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Smoothly varying hopping rates in driven flow with exclusion
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We consider the one-dimensional totally asymmetric simple exclusion process (TASEP) with position-
dependent hopping rates. The problem is solved, in a mean-field adiabatic approximation, for a general (smooth)
form of spatial rate variation. Numerical simulations of systems with hopping rates varying linearly against
position (constant rate gradient), for both periodic and open-boundary conditions, provide detailed confirmation
of theoretical predictions, concerning steady-state average density profiles and currents, as well as open-system
phase boundaries, to excellent numerical accuracy.
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I. INTRODUCTION

In this paper we investigate the one-dimensional totally
asymmetric simple exclusion process (TASEP) [1], in the
presence of nonuniform hopping rates. The TASEP is a
biased diffusion process for particles with hard-core repulsion
(excluded volume) [1–4]. Notwithstanding the simplicity of
formulation of its basic rules, this model can exhibit a wealth
of nontrivial properties and is considered a paradigm in
the field of nonequilibrium phenomena. Quenched random
inhomogeneities in the TASEP have been extensively consid-
ered earlier [5–12]. In contrast, the case of deterministically
varying, position-dependent physical parameters has received
less attention [13,14].

The TASEP and its generalizations have been applied
to a broad range of nonequilibrium physical contexts, from
macroscopic ones such as highway traffic [15] to microscopic
ones, including sequence alignment in computational biology
[16] and current shot noise in quantum-dot chains [17].
Situations may arise where monotonic spatial variations in
an associated parameter can be relevant (such as gradients in
the first case and the “gap-cost,” or an applied electric field, for
the latter two cases). By contrast, the effects of, for example,
temperature gradients on the equilibrium [18] and transport
[19] properties of spin systems have been studied in detail; the
same applies to concentration gradients in percolation [20–22].
One typically gets a picture of spatial phase separation in
which a high-temperature (or low-concentration) disordered
region connects to a low-temperature (high-concentration)
ordered one via an interface, whose features (e.g., width)
scale in a nontrivial way with the inhomogeneity parameters.
More recently, experimental progress in cold-atom trapping
[23] has been one motivation behind the theoretical study of
(pseudo)-spin systems in trapping potentials such as magnetic
fields with a wedgelike or parabolic profile [24–26].

We consider the problem of flow with exclusion, for which
the time evolution of the 1 + 1 dimensional TASEP is the
fundamental discrete model. The particle number n� at lattice
site � can be 0 or 1, and the forward hopping of particles
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is only to an empty adjacent site. The current across the
bond from � to � + 1 depends also on the stochastic attempt
rate, p�, associated to it and is thus given by J�,�+1 = p� n�

(1 − n�+1). For the usual homogeneous case of p� = p,
in numerical simulations one can effectively make p = 1,
provided that the inherent stochasticity of the process is kept,
via, for example, random selection of site occupation update
[11]. This amounts to a trivial renormalization of the time scale.

Here we consider a position-dependent hopping rate (which
cannot thus be simply renormalized away). By using periodic
or open-boundary conditions, with assorted overall densities in
the former case, and injection and ejection rates in the latter, we
investigate the consequent effects upon the associated particle
density profiles and currents.

To begin with, we give the generic dynamic mean-field
theory for arbitrary “slow” space dependence of the hopping
rate. We then turn, for more specific results, to the steady
state in the case of a linear dependence of p� on position
(uniform gradient). It is remarkable that, from the combination
of the mean-field approach with an adiabatic approximation
(to be described below), many accurate results are obtained,
including some such as current and open-system phase
boundaries, which appear to be exact in the large-system limit.

Section II below gives the mean-field adiabatic theory.
In Sec. III we investigate the TASEP with periodic bound-
ary conditions; in Sec. IV, we examine open-boundary
TASEP systems in the following phases: (a) maximal current,
(b) low density, (c) high density, and (d) on the coexistence
line. Finally, in Sec. V, concluding remarks are made.

II. PRELIMINARIES AND BASIC THEORY

A. Preliminaries

We start by imposing periodic boundary conditions (PBC)
for the TASEP at the ends of the chain; thus, the total number of
particles is fixed. For a uniform system in the steady state, the
local average density at all sites coincides with the position-
averaged particle density 〈ρ〉 (also to be denoted below by ρ,
wherever no chance of a misunderstanding arises).

Although this is a discrete model, we denote positions along
the lattice by a continuous variable x; thus (with the lattice
parameter being of unit length), the bond labeled by x connects
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FIG. 1. (Color online) Points give steady-state density profile for
TASEP with hopping-rate gradient for PBC, 〈ρ〉 = 1/2, lattice size
L = 256, and θ = 0.2 [see Eq. (1)]. Lines are fits to forms inspired
by the theory of randomly disordered systems (see text).

sites x − 1
2 and x + 1

2 . The use of a continuum description is
consistent with our emphasis throughout the paper on results
applying in the infinite-system limit.

We consider a linearly varying hopping rate; although the
theory developed in Sec. II B below applies to a general
position dependence (provided some rather general smooth-
ness assumptions are valid), this constant-gradient case is our
choice of concrete application in the subsequent sections. For
a system of size L, we take

p(x) = p0 + θ
x

L
, − L

2
� x � L

2
, (1)

where θ denotes the intensity of the hopping-rate gradient; we
keep p0 = 1/2 henceforth.

The effect of the hopping-rate gradient; given by Eq. (1),
on local densities is rather remarkable, as illustrated in Fig. 1.

A schematic interpretation of the profile shape displayed
in Fig. 1 can be provided as follows, using ideas from
previous treatments of the quenched random-bond version
of the TASEP [5,10,11]. For the TASEP with uniform rates
p, it is known [1–4] that, for currents greater or less than
Jc(p) = p

4 the steady-state phases are characterized by density
profiles which are either monotonically decreasing, 〈ρ(x)〉
− 1

2 = −q tan q(x − x0) (high-current phase), or monoton-
ically increasing, 〈ρ(x)〉 − 1

2 = k tanh k(x − x0) (kinklike,
low-current phase). Here q and k are characteristic inverse
lengths such that q2 = −k2 = (J − Jc)/4p [3,10,27], where
J is the steady-state current; the profile forms result from
the fact that J is constant throughout the system. This
latter fact has strong bearing on the local shape of density
profiles in the quenched random-bond case: In regions with
weak (strong) bonds, that is, bonds with low (high) hopping
probability pw (ps), J can be larger (smaller) than the local
critical current Jc(pw) [Jc(ps)], in which case the profile is
of high-current (low-current) type. With θ > 0 in Eq. (1), the
features shown in Fig. 1 appear roughly consistent with the
theoretical framework just sketched. However, we see from
the full treatment developed in Sec. II B below that, although

the concepts of high- and low-current phases still persist here,
their effects are strongly modified by factors specific to the
present case. In particular, the separation in space of the two
phases is actually very close to the left boundary in Fig. 1,
not where the tan and tanh functions join in the fit shown in
that same figure. This is because the actual profiles involve tan
and tanh functions with spatially varying “envelope” factors
(see Sec. II B). Many new features are seen to arise from the
“registration” in space of the envelope, that is, its position in
the system; as we shall see, the location of the envelope relative
to the region of weakest bonds is set by the current.

From the conjunction of PBC with the form of p(x) given
in Eq. (1), one sees that particles find a hopping-rate discon-
tinuity of amplitude −θ as they jump across the chain’s end
point. Although, from elementary considerations, PBC impose
continuity of ρ across the gap, it is important to emphasize
that the kinklike profile seen in Fig. 1 is not an artifact brought
about by the discontinuity just mentioned. As we see in the
following, kinks may (or may not) be present with PBC. Their
existence, or lack thereof, depends on combinations of ρ and
θ according to mechanisms described by our theory.

One should note that, if the sign of θ is reversed in
Eq. (1), the plot of 〈ρ〉 − 1/2 versus x simply gets point
reflected relative to the origin.

The steady-state currents in the type of system studied here
also differ markedly from their uniform counterparts. We recall
that, for the latter with PBC, the relationship between current
J0 ≡ J (θ = 0,p,ρ) and density is

J0 = p ρ (1 − ρ), (2)

where p is the uniform hopping rate. Equation (2) is one
example of relationships and quantities which mean-field
factorization gives exactly [3,27], and whose generalization
for nonuniform rates is also exactly given by the generalized
mean-field theory developed here, as we shall see.

For now, we restrict ourselves to ρ � 1
2 . The question of

whether or not the J − ρ diagram here displays the same
symmetry, relative to ρ = 1

2 , as that for the uniform case
is discussed later, with the help of the theory developed in
Sec. II B. The effects on the current of a position-dependent
p(x) given by Eq. (1) are shown in Fig. 2, for various densities,
all of them not far removed from ρ = 1/2. It is seen that as θ

increases, the J − θ relationship becomes independent of ρ for
an increasingly broad range of densities, following the same
nearly linear form as that of a system with ρ = 1/2. In other
words, for fixed θ a plateau develops around ρ = 1/2 in the
J − ρ diagram, whose width increases with θ . Again, a similar
effect is seen in TASEP with quenched randomness [5,10].

B. Mean-field theory

For uniform p, the Burgers equation [28–31], linearized via
the Cole-Hopf transformation [32,33] gives the general time-
dependent mean-field solution, analogous to a superposition of
moving solitons, corresponding to waves in the linearized sys-
tem, with possibly complex wave vectors. Real and imaginary
wave vectors distinguish the two general solitonlike steady
states which, because of particle conservation, are uniform-
current ones. These steady states correspond to phases of
maximal current (J � Jc = p/4) or low current (0 � J < Jc,
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FIG. 2. (Color online) Steady-state currents J against gradient
intensity θ for a system with L = 2048 and PBC, for densities
as shown. Each point is an average taken over 100 independent
samples, each in its turn containing 1.2 × 106 successive steady-state
configurations. Error bars are smaller than symbol sizes.

and low or high density); the square of the wave vector is
proportional to (J/Jc − 1). For the special case of PBC, the
two steady states become states of uniform density, while for
open-boundary conditions the steady-state profiles are of tan
and tanh form.

For space-dependent p(x), the solution given below (for
general time dependence and then steady state) uses an
adiabatic generalization of constant-p ideas.

We start from the continuity equation,

∂ρ

∂t
= − ∂

∂x
J (x), (3)

with (using a mean-field factorization)

J (x) = p(x) ρ
(
x − 1

2

) [
1 − ρ

(
x + 1

2

)]
; (4)

defining σ via ρ ≡ 1
2 (1 + σ ), Eq. (3) becomes, upon taking

the continuum limit on Eq. (4),

2
∂σ

∂t
= ∂

∂x

{
p(x)

[
σ 2(x) + ∂σ

∂x
− 1

]}
. (5)

Using the Cole-Hopf transformation [32,33], we introduce the
auxiliary variable u via σ = ∂ ln u/∂x, in terms of which, after
a partial integration with respect to x, Eq. (5) turns into the
linear form:

2
∂u

∂t
− f (t) u = p(x)

{
∂2u

∂x2
− u

}
, (6)

where f (t) is the integration “constant.” Writing u =
X(x) T (t), one has

2

T

dT

dt
− f (t) = p(x)

{
1

X

d2X

dx2
− 1

}
≡ −ω, (7)

whence

T = exp

[
−1

2
ωt + F (t)

]
, with

dF

dt
= 1

2
f (t). (8)

Putting

[μω(x)]2 ≡ 1 − ω

p(x)
, (9)

and making the ansatz X = eγ (x), one gets

dγ

dx
= ±μω(x), (10)

provided dμω(x)/dx � [μω(x)]2 (adiabatic approximation).
In this limit X = e±γω(x), with γω(x) = ∫ x

μω(x) dx. Thus,

XT = exp
[±γω(x) − 1

2ωt + F (t)
]
. (11)

The general solution for u(x,t) is

u =
∑

ω

Aω cosh [γω(x) − γω(aω)] e− 1
2 ωt+F (t), (12)

where the Aω and aω are arbitrary constants. Finally, in terms
of σ (x,t),

σ (x,t) =
∑

ω Aω μω(x) sinh [γω(x) − γω(aω)] e− 1
2 ωt∑

ω Aω cosh [γω(x) − γω(aω)] e− 1
2 ωt

, (13)

in the mean-field adiabatic approximation.
The following comments are in order.
(i) If we take a single component in Eq. (13) the e− 1

2 ωt

factor cancels and we are left with a steady-state solution:

σ (x) = μω(x) tanh [γω(x) − γω(a)] . (14)

When the validity criterion for the adiabatic approximation
applies, this state is associated with the current

J = 1
4 p(x)[1 − μω(x)2] = 1

4ω (15)

[using Eqs. (4), (9), and (14)], which is constant, as necessary
for the steady state.

(ii) In the t-dependent general form Eq. (13), each sum
evolves for long times into a single component, which is the
one having the least ω, corresponding to the steady state, that
is, ω = 4J , by (i).
(iii) At long but not infinite times the sums in Eq. (13)

are dominated by the terms with the smallest ω’s. Then the
denominator, whose logarithmic derivative gives σ , becomes
a combination of the steady-state component and a wave packet
whose group velocity v(x) can be obtained by a straightforward
adiabatic generalization of standard procedures, using the
analog dμω(x)/dx of the wave vector. The result is, generally,

v(x) = ±p(x)

(
1 − ω

p(x)

) 1
2

, (16)

becoming v(x) = ±p(x)
1
2 [p(x) − 4J ]

1
2 for the kink dynamics

in the late-time approach to the steady state.
In what follows we are mostly concerned with the steady

state, so the following distinctions and details may be helpful.
In Eq. (15),

Jc(x) ≡ 1
4 p(x) (17)

acts like a local critical current, since the sign of J − Jc

determines whether μ(x) there is real or imaginary and,
consequently, whether the profile in Eq. (14) involves a tanh
or tan function. This is a generalization of the case with
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space-independent rate p, where Jc = p/4 is the maximal
current, associated to flat or tan profiles, while low currents
J < Jc exhibit tanh profiles.

For the space-dependent p(x) the most important new fea-
tures are the x dependence of Jc(x), the J -dependent location
(x0) of the division between phases, and the occurrence of
the space-dependent amplitude function μ(x) in the profile,
Eq. (14). Where it is necessary, to avoid confusion, we
distinguish the possibilities by using, in place of μ(x), the
specific real functions k(x), q(x) defined by

k(x) = μ(x) = [1 − 4J/p(x)]
1
2 = [1 − J/Jc(x)]

1
2 ,

J < Jc(x);

q(x) = i μ(x) = [4J/p(x) − 1]
1
2 = [J/Jc(x) − 1]

1
2 ,

J > Jc(x). (18)

Then

σ (x) = k(x) tanh[K(x) − K(a)], J < Jc(x);

σ (x) = −q(x) tan[Q(x) − Q(b)], J > Jc(x), (19)

where K(x) = ∫ x
k(x) dx and Q(x) = ∫ x

q(x) dx. For
x-dependent rates, the tan form can only apply in, at most,
a very limited region (of size set by the weakest rates). This
is because the tan function in σ (x) diverges, violating the
physical requirement on the local density, |σ (x)| � 1, unless
its argument Q(x) is limited to a range less than π . So the
tanh form will actually account for most of the profile. If the
integration constant a is inside the system the change of sign
of the argument of the tanh function at x = a corresponds to
a kink there. For the tanh, k(x) acts like an envelope, and its
crucial effects in distinguishing scenarios and phases partly
relate to its registration, for which the tan part of the profile
can play a dominant role.

III. STEADY STATE WITH PBC

A. Introduction

For the nonuniform system with x ∈ [−L/2,L/2], PBC
impose the constraint on σ (x):

σ (−L/2) = σ (L/2) . (20)

In addition to this, in order to fix arbitrary constants and
determine the steady-state current J and profile σ (x), we need
also to specify the average density 〈ρ〉 in the equation

2

(
〈ρ〉 − 1

2

)
= 〈σ 〉 = 1

L

∫ L/2

−L/2
σ (x) dx. (21)

With the mean-field adiabatic approximation this becomes

〈σ 〉 = 1

L

∫ L/2

−L/2
μ(x) tanh [γ (x) − γ (a)] dx

= {ln cosh [γ (x) − γ (a)]}L/2
−L/2 . (22)

Here we used μ = dγ /dx, and have reverted to nonspecific
notation, not distinguishing tanh or tan (nor cosh or cos). We
later have to verify that the criterion for use of the adiabatic
approximation is satisfied.

From the general formulation above, μ and hence γ are
related to the current J ; it and the other parameter a [the kink

position in the case of real γ (a)] are determined in terms of
〈ρ〉 by Eqs. (21) and (22) (for large systems, the kink position
will be sharp when the adiabatic approximation is satisfied).

B. Rate gradient

From now on we deal with the specific case of linearly
varying p(x) given in Eq. (1). With PBC and θ � 0, one gets
in the adiabatic approximation, with the help of Eqs. (9), (10),
and (15):

μ(x) =
[

1 − 4J

p(x)

] 1
2

=
[

X

X + c

] 1
2

(23)

and

γ =
∫ x

μ(x) dx = [X(X + c)]
1
2 − c tanh−1

[
X

X + c

] 1
2

≡ K̃(X), (24)

where

X = x − x0,

x0 = (8J − 1)
L

2θ
≡ −λ

L

2
; (25)

c = 4JL

θ
= x0 + L

2θ
= L

2

(
1

θ
− λ

)
.

x0 corresponds to the place where μ(x) vanishes, hence to the
position of the apex of the envelope function ±|μ(x)|, that is,
where μ(x) [and γ (x)] cross over between real and imaginary
values k(x) or −i q(x) [and K(x) or −i Q(x)]. Subsequently,
explicit forms will be needed, particulary for γ for the real
case, and it will then be convenient to use both K and (real)
K̃ , where

K(x) = K̃(X), (26)

with X = X(x) = x − x0 and where K̃ is as in Eq. (24). x0

also corresponds to the place where J is equal to the local
critical current; this plays a central role in the discussion. For
graphical illustrations, refer to Fig. 4 in Sec. III D below. c

is a characteristic length related to the rate gradient. λ, the
ratio of x0 to −L/2, conveniently distinguishes scenarios and
parametrizes analytic expressions, particulary in the L → ∞
limit.

C. Scenarios for steady-state behavior

We next discuss the character and location of steady-
state phases, and relationships to positions of the “envelope”
and kinks. The generalized maximal-current and low-current
phases of the system turn out to be described by two scenarios,
I and II, as follows.

For the rate gradient case with θ > 0 (θ < 0 has dual
character), the smallest p(x) is at the left-hand side edge,
giving a severe bottleneck there. As we see in the following,
this has the consequence that the current J adjusts itself in
such a way that the apex position x0 = −λL/2 turns out to be
either (I) near the left boundary, but still inside the system, or
(II) to the left of the left boundary. These give, respectively,
the following.

061113-4



SMOOTHLY VARYING HOPPING RATES IN DRIVEN FLOW . . . PHYSICAL REVIEW E 83, 061113 (2011)

Scenario I. λ � 1. Here the tan function applies near the
left edge and its spatial extent �x is limited by the condition
�Q(x) = q(x) �x < π . Since q(x) is related to the difference
J − Jc(x) of the steady-state current J from its local critical
value, this condition also limits J as well as the position,
x = x0, where J − Jc(x) vanishes.

Scenario II. λ > 1. Here only the tanh function applies
inside the system.

The two scenarios become very evident in the “family” of
profiles corresponding to all possible average densities 〈ρ〉, for
PBC and a given θ (see the numerical results in Fig. 4).

Scenario I corresponds to a common envelope [nearly
parabolic in shape; see Eq. (23)] and applies for an intermediate
range of 〈ρ〉’s (not very far from 1/2). It is consistent with a
fixed position x0 of the apex of the envelope, close to the
left-hand boundary. It is [through Eq. (25)] consistent with an
observed constant (〈ρ〉-independent) plateau current J , about
(1/8)(1 − θ ). Near the left boundary there is a small region
of tan profile, and everywhere else the profile approaches the
tanh form (including the kink).

Scenario II, applying for larger |〈ρ〉 − 1/2|, has profiles
not near a common envelope, corresponding to varying apex
position; indeed, in this case x0 is outside of the system (to
the left of the left boundary) and the profile is entirely of tanh
type. In this scenario the currents depend on 〈ρ〉.

These scenarios and related phenomena can be quantita-
tively explained using the mean-field adiabatic formulation,
except near the envelope apex if that lies inside the system. This
is because the apex is where μ(x) vanishes, that is, where the
adiabatic approximation fails utterly [see the validity criterion,
below Eq. (10)]. To the right of the apex, where J < Jc(x), the
adiabatic approximation is valid for X > c 1/3, so the adiabatic
form σR = k(x) tanh[K(x) − K(a)] applies; similarly, in the
region to the left of the apex, J > Jc(x), and the adiabatic
form σL = −q(x) tan[Q(x) − Q(b)] is valid for X < −c 1/3

. Between these a (nonadiabatic) form σC ∝ (x + const)−1 is
adequate. So the profile can be a piecewise combination of σL,
σC , and σR , except for Scenario II, where only σR applies.

In all cases, for the integral in Eq. (21) for (2〈ρ〉 − 1) it
turns out that at large L the contribution from σR dominates,
and it alone gives the L → ∞ value. This is because of the
limitation of the range of the tan function in σL, to prevent its
divergence, and of the range [∼c1/3 ∝ L1/3] of σC . This makes
their contributions to the integral less than that from σR by a
factor which vanishes as L increases.

Note that, quite generally, the limitation of σL requires x0 to
satisfy x0 − (−L/2) < π/q(−L/2); in the limit L → ∞ this
restricts the variable λ defined above to the two possibilities
λ = 1 (envelope apex very near the left boundary) or λ > 1
(apex [well] outside). These are, respectively, Scenarios I and
II, whose details are now presented.

1. Scenario I

In this case, where λ = 1, we investigate its quantitative
character and which values of 〈ρ〉 and J are consistent with
it. First, from Eq. (25), λ = 1 makes J = (1/8)(1 − θ ). For
possible values of 〈ρ〉, we consider Eqs. (21) and (22). We
chose the integration constant a so that x = a is the center of
the kink. If the kink is inside the system, the further it is to

the right the smaller will be the integral, and the associated
〈ρ〉 − 1/2. There is clearly a least 〈ρ〉 in Scenario I, applying
when the kink is as far to the right as it can be (consistent
with PBC). However, Scenario II allows displacement of the
envelope to the left (λ > 1), and with fixed kink position this
affects the value of the integral, since the more the envelope is
displaced to the left, the larger will be the amplitude k(x) of
the tanh at any particular x inside the system.

So, small |〈ρ〉 − 1/2| can be achieved with envelope apex
near the left-hand boundary, by adjusting the kink position
(Scenario I), while 〈ρ〉 nearer 0 or 1 needs a large displacement
[O(L)] of the envelope to the left, corresponding to λ > 1
(Scenario II).

For illustration, consider the special case 〈ρ〉 = 1/2 for
which the numerical profile is actually shown in Fig. 1. In
the figure it is evident that the required zero value of the
integral between the profile curve and the x axis is achieved by
having the abrupt rise of the curve, corresponding to the kink,
where it is. To the right (left) of the kink the curve follows
the upper (lower) branch of the envelope function [k(x) is
monotonically increasing]. At the extreme left is the region
around x0 (necessarily small) where the tanh has become tan;
its near divergence makes it easily able to match the PBC
requirement. Thus, one sees, in retrospect, that the fit shown
in Fig. 1 is, in fact, quite misleading.

Scenario I is consistent as long as the kink stays within the
right boundary of the system. Then, σ (L/2) at that boundary
is positive and the PBC requiring σ (−L/2) to have the same
positive value can be readily satisfied, as the tan form needs
only a very small adjustment of its argument (within ≈π ) to
achieve this. At the same time the spatial range in which the tan
form applies has to be very small to prevent unphysical σL’s.
Of course, σL and σC , and the relationship of their constants
to a, are needed to complete the determination of the profile.

This discussion is easily generalized and made more
quantitative by using the integration result in Eq. (22), with
the appropriate real version K(x) of γ (x), together with the
fact that when the kink at X = a − x0 ≡ A lies well inside
the system K̃(X) − K̃(A) is large [O(L)] at both limits, but
of opposite signs. Further, the kink width (≡w), such that the
argument of tanh in Eq. (22) changes by O(1) between x =
a ± w/2, is w ≈ [dK̃(A)/dA]−1 = [(A + c)/A]1/2, which is
O(1) for a = O(L), except near x0, where w diverges. Hence,
the integration result is, in the limit of large L,

2

(
〈ρ〉 − 1

2

)
= 1

L
(K̃(L) − 2K̃(A)), (27)

where

K̃(X) = [X(X + c)]1/2 − c tanh−1

[
X

X + c

]1/2

. (28)

For the special case 〈ρ〉 = 1/2 the kink position then has
to be such that K̃(A) = (1/2)K̃(L) which, using the explicit
form of K̃ [see Eqs. (26) and (28)], gives A/L = (1/2) + a/L

≈ 0.61 for θ = 0.2, consistent with the kink position in
Fig. 1. The general solution for the kink position against
particle density is exhibited in Fig. 3, for illustrative values
of θ . Note that the range of values of 〈ρ〉 for which solutions
are found is symmetric relative to 〈ρ〉 = 1/2, and gets broader
with increasing θ [see also Eq. (29) below].
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FIG. 3. (Color online) Kink position a/L against density 〈ρ〉 [see
Eqs. (27) and (28)], for systems with PBC and rate-gradient values θ

as shown.

Larger values of a are associated, through Eq. (22), with
〈ρ〉 < 1/2, up to the limit a = L/2 when the kink center is at
the right boundary. Then the mean density takes the limiting
value 〈ρ〉c such that(

〈ρ〉c − 1

2

)
= − 1

2L
K̃(L) = 1

4

{[
2

(
1 + 1

θ

)]1/2

−
(

1

θ
− 1

)
tanh−1

[
2θ

1 + θ

]1/2
}

. (29)

This marks the condition where the two scenarios meet and
corresponds to the limit of a plateau region [in which, for
L → ∞, J = 1

8 (1 − θ ) applies] in the “fundamental” diagram
relating J with 〈ρ〉 and θ .

At 〈ρ〉 > 1/2 one finds equations identical in form to
Eq. (27)–(29), with 1

2 − 〈ρ〉 replacing 〈ρ〉 − 1
2 . For small θ ,

Eq. (29) gives 〈ρ〉c − 1/2 = −(
√

2/3) θ 1/2. Thus, the extent
of the plateau in the J − 〈ρ〉 diagram vanishes as θ → 0. In
this limit, for 〈ρ〉 still within the plateau, one can show that
the height of the kink vanishes as θ1/2.

2. Scenario II

Scenario II applies at 〈ρ〉’s so small (for a given θ ) that
the kink center is beyond the right boundary of the system
(see, e.g., the curves for 〈ρ〉 = 0.25, 0.125 in Fig. 4). Then the
apex position x0 of the tanh envelopes has to go outside of the
system on the left, and there has to be a small upturn in σ at
the extreme right of the system to satisfy the PBC, so the start
of the kink is just visible there in Fig. 4, and the kink center is
actually beyond the right boundary. This means that the tanh
profile applies throughout the system:

σ (x) = σR = k(x) tanh[K(x) − K(a)], (30)

where K(x) is again as in Eqs. (24) and (26). We now have
x0 < −L/2 and L/2 < a < L/2 + w, where w is the kink
width (of order 1).

FIG. 4. (Color online) Steady-state local density profiles for
system with L = 256 and PBC, θ = 0.2. Curve labels denote average
particle densities.

As discussed above, for given θ specifying 〈ρ〉 < 〈ρ〉c <

1/2 [see Eq. (29)] will lead to x0/L < −1/2, so making J <

(1/8)(1 − θ ) and λ > 1. As before, we use Eqs. (22)
and (24). However, now, since x0 < −L/2, and for all x in
the system x < a, K̃(x) − K̃(a) is at both limits negative (and
large). So we have [ignoring contributions to 2(〈ρ〉 − 1/2) L

of lower order in L (from corrections to the adiabatic
approximation, and from width of the kink) and the comparable
small distance the center lies beyond the right boundary]

2

(
〈ρ〉 − 1

2

)
≈ 1

L

{
K̃

[
L

2
(λ+ 1)

]
− K̃

[
L

2
(λ− 1)

]}
, (31)

where K̃(X) is as in Eq. (28). This gives λ in terms of 〈ρ〉
and θ , for 〈ρ〉 less than the critical value, and hence provides
the following current-density relation outside of the plateau
region

J = 1
8 (1 − λθ ), (32)

with

4

(
1

2
− 〈ρ〉

)
=

[
(λ+ 1)

(
1

θ
+ 1

)] 1
2

−
[

(λ− 1)

(
1

θ
− 1

)] 1
2

−
(

1

θ
− λ

){
tanh−1

[
λ + 1

θ−1 + 1

] 1
2

− tanh−1

[
λ − 1

θ−1 − 1

] 1
2

}
. (33)

A similar procedure applies for the complementary subcase,
(1 − 〈ρ〉) < 〈ρ〉c < 1/2, by particle-hole duality.

Equations (32) and (33) can be combined to give J as a
function of 〈ρ〉 in Scenario II, for fixed θ . The range of values
of 〈ρ〉 for which physically acceptable solutions are found is
complementary to that limited by Eq. (29), which marks the
extremes of validity of Scenario I.
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3. Weak-bond interpretation of plateau current

Before moving to numerical results, we introduce an
additional piece of mean-field theory which will be useful
later.

As remarked above, a plateau current, similar to that
predicted in Scenario I, is found in the TASEP with random
rates p(x) [5,10,11]. There, an interpretation is given in
terms of the current limitation provided by the weakest
bonds, pw, which suggests that the “maximal” current satisfies
Jmax � pw/4. The following generalization provides a direct
interpretation and confirmation of the result Jmax = 1

8 (1 − θ )
predicted for the plateau phase in Scenario I.

In the continuum mean-field formulation, Eqs. (3)–(5) give
for all x

J = 1

4
p(x)

{
1 − σ 2(x) − ∂σ

∂x

}
. (34)

The most limiting rate, occurring at x = −L/2, is pw

= 1
2 (1 − θ ), so Jmax is obtained from applying Eq. (34) there.

In Scenario I, with λ = 1, the tan solution Eq. (19) applies in
that region [i.e., X = O(1)], which yields for the right-hand
side of Eq. (34), using Eqs. (18), (23), and (25),

1

4
pw (1 + q2) = 1

4
pw

{
1 − X

X + c

}
= 1

4
pw

{
1 + O

(
1

L

)}
, (35)

hence confirming the infinite-system maximal current 1
8

(1 − θ ).

D. Numerical results

We considered lattices with L = 2m sites, 8 � m � 13. A
time step is defined as a set of L sequential update attempts,
each of these according to the following rules: (1) Select a
site at random; (2) if the chosen site, here denoted by x, is
occupied and its neighbor to the right is empty, then (3) move
the particle with probability p(x). Thus, in the course of one
time step, some sites may be selected more than once for
examination, and some may not be examined at all.

We have found that the time needed to attain steady-state
flow varies roughly with L3/2, similarly to the uniform-rate
case [11], for which this is well-known [28,34,35], and is
in agreement with the correspondence between the (uniform)
TASEP and evolution of a Kardar-Parisi-Zhang (KPZ) inter-
face [30,31,36,37].

For density profiles, local densities were usually averaged
over snapshots (taken at appropriately long times) of 104

independent samples. For example, for L = 256 we found
that steady state has been reached by time t = 104 in most
cases, except for points on the coexistence line for open-
boundary conditions (BCs) (see Sec. IV) where the approach
to stationarity is markedly slower. Although finite-size effects
can be observed, they are generally small and act toward
making any kinks sharper, relative to system size, without
any qualitative change. Thus, we can be confident that no
significant physical features are missed by generally exhibiting
profiles corresponding only to L = 256, as done here.

Figure 4 shows steady-state density profiles for θ = 0.2,
which, although still in the scaling regime, is a relatively steep
gradient. The behavior is in full agreement with the theory
developed in Sec. II B: (i) According to Scenario I, there is
a common envelope, pinned to the left-hand extreme of the
system, for intermediate densities roughly between 0.3 and
0.7; (ii) within this range of densities a kink is present, whose
location varies against 〈ρ〉 as predicted by Eqs. (27) and (28);
(iii) for densities further removed from 1/2, Scenario II takes
over, and profiles follow either the lower branch of the envelope
(with its 〈ρ〉-dependent displacement) with an incipient kink
at the right boundary (for 〈ρ〉 < 1/2), or the upper branch, in
this case with a narrow downward turn at the left edge in order
to satisfy PBC (〈ρ〉 > 1/2).

Envelope functions are already familiar in the profiles
of constant-rate asymmetric exclusion processes (e.g., on
the coexistence line), but they only involve new scenarios
when their delimitation of density profiles is space-dependent
(as above or, e.g., in asymmetric exclusion problems with
Langmuir dynamics [38]).

There are slight numerical discrepancies between predic-
tions of Sec. II B and the data displayed in Fig. 4, which
exemplify the finite-size effects referred to above. For instance,
according to Eqs. (27)–(29) [see also Fig. 3], for θ = 0.2
Scenario I should hold for 0.293 . . . � 〈ρ〉 � 0.707 . . .. How-
ever, the profile for 〈ρ〉 = 5/16 = 0.3125 already shows some
deviation from the common envelope. Overall, we have found
that the quantification of finite-system corrections, together
with accurate analysis and extrapolation to the L → ∞ limit,
can best be accomplished when dealing with steady-state
currents, as shown in the following.

Evaluation of steady-state currents involved averaging
over Ns = 100 independent samples, for each of which
Nc = aL L3/2 successive instantaneous current values were
accumulated. We took aL ≈ 130 for L = 256 and 512, and
aL ≈13 for larger L. The instantaneous current is nmoves/L,
where nmoves is the number of particles which undergo
successful move attempts in the course of a unit time interval,
that is, L stochastic site probings as defined above. As is well
known [39], the width δJ of the distribution thus found is
essentially independent of Ns as long as Ns is not too small,
and varies as N

−1/2
c . With the parameters as specified here,

we managed to keep δJ well below the finite-size difference
between J estimates for consecutive values of L (for fixed θ ,
ρ). The relevance of finite-size effects for currents is illustrated
for ρ = 1/2 in Fig. 5, where θ is restricted to small values
for clarity of presentation; one can see that the curvature
present in finite-L data is essentially absent upon extrapolation
to L → ∞. We now discuss guidelines for extrapolation
of finite-system currents JL to their thermodynamic-limit
value J∞.

In line with general finite-size scaling ideas, we attempted
single-power fits of our sequences of finite-L current data with
an adjustable finite-size scaling exponent ψ , for all available
pairs θ and ρ. We denote by θc(ρ) the gradient intensity value
above which J (ρ,θ ) becomes independent of ρ.

So, θ < θc(ρ) corresponds to Scenario II of Sec. III C above,
while θ > θc(ρ) is associated with Scenario I. Although θc still
carries an L dependence (thus, e.g., the mergings of J − θ
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FIG. 5. (Color online) Steady-state currents J against gradient
intensity θ for ρ = 1/2 and PBC, for system sizes as shown, plus
extrapolated curve; for details of extrapolation, see text.

curves shown in Fig. 2 take place at slightly different locations
for L �= 2048), it is a rather small effect compared to the overall
range of θ variation investigated.

Results were as follows.

(1) For 0 � θ � θc(ρ), ψ ≈ 1 (Scenario II);
(2) for θ � θc(ρ), ψ ≈ 1/2 (Scenario I).

In the immediate vicinity of θc(ρ), on both sides, we had rather
serious convergence issues, so there we generally resorted to
fixing ψ = 1/2, for which the corresponding extrapolations
fell in smoothly with the remaining ones outside that interval.
For region (2), we estimate the uncertainty for ψ to be of order
10% at most.

Thus, for the extrapolated points in Fig. 5, ψ ∈ (0.45,0.55)
was found in all cases except that corresponding to θ = 0,
for which ψ ≈ 1. The case of 〈ρ〉 = 1/2 shown in that figure
is somewhat exceptional in that, as remarked at the end of
Sec. III C 1 above, there the extent of validity of Scenario II
corresponds only to the limit θ → 0.

In Fig. 6 we present the set of extrapolated currents for
ρ = 1/2, corresponding to 0 � θ � 0.2, together with the
mean-field prediction of a straight line JMF(θ ) = 1

8 (1 − θ )
for Scenario I (see also the weak-bond interpretation given in
Sec. III C 3). The agreement is remarkable.

Considering now the extrapolated currents for 〈ρ〉 �= 1/2,
one sees in Fig. 7 that the variation of J against θ is generally
much slower where Scenario II holds. In the vicinity of
θc(ρ), due to the convergence issues mentioned above, we
considered systems of sizes up to L = 8192 (away from that
region, we found that using L � 2048 was generally enough
to distinguish a reliably smooth trend as L−1 → 0). Upon
extrapolation we found the small overshoots shown in the
figure, which when translated to J − 〈ρ〉 diagrams for fixed θ ,
would amount to reentrant behavior. For the largest deviation
found, corresponding to ρ = 5/16 at θ = 0.175, one gets
J = 0.1039(1), while the value for ρ = 1/2 at the same θ

is 0.1030(1). Although the average values differ by just under
1%, when converted in terms of (estimated) uncertainties this

FIG. 6. (Color online) Points are extrapolated currents for system
with ρ = 1/2, PBC. Solid line is the mean-field approximation (see
text).

difference is equivalent to nine error bars. So, this effect
appears to be real.

The data in Fig. 7 can be used to test Eq. (29). In order
to do so, for fixed 〈ρ〉 < 1/2 one needs to establish the
boundary between the ranges of validity of Scenarios I and II,
as given by numerical simulations. Due to the overshoots just
referred to, this task carries some ambiguity. For simplicity,
we assumed such location to be where the respective J − θ

curve first crosses that for 〈ρ〉 = 1/2, upon increasing θ .
Fitting the data thus obtained to the form 1

2 − 〈ρ〉 = a θb, one
finds a = 0.471(4), b = 0.51(1). These are to be compared,
respectively, to a = √

2/3 = 0.4714 . . . , b = 1/2, from the
small-θ expression of Eq. (29) (see paragraph below that
equation). Thus, the above assumption seems justified.

Furthermore, data within the region of validity of Scenario
II can be compared with the predictions of Eqs. (32) and (33).
We used θ = 0.06. One sees in Fig. 8 that the agreement
between theory and extrapolated numerical results is indeed

FIG. 7. (Color online) Extrapolated steady-state currents versus
gradient intensity for systems with PBC and densities as shown. Note
overshoots.
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FIG. 8. (Color online) Points are extrapolated (L → ∞) steady-
state currents; solid line is J − 〈ρ〉 relationship from Eq. (32) and
Eq. (33) (Scenario II); long-dashed horizontal line is J = 0.1175,
from Eq. (25) with λ = 1 (Scenario I). Short-dashed line is J − 〈ρ〉
relationship for uniform hopping-rate systems [Eq. (2)].

excellent. The prediction of a plateau for Scenario I is also
borne out by numerics, within error bars. One cannot see
unequivocal evidence here for a reentrant behavior similar to
that found in Fig. 7. It is possible that such an effect, if present,
is smaller than for the cases depicted in the latter figure. This
would be in line with the observation that the amplitude of the
reentrance decreases with decreasing θ .

Figure 8 also shows the J − 〈ρ〉 relation for uniform
hopping-rate systems for comparison.

A current-density diagram very similar to Fig. 8 was
obtained in Ref. [14] for the partially asymmetric exclusion
problem with spatially varying hopping rates.

IV. OPEN-BOUNDARY CONDITIONS

A. Introduction

With open-boundary conditions, the following additional
quantities are introduced: the injection (attempt) rate α at the
left end and the ejection rate β at the right one. Calling ρL, ρR

the stationary densities respectively at the left and right ends
of the chain, one has for the current J at the boundaries, and
anywhere inside,

α (1 − ρL) = J = β ρR. (36)

Scenarios I and II, regarding the existence and location of an
“envelope”, discussed in the preceding section, still apply here,
with similar consequences upon the systemwide current. The
overall picture turns out to be rather like that for open systems
with uniform hopping rate [1–4,40–43]: A maximal-current
phase arises for suitably large α, β (where Scenario I takes
hold); elsewhere, one has less-than-maximal current, although
with either low or high density, the latter two subphases
being separated by a coexistence line; Scenario II applies. See
Fig. 9 and corresponding insets.

The robustness of the three-phase structure in the present
case is in line with the results of Ref. [14]. In their study of the

(i)
(iv)

0

α

β

(ii)

(iii)

CL

α

β

c

c

FIG. 9. Schematic phase diagram for TASEP with hopping-
rate gradient for open-boundary conditions. Locations of phase
boundaries are θ dependent [ see Eqs. (45)–(49) ]. CL stands for
coexistence line (between high- and low-density phases). The insets
show typical density profiles for each phase (see text).

partially asymmetric exclusion problem, with spatially varying
right- and left-hopping rates p(x) and q(x), respectively, those
authors always found three phases, as long as p(x) − q(x) did
not change sign.

In the maximal-current phase, the following specific fea-
tures are noteworthy.

(i) The steady-state systemwide density 〈ρ〉 is very close
to the value which, for PBC, corresponds to the lower limit
of validity of Scenario I. This is because, from the conditions
given in Eq. (36), for large α,β one must have ρL “large”
and ρR “small.” Thus, the density profile essentially follows
the lower branch of the envelope function. Slight departures
from that occur within short (“healing”) distances from the
extremes, in order to comply with the exact values dictated
by Eq. (36). The latter effects account for the fact that 〈ρ〉
is not strictly constant throughout the maximal-current phase.
Although Eq. (36) imposes the same constraints for systems
with uniform hopping rates, there the envelope is trivially x

independent, and 〈ρ〉 is close to 1/2 [2,27,41].
(ii) In contrast to Scenario I with PBC, the steady-state

profiles here do not show a kink inside the system.
(iii) Similarly to Scenario I with PBC, the tan-like segment

of the profile at the extreme left of the system is essential in
the local density adjustment near that edge. However, as just
mentioned, such adjustment is here imposed by Eq. (36), as
opposed to the former case where the constraint arises from
demanding continuity of ρ to obey PBC (combined with the
existence of a kink further to the right).

B. Theory and scenarios

In the “low-current” Scenario II, with the apex left of the
system’s left boundary (x0 = −λ L/2, with λ > 1), one has
only tanh-type solutions for all x; σ = 2(〈ρ〉 − 1

2 ) is limited
by the envelope ±k(x):

k(x) =
[

1 − 4J

p(x)

]1/2

=
[

(2θ/L)(x − x0)

1 + (2θ/L) x

]1/2

. (37)

So,

J = p(x)

4
[1 − k2(x)] = 1

8

(
1 + 2θ

L
x

)
[1 − k2(x)]. (38)
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Taking x = x0, where k(x0) = 0, gives

J = 1
8 (1 − λ θ ), (39)

while evaluating Eq. (37) at x = ∓L/2 gives

kL,R = k

(
∓L

2

)
=

[
θ (λ ∓ 1)

1 ∓ θ

]1/2

, (40)

which sets the upper (ρ>
L,R) and lower (ρ<

L,R) bounds for the
density at the extremes:

ρ
>,<
L,R = 1

2 (1 ± kL,R). (41)

With σ (x) = k(x) tanh[K(x) − K(a)], where x = a is the
position of the kink, and K = ∫

k(x) dx, one can see from the
insets in Fig. 9 that, considering the situations corresponding
to profiles types (i), (ii), and (iii) shown there, the following
constraints hold:

ρ<
L � ρL � ρ>

L (i),

ρL = ρ<
L (ii),(iii);

ρR = ρ>
R (i),(ii),

ρ<
R � ρR � ρ>

R (iii).

(42)

So, using Eqs. (36) and (38) we obtain, for the possible values
of α and β in the three situations,

α(i) ∈
[

J

1 − ρ<
L

,
J

1 − ρ>
L

]
= 1

4
(1 − θ ) [1 − kL,1 + kL] ;

α(ii),(iii) = J

1 − ρ<
L

= 1

4
(1 − θ ) (1 − kL);

β(i),(ii) = J

ρ>
R

= 1

4
(1 + θ ) (1 − kR);

β(iii) ∈
[

J

ρ>
R

,
J

ρ<
R

]
= 1

4
(1 + θ ) [1 − kR,1 + kR] .

(43)

For the coexistence line (CL), in which the kink lies wholly
inside the system, that is, profile type (ii) above, the results
established in Eqs. (43), together with Eqs. (39) and (40), give
the current:

JCL = α

(
1 − 2α

1 − θ

)
= β

(
1 − 2β

1 + θ

)
; (44)

and the equation for the CL shape as follows:

2α2

1 − θ
− α = 2β2

1 + θ
− β. (45)

In this “low-current” Scenario II, λ > 1 and, from Eq. (39),
λ � 1/θ . So the extent of the CL in (α,β) parameter space,
and the current there, are limited to

0 � α

(
1 − 2α

1 − θ

)
= β

(
1 − 2β

1 + θ

)
= JCL � 1

8
(1 − θ ). (46)

The same form of current, Eq. (39), and the same limitation
1 � λ � 1/θ , apply for the high-density and low-density
subphases [corresponding to profiles of types (i) and (iii)]
which the coexistence line separates in this low-current
Scenario II. Actually, λ = 1 is the boundary between maximal

(plateau) current phase [corresponding to profiles of type
(iv)] and the lower current phase(s). Since for λ = 1, kL = 0,
kR = [2θ/(1 + θ )]1/2, using Eq. (43) the phase boundaries are
(in addition to the coexistence line)

α = αc(θ ), β � βc(θ ) (47)

[between subphase (iii) and maximal-current phase], and

β = βc(θ ), α � αc(θ ) (48)

[between subphase (i) and maximal-current phase], where

αc = 1

4
(1 − θ ), βc = 1

4
(1 + θ )

[
1 −

(
2θ

1 + θ

) 1
2

]
. (49)

From Eqs. (45) and (49), the slope of the CL is unity at the
origin, that is, the same there as that for the uniform-rate case,
and diverges at the end point (αc, βc).

Given α and β, Eqs. (39), (40), and (43) give J and λ, and
then Eqs. (31) and (33) can be used for the determination of
〈ρ〉, anywhere on the phase diagram where Scenario II applies.
For points on the CL, however, an adaptation is needed in order
to account for the presence of a kink inside the system. Then,
the amended form of Eq. (31) reads

2

(
〈ρ〉 − 1

2

)
≈ 1

L

{
K̃

[
L

2
(λ + 1)

]
+K̃

[
L

2
(λ − 1)

]
− 2 K̃(A)

}
, (50)

where X = A is the position of the kink. This can be found by
keeping track of the leading finite-size corrections (from the
asymptotic values ±1) to the tanh forms at the ends [to obey
the constraints given by Eq. (36)]. One gets the prediction
〈ρ〉 = 1

2 everywhere on the CL for any θ .

C. Numerical results

In numerical work with open-boundary conditions, we kept
to θ = 0.2.

Initially we investigated the shape of steady-state profiles
deep inside the high-density, low-density, and maximal-current
regions given in Fig. 9, as well as at a point on the CL at
(α,β) = (0.1,0.087 868) [about halfway between the origin
and the end point of the CL; see Eqs. (45) and (49)]. We found
profiles which conform respectively to types (i), (iii), (iv),
and (ii) shown in the figure, in agreement with the theoretical
results given above.

Deep inside the maximal-current phase, at α = β = 0.375,
we carried out a finite-size scaling analysis of steady-state
currents, using systems with L � 8192. The finite-L values
JL thus obtained were very close to those corresponding to
PBC and θ = 0.2, for 〈ρ〉 in Scenario I. They approach the
same extrapolated value J∞ = 1

8 (1 − θ ) found there, with the
same type of finite-size corrections, that is, JL − J∞ ∼ L−ψ ,
ψ ≈ 0.5.

Elsewhere on the phase diagram, we calculated steady-state
currents and densities at selected points, using only L = 1024.
Results are shown in Table I.

For the point on the CL, the central value of 〈ρ〉 is close
to 1/2, as predicted in Sec. IV B, but the density fluctuations,
associated with phase coexistence, are apparently very large.
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TABLE I. Average steady-state currents J and densities 〈ρ〉 for
systems with θ = 0.2, L = 1024, and assorted injection and ejection
rates (α,β). Jth and 〈ρ〉th refer, respectively, to currents and average
densities calculated by the theory given in Sec. IV B. Phases specified
in column 1 are, respectively: CL, coexistence line; HD, high-density;
LD, low-density; MC, maximal-current. Refer to Fig. 9 and text.

Type α β J Jth 〈ρ 〉 〈ρ 〉th

CL 0.100 0.087 868 0.0750(3) 3
40 0.51(10) 1

2

HD 0.400 0.100 0.0834(4) 1
12 0.781(1) 0.782 41 . . .

LD 0.100 0.400 0.0751(3) 3
40 0.188(1) 0.188 39 . . .

LD-MC 0.200 0.400 0.1015(2) 1
10 0.297(1) 0.292 45 . . .

MC 0.450 0.450 0.1036(1) 1
10 0.3113(7) 0.292 45 . . .

MC 0.650 0.250 0.1036(1) 1
10 0.3120(6) 0.292 45 . . .

MC 0.250 0.650 0.1031(1) 1
10 0.3074(7) 0.292 45 . . .

Related profiles (at the relatively small value θ = 0.2 being
used) are consistent with the kink being located with roughly
equal probability anywhere in the system, as in the θ = 0
case [4,11]. An approximate calculation, assuming this,1 and
replacing the envelope by one with kL and kR both set equal
to their root-mean-square value, provides an estimate for the
root-mean-square density deviation, 〈δρ〉rms = 0.17, in line
with the result quoted in Table I. The relationship between the
current JCL, α, and β given in Eq. (44) is verified to very good
accuracy.

In the high-density (HD) and low-density (LD) phases,
agreement between theory and numerics is excellent, in part
because finite-size effects are small there, where Scenario II
holds.

For the set of three points inside the maximal-current
(MC) phase, the currents are indeed close to each other, their
value differing from the infinite-system one J∞ = 1

8 (1 − θ )
by well-understood finite-size corrections. The corresponding
densities are also very close and in good accord with the
prediction that the corresponding profiles should essentially
coincide with the lower branch of the envelope function. Recall
that, for PBC, this is expected to happen, at θ = 0.2, for 〈ρ〉
close to 0.3 (see Sec. III). The larger spread between densities
in the MC phase, when compared to that between currents,
is to be expected (see comments in Sec. IV A). One gets a
smaller difference between numerical results and theoretical
predictions by looking at a point on the borderline between
LD and MC phases (LD-MC). Even then the agreement is not
as close as that found deep inside the HD and LD phases. Such
effects reflect the L−1/2 corrections pertaining to Scenario I.

V. DISCUSSION AND CONCLUSIONS

We have developed a mean-field adiabatic theory for
the one-dimensional TASEP with smoothly varying hopping
rates. Its application to the uniform-gradient case is shown,
upon comparison with extrapolations to the L → ∞ limit

1It is the number of particles present in the system, rather than the
kink location, which is expected to have uniform distribution, so our
procedure is not expected to apply at large θ .

of numerical simulation data, to give very accurate results.
Evidence for this is exhibited especially in Figs. 4, 6, 7,
and 8 and Table I. Thus, for PBC it appears that the J − 〈ρ〉 − θ

relationship given by Eqs. (32) and (33) is exact for Scenario II
of a 〈ρ〉-dependent current. While simulations essentially find
the constant-current plateau predicted for Scenario I with PBC
(at values of J in full accord with theory), a small amount
of nonmonotonic dependence of J on 〈ρ〉, near the edge of
the corresponding region, appears to be present. Although
extrapolation of finite-system current results turns out to be
plagued with convergence issues precisely in this region, a
systematic trend is found toward increasing values of the
calculated overshoot as θ increases (see Fig. 7). Thus, one
cannot definitely discard the possibility that such overhangs
are real effects.

Being mean field in character, the theory presented here
cannot predict, for example, current fluctuations [44,45],
nor fluctuation-related finite-size corrections. However, our
numerical evidence shows that in the plateau region, that is,
within Scenario I (for both PBC and open BCs), the dominant
finite-size current corrections are of order L−ψ , ψ ≈ 0.5. This
indicates that an additional mechanism is present whose effects
obscure the usual (uniform-hopping rate) fluctuation-induced
L−1 terms [the latter are clearly identified in our numerics, not
only for θ = 0, but also wherever Scenario II holds].

The mean-field theory explains the L−1/2 corrections as
arising from a tan-like part of the profile which lies inside
the system only in Scenario I. This occurs near the envelope
apex, in a region of width π/q̃(X), where q̃ = dQ̃/dX [see
Eqs. (18) and (19)]. There, X = O(1), c = O(L); hence, from
Eqs. (23)–(25), π/q̃(X) = O(L1/2). One must quantify the
subdominant size-dependent effects originating from this
region.

For PBC, notice that in the range of x where the tan-like
profile holds, σ = O(1) so it gives a contribution to the integral
for L 〈ρ〉 of order L1/2, out of a total of order L. This provides
a correction of relative size L−1/2 in 〈ρ〉 for given J . By
inverting the J − 〈ρ〉 relationship (since for PBC it is the
density which is fixed), one is left with the observed current
corrections O(L−1/2).

The argument for open-boundary conditions is slightly
different, because 〈ρ〉 is not fixed by initial conditions and J

is determined by the boundary injection and ejection rates. So,
we look directly at the current and its relationship with α and
ρL, as given in Eq. (36), since the tan solution applies near the
left edge. By Eq. (19), this is σ ∼ −qw tan qw(x − const),
where qw is the value of q = [−X/(X + c)]1/2 at X =
x − x0 = O(1), with X < 0. So qw = O(L−1/2), again by
Eqs. (23)–(25). To provide the required injection current, one
must have σ = O(1) near the left edge, while only a small
change �x in position, of order �x ≈ 1/qw = O(L1/2), will
take the tan → 0. The upshot is that the average change in
σL caused by a change of O(1) in x0 is ∼L−1/2. Hence, with
open-boundary conditions, whenever Scenario I applies, the
finite-size correction in J = α

2 (1 − σL) is O(L−1/2).
By similar arguments one finds that, when a kink is present,

its width generally gives corrections of order L−1 to 〈ρ〉. On
the other hand, corrections coming from the region where the
validity of the adiabatic approximation breaks down are of
order L−2/3. Since these only occur when the apex is inside
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the system, that is, when the L−1/2 tan-originated terms are
present as well, they are dominated by the latter.

In closing, we note that a number of extensions of this
study suggest themselves. Steady-state behavior for other
spatial dependences of rates, particularly wells, should be
amenable to similar procedures. The same is true for studies
of the dynamics. To develop the theory beyond the mean-
field limit is a more formidable challenge, but for slowly
varying rates the adiabatic approach should still apply, possibly
combined with existing exact methods for uniform systems.
Phenomenological domain-wall approaches [46,47] would be
a likely way forward.
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[47] V. Popkov and G. M. Schütz, Europhys. Lett. 48, 257 (1999).

061113-12

http://dx.doi.org/10.1016/S0370-1573(98)00006-4
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1088/1751-8113/40/46/R01
http://dx.doi.org/10.1103/PhysRevE.58.1911
http://dx.doi.org/10.1016/S0375-9601(99)00013-4
http://dx.doi.org/10.1590/S0103-97332000000100009
http://dx.doi.org/10.1103/PhysRevE.70.021901
http://dx.doi.org/10.1103/PhysRevE.70.021901
http://dx.doi.org/10.1209/epl/i2003-10153-8
http://dx.doi.org/10.1103/PhysRevE.70.016108
http://dx.doi.org/10.1103/PhysRevE.70.016108
http://dx.doi.org/10.1103/PhysRevE.78.031106
http://dx.doi.org/10.1103/PhysRevE.78.031106
http://dx.doi.org/10.1088/1742-5468/2008/04/P04009
http://dx.doi.org/10.1088/1742-5468/2008/04/P04009
http://dx.doi.org/10.1103/PhysRevE.71.011103
http://dx.doi.org/10.1103/PhysRevE.71.011103
http://dx.doi.org/10.1088/0305-4470/39/10/002
http://dx.doi.org/10.1103/PhysRevE.65.031911
http://dx.doi.org/10.1103/PhysRevB.81.045317
http://dx.doi.org/10.1088/1751-8113/40/7/004
http://dx.doi.org/10.1088/1751-8113/40/7/004
http://dx.doi.org/10.1103/PhysRevB.38.9323
http://dx.doi.org/10.1103/PhysRevLett.57.3195
http://dx.doi.org/10.1103/PhysRevLett.57.3195
http://dx.doi.org/10.1103/PhysRevB.37.1832
http://dx.doi.org/10.1103/PhysRevB.37.1832
http://dx.doi.org/10.1214/07-AOP375
http://dx.doi.org/10.1103/PhysRevLett.106.128103
http://dx.doi.org/10.1103/PhysRevLett.106.128103
http://dx.doi.org/10.1103/RevModPhys.74.875
http://dx.doi.org/10.1103/RevModPhys.74.1131
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevB.78.214208
http://dx.doi.org/10.1103/PhysRevB.78.214208
http://dx.doi.org/10.1103/PhysRevLett.102.240601
http://dx.doi.org/10.1103/PhysRevLett.102.240601
http://dx.doi.org/10.1103/PhysRevA.81.023606
http://dx.doi.org/10.1103/PhysRevE.81.051122
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1103/PhysRevA.16.732
http://dx.doi.org/10.1103/PhysRevA.16.732
http://dx.doi.org/10.1103/PhysRevLett.54.2026
http://dx.doi.org/10.1103/PhysRevLett.54.2026
http://dx.doi.org/10.1088/1751-8113/43/40/403001
http://dx.doi.org/10.1002/cpa.3160030302
http://dx.doi.org/10.1103/PhysRevA.46.844
http://dx.doi.org/10.1080/01411598708241334
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevA.34.5091
http://dx.doi.org/10.1103/PhysRevA.34.5091
http://dx.doi.org/10.1103/PhysRevE.70.046101
http://dx.doi.org/10.1103/PhysRevE.70.046101
http://dx.doi.org/10.1103/PhysRevE.54.190
http://dx.doi.org/10.1103/PhysRevE.54.190
http://dx.doi.org/10.1103/PhysRevLett.93.040602
http://dx.doi.org/10.1103/PhysRevLett.93.040602
http://dx.doi.org/10.1080/00018730110099650
http://dx.doi.org/10.1023/A:1020462531383
http://dx.doi.org/10.1023/A:1020462531383
http://dx.doi.org/10.1103/PhysRevLett.95.240601
http://dx.doi.org/10.1088/1742-5468/2006/12/P12011
http://dx.doi.org/10.1103/PhysRevLett.80.209
http://arXiv.org/abs/arXiv:1101.3235v1
http://dx.doi.org/10.1088/0305-4470/31/33/003
http://dx.doi.org/10.1209/epl/i1999-00474-0

