this overdamped case (m = 0), two
time scales are zero, τin,fr = τin,ha = 0, while the remaining
τfr,ha controls the Langevin dynamics. Taking the limit m → 0
and substituting γ̃ (s) = γαsα−1 in Eq. (7), one gets G̃(s) =
1/(γαsα + k), from which

G(t) = tα−1

γα

Eα,α(−ktα/γα), (42)

while the integrals and derivatives of G(t) can also be
represented through Mittag-Leffler functions using the identity
(40):

G(n)(t) = tα+n−1

γα

Eα,α+n(−ktα/γα). (43)

Note that Eq. (42) could also be directly retrieved from Eq. (38)
in the limit m → 0 by using the asymptotic formula for Mittag-
Leffler functions:

Eα,β (−z) 

N∑

n=1

(−1)n−1

zn�(β − αn)
(z → ∞), (44)

with an appropriate order N . Although this asymptotic series
diverges as N → ∞, it can still be used for an accurate
computation of Mittag-Leffler functions for large negative
arguments.

In contrast to the general case, for which G(0) = 0, the
kernel G(t) from Eq. (42) diverges at t = 0 for massless
particles with α < 1. This is related to the fact that the
instantaneous velocity of Brownian motion is not well defined.
Nevertheless, although the assumption G(0) = 0 fails for
massless tracers, the results of Sec. II are correct. For instance,
a more careful revision of the derivation for 〈r2(t,t0)〉 in
Sec. II C shows that supplementary terms containing G(0)
which would appear in Eq. (22) after integration by parts
will be canceled by similar terms which would also appear in
Eq. (31). One can consider the inertial term (with small m > 0)
as a regularization of the problem. Once the results are derived,
one can take the limit m → 0 to eliminate this regularization.

In what follows, we illustrate the applications of the
time-averaged MSD and SRMS by considering subdiffusion
of massless tracers in a harmonic potential.

A. Time-averaged MSD

Neglecting the mass in Eqs. (11) and (17) and using the
explicit formulas for G(t) and G(1)(t) and the identity

xEα,α+β (−x) = 1/�(β) − Eα,β(−x), (45)

one gets

〈M(t,tm)〉 = M(t) −
(

kBT

k
− x2

0

)
Mα(t/τ,tm/τ ), (46)

where τ = (γα/k)1/α denotes the time scale τfr,ha,

M(t) = 2kBT

k
[1 − Eα,1(−ktα/γα)], (47)
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and

Mα(z,ζ ) = 1

ζ − z

∫ ζ−z

0
dx(Eα,1(−xα) − Eα,1[−(x + z)α])2.

(48)

Although this integral is not reduced to tabulated special
functions, its numerical computation is straightforward.

For normal diffusion (α = 1), one gets

M1(z,ζ ) = 1 − e−2(ζ−z)

2(ζ − z)
(1 − e−z)2. (49)

The first term in Eq. (46) is independent of the sample duration
tm and provides the main contribution to the mean time-
averaged MSD which was previously given by Desposito and
Vinales [38]. As shown in Appendix D, the function Mα(z,ζ )
decreases as ζ−1 for large ζ (large tm), so that M(t) becomes
exact for infinitely long samples. In practice, the sample
duration is finite, and the correction Mα(z,ζ ) can be significant
when t is comparable to tm. Figure 1 illustrates this effect and
shows that missing the correction term may lead to underesti-
mation of the plateau level 2kBT /k when the sample duration
is not too long as compared to the intrinsic time τ . The explicit
form (48) allows one to investigate the role of this correction
and the ranges of applicability of the approximation M(t).

In the short-time limit, the main contribution comes again
from M(t), while the function Mα(z,ζ ) provides the next-order
correction, as shown in Appendix D:

Mα(z,ζ ) 
 z2

ζ

∫ ζ

0
dx

[Eα,0(−xα)]2

x2
+ O(z3). (50)

When 1/2 < α < 1, the integral converges in the limit ζ → ∞
so that this term remains in the order of z2/ζ . One retrieves
therefore the classical result for subdiffusion:

〈M(t,tm)〉 
 2kBT

γα

tα

�(1 + α)
+ O(t2α), (51)

where the prefactor kBT /γα is called the generalized diffu-
sion coefficient. Moreover, Eq. (51) becomes exact (without
correction terms) in the limit k → 0 (no harmonic potential).

In the long-time limit t → tm, the function Mα(z,ζ ) is
shown to be comparable to M(t) (see Appendix D). Using
Eq. (D3), one gets

〈M(t,tm)〉 
 2kBT

k

(
1

2
+ k(tm − t)α/γα

�(α + 2)

)
+ O

(
t−α
m

)
(here the initial condition was omitted by setting x0 = 0).
In particular, the limiting value lim

tm→∞〈M(tm,tm)〉 is twice

smaller than the expected value 2kBT /k. This behavior is
clearly seen in Fig. 1 where three curves (solid, dashed, and
dash-dotted) approach the level 1/2 and even descend below it
(because tm/τ = 10 is not large enough for omitting next-order
corrections).

B. Time-averaged SRMS

For massless particles, the time-averaged SRMS is obtained
by substituting Eq. (43) into Eqs. (34), using the identity (45)
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FIG. 1. (Color online) (a) Mean time-averaged MSD as a function
of the lag time t for tm = 10τ and three values of α: 1, 0.75,
and 0.5. Symbols show the main contribution M(t) from Eq. (47),
while lines present the exact formula (46) in the presence of the
function Mα(z,ζ ). When t � tm, the correction is small. For larger t , a
significant deviation from the plateau is observed. The approximation
by M(t) may underestimate the factor 2kBT /k in Eq. (46). (b) The ra-
tio Mα(t/τ,tm/τ )/〈M(t,tm)〉 [respectively Rα(t/τ,tm/τ )/〈R(t,tm)〉]
which represents the relative error of using M(t) [respectively R(t)]
instead of the mean value 〈M(t,tm)〉 [respectively 〈R(t,tm)〉], for
α = 0.75 and two sample durations tm = 10τ and tm = 100τ . As
expected, the increase of tm leads to smaller relative errors. The
approximation of the time-averaged SRMS is more accurate than that
of the time-averaged MSD.

and integrating by parts:

〈R(t,tm)〉 = R(t) −
(

kBT

k
− x2

0

)
Rα(t/τ,tm/τ ), (52)

where the main contribution is

R(t) = kBT

k
[1 − 2Eα,3(−ktα/γα)], (53)

while the correction term is determined by the function

Rα(z,ζ )≡ 1

z

∫ ζ

ζ−z

dx[Eα,1(−xα)]2 − 1

z2(ζ − z)

×
∫ ζ−z

0
dx{((x+z)Eα,2[−(x+z)α]−xEα,2(−xα))2

+ xz({Eα,1[−(x + z)α]}2 − [Eα,1(−xα)]2)}.
(54)
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In Appendix D, the short-time asymptotic behavior of the
correction term for ζ � 1 is shown to be

Rα(z,ζ ) 
 z2

12ζ

∫ ζ

0
dx

[Eα,0(−xα)]2

x2
+ O(z3) (z � 1),

(55)

which is 12 times smaller than similar asymptotic (50) for the
time-averaged MSD. In the opposite limit z → ζ (i.e., t → tm),
Rα(z,ζ ) ∼ ζ−1 (when 1/2 < α < 1). We also checked numer-
ically that the correction term Rα(z,ζ ) monotonously increases
with z. This means that Rα(z,ζ ) is the next-order correction
to R(t) in both short-time and long-time limits (except for
α = 1, which can be considered separately). Neglecting the
correction term Rα(z,ζ ), the asymptotic behavior of the mean
time-averaged SRMS is derived from that of the function
R(t):

〈R(t,tm)〉 
 2kBT

γα

tα

�(α + 3)
+ O(t2α) (t � τ ),

〈R(t,tm)〉 
 kBT
k

(
1 − 2(ktα/γα)−1

�(3 − α)

)
+ O(t−1)(t � τ ).

(56)

Note that the next-order correction O(t−1) in the last relation
becomes of the same order as the main term when α = 1.

It is worth noting that the starting point x0 stands in front
of the correction term Rα(z,ζ ) whose contribution can be
neglected in both asymptotic limits. The initial condition has
therefore a weak influence on the solution, as expected.

For normal diffusion (α = 1), the identity

E1,k(x) = 1

xk−1

(
ex −

k−2∑
n=0

xn

n!

)
(57)

yields

R(t) = kBT

k

(
1 − 2

kt/γ1
+ 2

1 − e−kt/γ1

(kt/γ1)2

)
,

R1(z,ζ ) = 1 − e−2(ζ−z)

2(ζ − z)

(
1 − e−2z

2z
− (1 − e−z)2

z2

)
.

(58)

C. Variance

It is worth recalling that both M(t,tm) and R(t,tm) are
random variables, as they are defined through a random
trajectory X(t). Although the time averaging is used to reduce
fluctuations, quantitative measures of these fluctuations are
needed to know whether the empirical time-averaged MSD or
SRMS is a reliable estimate of its ensemble-averaged mean.
For this purpose, we consider the ratio between the standard
deviation (the square root of the variance) and the mean of
M(t,tm) or R(t,tm). This ratio can be called the statistical
uncertainty because it quantifies how accurately a single
random realization ofM(t,tm) orR(t,tm) determines the mean
value: the smaller this ratio is, the better the estimation of the
mean is. The knowledge of the statistical uncertainty would
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FIG. 2. (Color online) Statistical uncertainty of the time-averaged
MSD (solid blue curve) and SRMS (dashed red curve) with α = 1,
their short-time asymptotics (59), (61), and intermediate level (60)
shown by dotted lines, respectively. The sample duration is tm = 10τ

(a) and tm = 100τ (b). For comparison, the statistical uncertainty of
MSD and SRMS for subdiffusion with α = 0.75 is shown by circles
and squares, respectively. Although the curves are different, they
feature similar behavior. Interestingly, the statistical uncertainty is
smaller for α = 0.75.

help one to choose the experimental setup appropriately and
to interpret the acquired data correctly.

In Sec. II, we gave the general formulas (20) and (36) for the
variances of the time-averaged MSD and SRMS, respectively.
These formulas express the variance as double and quadruple
integral of an explicit function which is related to the kernel
G(t) and its iterative integrals. For massless particles, one
can compute the variance numerically by using the explicit
formula (43) of the kernel. Although further simplifications
seem to be feasible, a direct numerical integration is used in this
paper.

In what follows, we consider the case when tm � τ [τ =
(γα/k)1/α], while the lag time t varies between 0 and tm.

1. Time-averaged MSD

We first consider normal diffusion (α = 1) for which double
integrals in Eqs. (20) can be evaluated analytically. Figure 2
shows the statistical uncertainty of the time-averaged MSD as
a function of the lag time t . One can distinguish three different
regimes for which the approximate relations are derived in
Appendix A.
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(i) For very small lag time t , the statistical uncertainty
behaves as

std{M(t,tm)}
〈M(t,tm)〉 ≈ 2√

3

√
t/tm (t � τ � tm). (59)

In this limit, the empirical time-averaged MSD is a reliable
measure of its mean because fluctuations are small. For
instance, the results with 10% statistical uncertainty are
acquired for t � 0.015tm. This inequality can be used for
choosing the appropriate sample duration tm. Note that in
this regime, an accurate study of the behavior up to time t

requires the acquisition of an approximately 100 times longer
data sample.

(ii) When the lag time becomes in the order of τ (but still
much smaller than tm), the MSD curve starts to approach a
plateau, and so does the variance. In this regime, the statistical
uncertainty approaches a constant level:

std{M(t,tm)}
〈M(t,tm)〉 ≈

√
3τ/tm (τ � t � tm). (60)

For instance, in order to measure the plateau with 10%
statistical uncertainty, one has to choose the sample duration
tm 
 300τ .

(iii) Finally, when the lag time approaches tm, the statistical
uncertainty further increases and reaches the limit value

√
2 ≈

1.41 . . ., independently of τ and tm. In this case, an estimate
of the mean value from a random M(t,tm) is meaningless.

Although the above analysis was performed for normal
diffusion (α = 1), the conclusions are applicable for subd-
iffusion as well (α < 1). As shown in Fig. 2, the statistical
uncertainty behaves similarly for α = 0.75. Moreover, the
statistical uncertainty seems to decrease when α decreases.

2. Time-averaged SRMS

Even for normal diffusion, an analytical computation of
the quadruple integral in Eq. (36) is cumbersome. For this
reason, we restricted the analysis to the two limiting cases: no
harmonic potential (k = 0) which is equivalent to the short-
time limit, and the limit t → tm.

(i) When there is no harmonic potential, the variance of the
time-averaged SRMS is computed analytically and given by
Eq. (B1). In the short-time limit, R(t) = (kBT /γ1)t/3 and the
statistical uncertainty behaves as

std{R(t,tm)}
〈R(t,tm)〉 ≈ 2√

7

√
t/tm. (61)

The comparison with Eq. (59) for the time-averaged MSD
shows a smaller statistical uncertainty for SRMS (prefactor
2/

√
7 instead of 2/

√
3). Figure 2 illustrates this short-time

behavior (see dotted curve with smaller amplitude).
(ii) In the limit t → tm, the formula for the variance can

be simplified (see Appendix B). For normal diffusion, the
statistical uncertainty is shown to be

std{R(tm,tm)}
〈R(tm,tm)〉 


√
2τ/tm, (62)

in sharp contrast to the case of MSD for which the statistical
uncertainty approached

√
2. Taking the sample duration large

enough (in comparison to the time scale τ ), the statistical
uncertainty of the time-averaged SRMS can be made small

at long lag times. We conclude that the time-averaged SRMS
provides a better estimator for random trajectories.

The statistical uncertainty for subdiffusion (α < 1), which
was computed numerically, exhibits very similar features
(Fig. 2). Interestingly, smaller values of α lead to smaller
statistical uncertainties. Note that the asymptotic formula (62)
which was derived for α = 1, can still be used for α < 1 as a
rough estimate of fluctuations.

IV. NUMERICAL SIMULATIONS

In order to illustrate the fluctuations of the time-averaged
MSD and SRMS, we simulate random trajectories of subdif-
fusing tracers governed by the GLE (4). We focus on massless
tracers (m = 0) undergoing the dynamics with a power-law
memory kernel (37). In this case, one can use the explicit
representation (8) of the trajectory X(t) in the form of a
convolution between the kernel G(t) given by Eq. (42) and
the Gaussian correlated noise F (t). We set x0 = 0 to explicitly
eliminate the irrelevant contribution X0(t). For a small time
step δ, the vector of positions xn = X(nδ) is approximated as

xn ≈ δ

n−1∑
n′=0

δα−1

γα

(n − n′)α−1Eα,α

(
−kδα

γα

(n − n′)α
)

F0fn′ ,

where F0 = √
kBT γαδ−α/�(1 − α) and {fn} is the vector of

Gaussian random variables with mean zero and covariance
〈fnfn′ 〉 = |n − n′|−α for n �= n′, and 〈f 2

n 〉 = f (0). The choice
of the constant f (0) is a subtle point. In fact, in the continuous
case, the covariance of the thermal force diverges at t = t ′ ac-
cording to Eq. (37). We fix the constant f (0) by approximating
the integral of the memory kernel from 0 to tm. On the one
hand,∫ tm

0
dtγ (t) = γα

�(1 − α)

∫ tm

0
dtt−α = γαt1−α

m

�(2 − α)
.

On the other hand, the same integral can be approximated as

∫ tm

0
dtγ (t) ≈ δ

[
γ (0)

2
+ γα

�(1 − α)

(
N−1∑
n=1

n−α + N−α

2

)]

(where N = tm/δ), from which one gets the discrete approx-
imation γ (0) of the divergent γ (0). Since kBT γ (0) = F0f

(0)

according to Eq. (5), one obtains

f (0) = 2

(
N1−α

1 − α
− N−α

2
−

N−1∑
n=1

n−α

)
.

Although the constant f (0) formally depends on N (discretiza-
tion of time), we checked numerically that the right-hand side
rapidly converges to a limit when N increases.

A numerical generation of the correlated Gaussian noise
{fn} with a given covariance matrix was realized by the
Davies and Harte method [40–42]. This method relies on
the embedding of the Toepliz covariance matrix in a non-
negative definite symmetric circulant matrix for which fast
Fourier transform allows one to generate the correlated
Gaussian noise within O(N lnN ) operations.
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The time-averaged MSD and SRMS of a simulated tra-
jectory {xn} are computed as discrete analogs of Eqs. (1)
and (2):

M(t,tm) = 1

N − n + 1

N−n∑
k=0

(xk+n − xk)2,

R(t,tm) = 1

N − n + 1

N−n∑
k=0

⎡
⎢⎣1

n

n∑
j=1

x2
k+j −

⎛
⎝1

n

n∑
j=1

xk+j

⎞
⎠

2
⎤
⎥⎦,

where n = t/δ and N = tm/δ. For a faster numerical compu-
tation of the second relation, one can introduce two auxiliary
vectors,

yk =
n∑

j=1

xk+j , zk =
n∑

j=1

x2
k+j ,

which can be computed iteratively:

y0 =
n∑

j=1

xj , yk = yk−1 + xk+n − xk (k = 1,2, . . . N − n)

(similarly for zk), from which

R(t,tm) = 1

N − n + 1

[
1

n

N−n∑
k=0

zk − 1

n2

N−n∑
k=0

y2
k

]
.

For numerical simulations, the dimensionless physical
parameters are used: kBT = 1, γα = 1, and k = 1. The time
step δ is set to be 0.0001, while the sample duration is either
tm = 10 or tm = 100 (with N = 105 and N = 106 discrete
steps, respectively).

For subdiffusion with α = 0.75, Figs. 3 and 4 show the
time-averaged MSD and SRMS divided by kBT /k, as a
function of the normalized time t/τ , where τ = (γα/k)1/α =
1. The theoretical mean value and the range within plus and
minus one standard deviation are shown and compared to the
empirical time-averaged MSD and SRMS computed from five
generated trajectories.

For a moderate sample duration tm/τ = 10, one concludes
the following about the time-averaged MSD:

1. The correction term in Eq. (46) is significant so that
the mean time-averaged MSD does not reach the asymptotic
plateau 2kBT /k (there is a gap between the bold solid curve
and dashed level at 2); in this regime, the use of the simplified
formula (47) would lead to an underestimation of the plateau
value 2kBT /k.

2. The fluctuations are strong, the standard deviation being
on the order of the mean value; fitting the simulated data would
give a broad distribution of the fitting parameters (i.e., the
plateau 2kBT /k, the exponent α, and the time scale τ ).

3. As expected, the fluctuations grow with time.
For a longer sample (tm = 100), the plateau is better estab-

lished, with smaller fluctuations. In this case, the simplified
formula (47) would give a reasonable fit.

The time-averaged SRMS exhibits different features. For
both durations tm = 10 and tm = 100, the empirical SRMS
curves are much smoother than the empirical MSD curves.
Moreover, the empirical SRMS curves are closer to the
mean curve obtained from Eq. (52) resulting in a more
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FIG. 3. (Color online) The normalized time-averaged MSD for
subdiffusion with α = 0.75, γα = 1, k = 1, kBT = 1, τ = 1, tm = 10
(a), and tm = 100 (b). The mean MSD from Eq. (46) (solid red curve)
is compared to its asymptotic short-time behavior (59) (dash-dotted
blue curve) and to five empirical time-averaged MSDs from simulated
trajectories (dotted black curves). The dashed red curves show the
mean MSD plus or minus its standard deviation computed from
Eq. (20). The expected plateau level at 2 is shown by dotted green
line.

accurate fitting. We conclude that the time-averaged SRMS
provides a more reliable way for the statistical analysis of
individual single-particle trajectories. A potential drawback
of this functional is a slower convergence to a plateau level
kBT /k, which is expected from Eqs. (53) and (58).

At this point, we emphasize again the challenge in the
characterization of a stochastic process from its single tra-
jectory. Even for simulated data, for which the underlying
model of thermal fluctuations and the setup parameters are
precisely known, while other sources of fluctuations (e.g.,
measurement errors) are excluded, fitting the empirical curves
may be problematic at long times.

The presence of a harmonic potential which keeps a tracers
in a bounded region may be advantageous or not. On one hand,
it leads to saturation of the mean time-averaged MSD and
SRMS at long times. Here, the time-averaged SRMS benefits
from this saturation by reducing the fluctuations, while the
time-averaged MSD suffers from a shorter averaging window.
For this reason, the time-averaged SRMS results in a more
accurate statistical analysis at long times in the presence of a
harmonic potential.
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FIG. 4. (Color online) The normalized time-averaged SRMS
for subdiffusion with α = 0.75, γα = 1, k = 1, kBT = 1, τ = 1,
tm = 10 (a), and tm = 100 (b). The mean SRMS from Eq. (52) (solid
red curve) is compared to its asymptotic short-time behavior (56)
(dash-dotted blue curve) and to five empirical time-averaged SRMSs
from simulated trajectories (dotted black curves). The dashed red
curves show the mean SRMS plus or minus its standard deviation
computed from Eq. (36). The expected plateau level 1 is shown by
dotted green line.

On the other hand, the harmonic potential and the induced
trapping of tracers affect the intrinsic dynamics (e.g., passive
or active transport in living cells) and may shadow or alter
certain long-time effects. From this point of view, one may
wish to weaken the harmonic potential or, equivalently, to
consider only the short-time behavior. In this situation, the
time-averaged MSD and SRMS behave similarly, the latter
showing slightly smaller fluctuations. Since the statistical
uncertainty was shown to behave as

√
t/tm (for α = 1),

high rate acquisitions (e.g., by optical tweezers’ techniques
[43–45], which typically provide data samples on time scales
from microseconds to seconds), may be preferred.

V. CONCLUSION

We dealt with the problem of characterizing a stochastic
process from its single random realization. This is a generic
problem for single-particle tracking techniques, which have
become nowadays standard tools in microbiology. We focused
on stochastic processes which can be described by a gener-
alized Langevin equation with a frictional memory kernel,

harmonic potential, and Gaussian thermal force satisfying
the fluctuation-dissipation theorem. Our main results are the
explicit formulas for the mean and covariance of two quadratic
functionals of the process: the time-averaged MSD and SRMS.
If the first functional is routinely used in processing and
analysis of the data from SPT techniques, the second one has
received little attention so far.

The explicit formulas for the means can be directly used
for fitting empirical MSD and SRMS curves extracted from
individual trajectories of tracers. As both functionals are still
random variables, their empirical values can provide reason-
able estimates of the means only if the related variances are
small enough. In other words, the mean values are estimated
within a statistical uncertainty which, in a first approximation,
is defined as the ratio between the standard deviation and
the mean. We showed that the statistical uncertainty of the
time-averaged SRMS is smaller than that of the time-averaged
MSD, in spite of much broader applications of the latter one.
These theoretical results have been successfully confirmed
by Monte Carlo simulations of the Langevin dynamics. We
conclude that the use of the time-averaged SRMS would result
in a more accurate statistical analysis of single trajectories and
a more reliable interpretation of experimental data.
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APPENDIX A: COVARIANCE OF MSD

In this appendix, we compute the covariance of the time-
averaged MSD:

CM(t1,t2,tm) ≡ 〈M(t1,tm)M(t2,tm)〉−〈M(t1,tm)〉〈M(t2,tm)〉.
Eqs. (10) yield

〈M(t1,tm)M(t2,tm)〉 = 1

(tm − t1)(tm − t2)

×
∫ tm−t1

0
dt01

∫ tm−t2

0
dt02

×〈(A1 + B1)2(A2 + B2)2〉,
where

Ai = X0(t0i + ti) − X0(t0i) = U0(ti ,t0i),

Bi =
∫ t0i+ti

0
dt ′G(t0i + ti − t ′)F (t ′) −

∫ t0i

0
dt ′G(t0i−t ′)F (t ′),

with the function U0 defined by Eq. (12). The condition
〈F (t)〉 = 0 implies

〈
(A1 + B1)2(A2 + B2)2

〉
= (

A2
1 + 〈

B2
1

〉)(
A2

2 + 〈
B2

2

〉)
+ 4A1A2〈B1B2〉 + 〈

B2
1B2

2

〉 − 〈
B2

1

〉〈
B2

2

〉
. (A1)
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The first term represents 〈M(t1,tm)〉〈M(t2,tm)〉 and will be
canceled from the covariance. The second term, which contains
the initial conditions, involves Ai and

〈B1B2〉 = kBT U (t1,t2,t01,t02),

with the function U defined by Eq. (14).
We focus now on the last two terms in Eq. (A1). Expanding

the quadratic polynomials in 〈B2
1B2

2 〉, we have

〈B2
1B2

2 〉 = I (t01 + t1,t01 + t1,t02 + t2,t02 + t2)

− 2I (t01 + t1,t01 + t1,t02 + t2,t02)

+ I (t01 + t1,t01 + t1,t02,t02)

− 2I (t01 + t1,t01,t02 + t2,t02 + t2)

+ 4I (t01 + t1,t01,t02 + t2,t02)

− 2I (t01 + t1,t01,t02,t02)

+ I (t01,t01,t02 + t2,t02 + t2)

− 2I (t01,t01,t02 + t2,t02) + I (t01,t01,t02,t02),

where

I (t1,t2,t3,t4) ≡
∫ t1

0
dt ′1G(t1 − t ′1)

∫ t2

0
dt ′2G(t2 − t ′2)

×
∫ t3

0
dt ′3G(t3 − t ′3)

∫ t4

0
dt ′4G(t4 − t ′4)

×〈F (t ′1)F (t ′2)F (t ′3)F (t ′4)〉.

The four-point correlation function involving the Gaussian
force F (t) can be reduced to two-point correlation functions
by using the Wick theorem:

〈F (t ′1)F (t ′2)F (t ′3)F (t ′4)〉 = (kBT )2[γ (|t ′1 − t ′2|)γ (|t ′3 − t ′4|)
+ γ (|t ′1 − t ′3|)γ (|t ′2 − t ′4|)
+ γ (|t ′1 − t ′4|)γ (|t ′2 − t ′3|)], (A2)

from which

I (t1,t2,t3,t4) = (kBT )2[K(t1,t2)K(t3,t4)

+K(t1,t3)K(t2,t4) + K(t1,t4)K(t2,t3)].

After simplifications, we get〈
B2

1B2
2

〉= 2[U (t1,t2,t01,t02)]2+ U (t1,t1,t01,t01)U (t2,t2,t02,t02).

The second term is equal to 〈B2
1 〉〈B2

2 〉 and will be canceled
from the covariance. In turn, the first term contributes to the
covariance of the time-averaged MSD yielding Eq. (19).

1. Normal diffusion

For normal diffusion (α = 1), one has

U (t,t,t01,t02) = e−(t01+t02)/τ (1 − e−t/τ )2 − 2e−|t01−t02|/τ

+ e−|t01+t−t02|/τ + e−|t02+t−t01|/τ .

Considering separately the cases t < tm/2 and t > tm/2, one
obtains the explicit formula for the variance. Instead of
providing this formula, we consider several limiting cases:

(i) In the limit t → 0, one obtains

var{M(t,tm)} ≈ 2(kBT )2

γ 2
1

8t3

3tm
+ O(t4).

In this limit, 〈M(t,tm)〉 ≈ 2(kBT /γ1)t , from which one gets
Eq. (59).

(ii) When τ � t � tm, one has

var{M(t,tm)} ≈ 2(kBT )2

k2

6

tm
,

while 〈M(t,tm)〉 ≈ 2kBT /k so that one gets Eq. (60).
(iii) In the limit t → tm, one gets

〈M(tm,tm)〉 = kBT

k
(1 − e−2tm/τ ),

so that for large tm � τ , the mean MSD value is approximately
twice smaller than the expected limit 2kBT /k. For the variance,
one gets

var{M(tm,tm)} = 2(kBT )2

k2
(1 − e−2tm/τ )2,

from which the ratio is

std{M(tm,tm)}
〈M(tm,tm)〉 =

√
2 ≈ 1.414 . . . ,

independently of tm. This means that for t close to tm, the
standard deviation is larger than the mean value.

(iv) For free normal diffusion (k = 0), one finds explicitly

var{M(t,tm)} = 4(kBT )2

3γ 2
1 (tm − t)2

× [t3(4tm − 5t) + (
min{tm − 2t,0})4].

The variance is a monotonously increasing function of t .

APPENDIX B: COVARIANCE OF SRMS

The definition (2) of the time-averaged SRMS yields

〈R(t1,tm)R(t2,tm)〉 = 1

(tm − t1)(tm − t2)

∫ tm−t1

0
dt01

×
∫ tm−t2

0
dt02

1

t1

∫ t1

0
dt ′1

1

t2

∫ t2

0
dt ′2

×〈(A1 + B1)2(A2 + B2)2〉,

where functions A1,2 and B1,2 denote different terms in
Eq. (21):

Ai = X0(t ′i + t0i) − 1

t ′i

∫ t ′i

0
dt ′′X0(t ′′ + t0i) = 1

t ′i
J0(t ′i ,t0i),

Bi = 1

t ′i

∫ t ′i

0
dt ′′t ′′

∫ t ′′+t0i

0
dt ′′′g(t ′′ + t0i − t ′′′)F (t ′′′),

with the function J0 defined previously by Eq. (25). We
can apply again Eq. (A1) to analyze 〈(A1 + B1)2(A2 + B2)2〉
term by term. The first term in Eq. (A1) now represents
〈r(t1,t01)〉〈r(t2,t02)〉 and will be canceled from the covariance.
The second term, which contains the initial conditions, is
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explicitly written in terms of

〈B1B2〉 = kBT

t ′1t
′
2

J (t ′1,t
′
2,t01,t02),

where the function J (t ′1,t
′
2,t01,t02) is defined by Eq. (30).

We focus now on the last two terms in Eq. (A1) which
provide the main contribution to the covariance. Using the
Wick theorem (A2), we get

〈
B2

1B2
2

〉 = (kBT )2

(t ′1t
′
2)2

[J (t ′1,t
′
1,t01,t01)J (t ′2,t

′
2,t02,t02)

+ 2J (t ′1,t
′
2,t01,t02)2].

The first term in the above equation also appears in 〈B2
1 〉〈B2

2 〉
that cancels this contribution. The remaining term gives the
covariance in Eq. (35).

Although the asymptotic formulas for the covariance would
be helpful to avoid time-consuming numerical computation
of the quadruple integral, this analysis is beyond the scope
of the paper. We consider only the limit t → tm, when the
integration variables t01 and t02 are small so that the function
J (t1,t2,t01,t02) can be approximated as J (t1,t2,0,0), from
which

var{R(tm,tm)} = 2(kBT )2

t2
m

∫ tm

0

dt1

t2
1

∫ tm

0

dt2

t2
2

[J (t1,t2,0,0)]2

[this is also the variance of r(tm,0)]. For normal diffusion, the
double integral can be computed analytically:

var{R(tm,tm)} = 2(kBT )2

k2
V (tm/τ ),

where

V (z) = 1

4z4
[(4z3 − 21z2 + 28z + 36)

−16(2z2 + 3z + 6)e−z + 4(2z3 + 5z2 + 8z+22)e−2z

−16(z + 2)e−3z + (z2 + 4z + 4)e−4z].

For large z, this function decays as 1/z. Since the mean
value approaches a constant at long times, one gets the
asymptotic formula (62) for the statistical uncertainty of the
time-averaged SRMS at long times. Although this result was
derived for normal diffusion, it remains qualitatively valid for
subdiffusion.

a. Numerical computation

Although the explicit formula (30) was derived for the
function J (t1,t2,t01,t02), a standard finite sum approximation
of the quadruple integral in Eq. (36) is too time consuming,
especially for long sample duration tm. A Monte Carlo
integration is preferred for a faster numerical evaluation.
Rescaling the integration variables, one can approximate the
variance as

var{R(t,tm)}

= 2(kBT )2

t4

∫ 1

0

dx1

x2
1

∫ 1

0

dx2

x2
2

∫ 1

0
dx3

∫ 1

0
dx4

×[J (tx1,tx2,(tm − t)x3,(tm − t)x4)]2

≈ 2(kBT )2

t4N

N∑
n=1

[
J
(
tx

(n)
1 ,tx

(n)
2 ,(tm − t)x(n)

3 ,(tm − t)x(n)
4

)
x

(n)
1 x

(n)
2

]2

,

where {x(n)
1 ,x

(n)
2 ,x

(n)
3 ,x

(n)
4 }Nn=1 is a set of independent random

variables with a uniform distribution on the unit interval. The
accuracy of this approximation increases with N .

b. Free normal diffusion

For the special case of free normal diffusion (k = m = 0,
α = 1), the integrals in Eq. (36) can be computed analytically.
Skipping technical details, we give the final result for the
variance of the time-averaged SRMS:

var{R(t,tm)} = (kBT )2

γ 2
1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t3(40tm − 49t)

630(tm − t)2
(t < tm/2),

5(tm − t)6 − 16(tm − t)5t + 56(tm − t)3t3 − 70(tm − t)2t4 + 56t6

630t4
(t > tm/2).

(B1)

In the limit t → 0, one has

var{R(t,tm)} ≈ 4

63

(kBT )2

γ 2
1

t3

tm
.

In the opposite limit t → tm, one finds

var{R(tm,tm)} = 4

45

(kBT )2t2
m

γ 2
1

,

from which
std{R(tm,tm)}
〈R(tm,tm)〉 ≈ 2√

5
≈ 0.8944,

independently of tm. For comparison, similar result for the
time-averaged MSD was

√
2.

APPENDIX C: SUBDIFFUSION WITHOUT HARMONIC
POTENTIAL

When there is no harmonic potential (k = 0), the general
formula (38) is simplified, yielding Eq. (41) for the kernels
G(n)(t). This limiting case can be studied as thoroughly as we
did for subdiffusion of massless tracers in harmonic potential.
Since derivations are similar to the previous ones, we only
formulate the main results.
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1. Time-averaged MSD

Substitution of Eqs. (41) into Eqs. (11) and (17) yields

〈M(t,tm)〉 = M̄(t) −
(

kBT

m
− v2

0

)
τ̄ 2M̄α(t/τ̄ ,tm/τ̄ ),

where τ̄ = (m/γα)1/(2−α) is the time scale τin,fr,

M̄(t) = 2kBT

m
t2E2−α,3(−γαt2−α/m),

and

M̄α(z,ζ ) = 1

ζ − z

∫ ζ−z

0
dx[(x + z)E2−α,2(−(x + z)2−α)

− xE2−α,2(−x2−α)]2.

The correction M̄α(z,ζ ) accounts for a finite length tm of the
data sample, and vanishes in the limit tm → ∞. The term
M̄(t) provides the main contribution and gives the leading
terms in the short-time and long-time asymptotic behaviors of
the time-averaged MSD:

〈M(t,tm)〉 
 kBT

m

[
t2 − 2γαt4−α

m�(5 − α)
+ · · ·

]
(t � τ̄ ),

〈M(t,tm)〉 
 2kBT

γα

tα

�(α + 1)
+ · · · (t � τ̄ ),

so that we retrieved the results from [38]. Naturally, the long-
time asymptotic behavior for massy tracers without harmonic
potential coincides with the short-time asymptotic behavior
(51) for massless tracers within harmonic potential.

For normal diffusion (α = 1), one gets the explicit solution:

M̄(t) = 2kBT

m
τ̄ 2(e−t/τ̄ − 1 + t/τ̄ ),

while M̄1(z,ζ ) = M1(z,ζ ), which is given by Eq. (49).

2. Time-averaged SRMS

Substitution of Eqs. (41) into Eqs. (34) yields

〈R(t,tm)〉 = R̄(t) −
(

kBT

m
− v2

0

)
R̄α(t/τ̄ ,tm/τ̄ ),

where

R̄(t) = 2kBT

m
t2E2−α,5(−γαt2−α/m)

and

R̄α(z,ζ ) = 1

z

∫ ζ

ζ−z

dxx2[E2−α,2(−x2−α)]2 − 1

z2(ζ − z)

∫ ζ−z

0
dx[((x + z)2E2−α,3[−(x + z)2−α]

−x2E2−α,3(−x2−α))2 + xz((x + z)2{E2−α,2[−(x + z)2−α]}2 − x2[E2−α,2(−x2−α)]2)]. (C1)

For normal diffusion, the substitution of Eq. (57) and
direct integration yield R̄1(z,ζ ) = R1(z,ζ ) which is given by
Eq. (58). In turn, the main contribution is

R̄(t) = 2kBT t2

m

e−t/τ̄ − 1 + t/τ̄ − 1
2 (t/τ̄ )2 + 1

6 (t/τ̄ )3

(t/τ̄ )4
.

APPENDIX D: ASYMPTOTIC ANALYSIS
OF CORRECTION TERMS

We investigate the asymptotic properties of the correction
terms. Throughout this section, we assume that ζ � 1 (i.e.,
tm � τ ).

1. Auxiliary integral

We start by studying the asymptotic behavior of the integral,

r̂α(z) ≡
∫ z

0
dx[Eα,1(−xα)]2,

which will be used in the next subsections.

For small z, the series representation (39) of the Mittag-
Leffler function and term-by-term integration yield

r̂α(z) =
∞∑

n=0

(−1)nan

1 + αn
z1+nα,

with the coefficients an of the Taylor series of [Eα,1(−x)]2,

an =
n∑

k=0

1

�(αk + 1)� [α(n − k) + 1]
.

Although the above series representation converges for any
z, its practical use for numerical computation is limited to
relatively small z. In particular, one has

r̂α(z) 
 z

(
1 − 2zα

�(α + 2)
+ z2α

[
2

�(2α + 2)

+ 1

[�(α + 1)]2(1 + 2α)

]
+ O(z3α)

)
. (D1)

For large z, one can choose a constant z0 such that 1 �
z0 � z in order to split the integral into two parts,

r̂α(z) =
∫ z0

0
dx[Eα,1(−xα)]2 +

∫ z

z0

dx[Eα,1(−xα)]2.
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The first term is a constant, while for the second term the
asymptotic series (44) of the Mittag-Leffler function can be
used. Multiplying this series by itself, one gets an N -order
approximation

[Eα,β(−x)]2 

N∑

n=2

(−1)nbn

xn
(x → ∞),

where

bn =
n−1∑
k=1

1

�(β − αk)� [β − α(n − k)]
.

The second term has then the following approximation:

∫ z

z0

dx[Eα,1(−xα)]2 

N∑

n=2

(−1)nbn

1 − αn

(
z1−nα − z1−nα

0

)
.

Bringing two terms together, one obtains

r̂α(z) 

[∫ z0

0
dx[Eα,1(−xα)]2 −

N∑
n=2

(−1)nbn

1 − αn
z1−αn

0

]

+
N∑

n=2

(−1)nbn

1 − αn
z1−αn (z � 1). (D2)

When 1/2 < α < 1, the first (constant) term in brackets
provides the main contribution, as compared to the last term
of the order z1−2α , which vanishes in the limit z → ∞. In
particular, the integral r̂α(∞) converges for 1/2 < α < 1. At
α = 1/2, both sums in Eq. (D2) contain an infinite term (for
n = 2), which comes from the incorrect integration of 1/x.
The logarithmic dependence on z takes place in this case.
Similar problems appear for any α = 1/n with n = 1,2,3, . . ..
Although accurate formulas can be derived for any 0 < α < 1,
we focus on the range 1/2 < α < 1.

2. Short-time asymptotics for time-averaged MSD

When z � 1, the integrand function in Eq. (48) can be
decomposed into a Taylor series

Mα(z,ζ ) 
 1

ζ − z

∫ ζ−z

0
dx[zf ′(x)]2 + O(z3),

where f (x) = Eα,1(−xα), from which one gets Eq. (50).

3. Long-time asymptotics for time-averaged MSD

In the opposite limit z → ζ , the term Eα,1 [−(x + z)α] ∼
z−α can be neglected in comparison to Eα,1(−xα) ∼ 1 so that

Mα(z,ζ ) 
 r̂α(ζ − z)

ζ − z
+ O(ζ−α).

Using Eq. (D1), one gets

Mα(z,ζ ) 
 1 − 2(ζ − z)α

�(α + 2)
+ O(ζ−α) (z → ζ ). (D3)

In this limit, the “correction” Mα(z,ζ ) is of the same order as
the “main” contribution M(t).

4. Short-time asymptotics for time-average SRMS

In the short-time limit (z � 1), the correction term from
Eq. (54) for the time-averaged SRMS can be written as

Rα(z,ζ ) = 1

z

∫ ζ

ζ−z

dxh(x) − 1

z2(ζ − z)

×
∫ ζ−z

0
dx{[f (x + z) − f (x)]2

+ xz [h(x + z) − h(x)]}, (D4)

where f (x) = xEα,2(−xα) and h(x) = [Eα,1(−xα)]2. The
integrand function in the second term can be decomposed into
a Taylor series up to the fourth order of z. The identity f ′(x) =
Eα,1(−xα) cancels many terms, from which the second term
of Eq. (D4) is

h(ζ ) − z

2
h′(ζ ) + z2

6
h′′(ζ ) − z2

12ζ

∫ ζ

0
dx[f ′′(x)]2 + O(z3).

Denoting H (x) the primitive of the function h(x) and expand-
ing H (ζ ) − H (ζ − z) into a Taylor series, one writes the first
integral in Eq. (D4) as

h(ζ ) − z

2
h′(ζ ) + z2

6
h′′(ζ ) + O(z3).

Combining these two results, one obtains

Rα(z,ζ ) 
 z2

12ζ

∫ ζ

0
dx[f ′′(x)]2 + O(z3).

The substitution of the function f (x) yields Eq. (55).

The same analysis is applicable for the case of massy parti-
cles without harmonic potential. The correction term is given
by Eq. (C1) which admits the representation (D4) with f (x) =
x2E2−α,3(−x2−α) and h(x) = [xE2−α,2(−x2−α)]2. These func-
tions also satisfy the relations f ′(x) = xE2−α,2(−x2−α),[
f ′(x)

]2 = h(x) and h′(x) = 2f ′(x)f ′′(x) so that

R̄α(z,ζ ) 
 z2

12ζ

∫ ζ

0
dx[E2−α,1(−x2−α)]2 + O(z3).

5. Long-time asymptotics for time-average SRMS

In the opposite limit z → ζ , the integrand function in the
second term of Eq. (54) can be expanded into a series for small
x in order to get the largest correction,

lim
z→ζ

Rα(z,ζ ) = rα(ζ ),

where

rα(ζ ) = −[Eα,2(−ζ α)]2 + r̂α(ζ )

ζ
.

Using the asymptotic behavior (D2) of the integral r̂α(ζ ), one
concludes that

rα(ζ ) ∼ ζ−1 + O(ζ−2α) (ζ � 1), (D5)

when 1/2 < α < 1.
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